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Background. Neurons are an integral component of the immune system that functions to coordinate responses to bacterial 
pathogens. Sensory nociceptive neurons that can detect bacterial pathogens are found throughout the body with dense innervation 
of the intestinal tract. 

Methods. In this study, we assessed the role of these nerves in the coordination of host defenses to Citrobacter rodentium. 
Selective ablation of nociceptive neurons significantly increased bacterial burden 10  days postinfection and delayed pathogen 
clearance. 

Results. Because the sensory neuropeptide CGRP (calcitonin gene-related peptide) regulates host responses during infection of 
the skin, lung, and small intestine, we assessed the role of CGRP receptor signaling during C rodentium infection. Although CGRP 
receptor blockade reduced certain proinflammatory gene expression, bacterial burden and Il-22 expression was unaffected. 

Conclusions. Our data highlight that sensory nociceptive neurons exert a significant host protective role during C rodentium 
infection, independent of CGRP receptor signaling.
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Host responses to bacterial pathogens are complex and coor-
dinated processes. Although the focus on cellular immunology 
has elucidated numerous pathways that reduce infection, there is 
an integrative physiological response to pathogens mediated in 
part by the nervous system, which serves as an active participant 
during the host immune response against bacterial pathogens 
[1, 2]. In the colonic mucosa, this functionality of the nervous 
system is at least partially conferred through the dense innerva-
tion of sensory nociceptive neurons [3, 4]. These types of sensory 
neurons induce physiological changes upon exposure to noxious 
stimuli, including heat, ATP, mechanical injury, inflammation, 
and bacterial products, due to expression of the transient re-
ceptor potential cation channel subfamily V member 1 (TRPV1) 
[5, 6]. Typically, activation of this receptor induces activation of 
sensory neurons, resulting in the relaying of neuronal signals to 
the dorsal root ganglia in the spinal cord and from the gastro-
intestinal tract to the nodose ganglion (NG) via vagal afferent 

fibers [4, 7, 8]. Activation of nociceptive neurons causes the re-
lease of neuropeptides including calcitonin gene-related peptide 
(CGRP), neurokinin A, and substance P (SP). Localized release 
of neuropeptides at the site of activation exert potent immune-
stimulatory or inhibitory effects [9, 10], which is the molecular 
underpinning of neurogenic inflammation [11, 12].

In recent studies, these sensory neurons have been demon-
strated to play a critical role during infection of the lung, skin, 
and small intestine [13–15]. These studies revealed that activa-
tion of nociceptive neurons by the bacterial pathogen, or their 
products, induce CGRP-dependent maladaptive host responses 
that increase susceptibility to infection [13]. Despite these find-
ings, the role of TRPV1 + sensory neurons during infection 
with a noninvasive enteric bacterial pathogen is unknown. To 
determine their role, we used the murine pathogen Citrobacter 
rodentium; a model self-limiting attaching and effacing path-
ogen. Citrobacter rodentium infection of mice has been well 
characterized to cause colonic intestinal epithelial cell (IEC) 
hyperplasia, with bacterial clearance approximately 30  days 
postinfection (p.i.) [16]. Critical to the control of infection is the 
successive activation of innate lymphoid cells (ILCs) followed by 
recruitment of CD4+ T cells that are required for clearance and 
host survival [17–19]. As specialized innate immune cells, ILCs 
produce interleukin (IL)-22 early during the course of infection 
while CD4+ T-cell responses are developing [18, 20], to enhance 
IEC production of antimicrobial peptides (AMP) that can kill 
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bacteria [21–23]. Homing and extravasation into the colonic 
mucosa of IL-17A and IL-22 producing Th17 and Th22 T cells 
occurs during the peak of infection (approximately 10 p.i.) and 
is governed by the expression of chemotactic factors and recep-
tors expressed by immune cells [17]. Extravasation into the in-
fected colon depends on the expression of adhesion molecules 
such as intercellular adhesion molecule (ICAM)-1 or vascular 
cell adhesion molecule (VCAM)-1 by endothelial cells. Mucosal 
homing of T cells is conferred through expression of mucosal 
addressin cell adhesion molecule 1 (MAdCAM-1) expression 
that significantly increases in intestinal venules during inflam-
mation [24–26]. Activation of naive T cells in the lymph nodes 
draining mucosal sites induces α 4β 7 integrin expression, the re-
ceptor for MAdCAM-1, resulting in preferential trafficking into 
the intestine [27–29]. Although recruited Th17 cells amplify in-
flammation through increased expression of cytokines such as 
IL-1β [30], Th22 cells serve to increase AMP production.

To determine whether nociceptive sensory neurons have 
a role in orchestrating immune responses in the intestine, we 
used targeted ablation of these neurons with resiniferatoxin 
(RTX) [31] before C rodentium infection. Using this approach, 
we show for the first time that sensory nerve ablation signif-
icantly increased C rodentium bacterial burden and delayed 
clearance. We further demonstrate that host protection requires 
TRPV1, since TRPV1−/− mice had increased bacterial burden 
at the peak of the infection along with delayed clearance. These 
changes were associated with reduced colonic IL-22 expres-
sion and T-cell recruitment in mice with nociceptive neuronal 
ablation compared with controls. We further identified signif-
icantly reduced expression of Madcam1 10 days p.i. with signif-
icant increases 29 days p.i., mirroring the recruitment of T cells. 
This deficiency in T-cell recruitment was not due to reduced 
chemokines required for Th17/Th22 recruitment.

Given the importance of CGRP in host responses in other 
bacterial infections, we assessed its role during C rodentium 
infection using a selective receptor antagonist. Unlike RTX-
mediated nociceptor ablation, we show that blocking of CGRP 
receptors did not increase bacterial burden despite reducing se-
lect aspects of immune function. Taken together, our findings 
highlight a unique role for sensory nociceptors in the host re-
sponse to the enteric bacterial pathogen C rodentium, particu-
larly during the late phase of bacterial clearance.

METHODS

Mice

C57BL/6 and TRPV1−/− mice were originally purchased 
from the Jackson Laboratory (Bar Harbor, ME) to establish a 
breeding colony. All procedures were approved by the insti-
tutional animal care committee at UC Davis in accordance 
with the Guide for the Care and use of Laboratory Animals. 
Mice were euthanized by CO2 asphyxiation followed by cer-
vical dislocation according to American Veterinary Medical 

Association guidelines. Resiniferatoxin (Tocris, Minneapolis, 
MN) was injected into adult C57BL/6 (6–7 weeks old) mice in 3 
escalating doses (30 µg/kg, 70 µg/kg, 100 µg/kg i.p.) every other 
day. Control mice received injections with vehicle (Dulbecco’s 
modified Eagle’s medium diluted in phosphate-buffered sa-
line). Mice were infected 10  days after the last injection of 
RTX with C rodentium. BIBN 4096 1  mg/kg (Tocris), a po-
tent and selective CGRP receptor antagonist, was injected i.p. 
on the day of C rodentium infection and every other day on-
wards. Gastrointestinal motility was assessed in RTX or vehicle-
treated mice and wild-type (WT) and TRPV1−/− mice, where 
the number and weight of fecal pellets for each mouse was de-
termined over a 20-minute period.

Citrobacter rodentium Infection and Bacterial Burden Quantification

 Citrobacter rodentium (strain DBS100) was kindly provided 
by Dr. Andreas Baumler  (Department of medical microbi-
ology and immunology, School of Medicine, UC Davis, Davis, 
CA). Mice were infected (108 colony-forming units [CFUs]; 
100 µL) by oral gavage, and Luria-Bertani was used as vehicle 
control. For quantification of bacterial burden, feces or distal 
colonic tissue (1 cm) were weighed and homogenized using a 
stainless steel bead (QIAGEN, Germantown, MD) and a bead 
beater (QIAGEN), followed by serial dilution and plating on 
MacConkey agar. Colonies were counted after 16 hours of in-
cubation at 37°C, and CFUs were calculated per gram of sample.

Quantitative Polymerase Chain Reaction

Total ribonucleic acid was extracted from distal colon using 
TRIzol reagent (Invitrogen, Carlsbad, CA), according to the 
manufacturer’s instructions, using 5-mm stainless steel bead in 
a bead beater (QIAGEN). Ribonucleic acid samples were reverse 
transcribed to complementary deoxyribonucleic acid using an 
iSCRIPT kit (Bio-Rad, Hercules, CA). Real-time quantitative 
polymerase chain reaction was performed using primer pairs 
obtained from Primerbank [32] (Supplementary Table S1).

Histology

At euthanasia, distal colon (1  cm) was collected and fixed in 
10% buffered formalin. Samples were paraffin-embedded on 
end to allow for cross-sectioning of tissue. Sections (6 µm) were 
cut, and slides were deparaffinized, rehydrated, and stained with 
hematoxylin and eosin using a standard histological protocol. 
Tissue morphology was evaluated using bright-field micros-
copy at ×20 objective. Crypt length was measured as previously 
described, whereby at least 20 well oriented crypts were meas-
ured per animal with FIJI (Fiji Is Just ImageJ) [33].

Immunofluorescence and Confocal Microscopy

Slides of colon and NG tissues were prepared from formalin-fixed 
paraffin-embedded samples, deparaffinized and rehydrated for 
immunofluorescence. Slides were subjected to heat-induced 
epitope retrieval in citrate buffer (10  mM, pH = 6.0) for 30 
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minutes at 95°C. After cooling to room temperature (RT), slides 
were incubated in blocking solution consisting of 5% (w/v) bo-
vine serum albumin with 5% (v/v) normal serum (antibody 
species specific) in Tris-buffered saline Tween 20 (.5% v/v) for 1 
hour at RT (Supplementary Table S2). Slides were incubated in 
primary antibodies diluted in blocking solution (4°C, 16 hours) 
followed by extensive washing in wash buffer (3 × 5 minutes). 
Slides were incubated with appropriate secondary antibodies for 
1 hour at RT, washed extensively (3 × 5 minutes), followed by 
counterstaining of nuclei with 4’,6-diamidino-2-phenylindole 
(DAPI). Coverslips were mounted using prolong gold antifade 
reagent (Thermo Fisher Scientific, Waltham, MA). Staining of 
βIII Tubulin was performed using a mouse-on-mouse kit ac-
cording to the manufacturer’s instructions (Vector Laboratories, 
Burlingame, CA). Imaging of slides was performed on a Leica 
SP8 confocal microscope. Image areas larger than the field of 
view were acquired as overlapping tiles with a 10% overlap and 
stitched using Imaris Stitcher 9.0. Images were then viewed 
and analyzed using Imaris (Bitplane Scientific, Belfast, United 
Kingdom) or FIJI.

RESULTS

Depletion of Nociceptive Sensory Afferent Nerves Reduces Host Defenses 

to Citrobacter rodentium

The role of nociceptive neurons in the host response to C 
rodentium infection was assessed by selective ablation of 
TRPV1-expressing sensory nociceptors. Administration of 
the excitotoxic TRPV1 agonist RTX [34] significantly reduced 
Trpv1 expression in full-thickness colonic tissues (Figure 1A) 
and TRPV1 + neurons (βIII tubulin+) in the NG (Figure  1B) 
compared with vehicle controls. Citrobacter rodentium infec-
tion of RTX-treated mice significantly increased fecal and co-
lonic adherent bacteria beginning on day 10 p.i. compared with 
vehicle controls (Figure 1C and D). This increased the number 
of bacteria continued until day 29 p.i., a time point when no C 
rodentium was detected in the infected vehicle control group 
(Figure 1C). Delayed clearance and increased C rodentium bac-
terial burden in feces was also observed in TRPV1−/− compared 
with WT (TRPV1+/+) control mice (Figure  1E). Histological 
analysis of the colon 10 days p.i. revealed significantly increased 
crypt hyperplasia in RTX-treated compared with vehicle-treated 
infected mice (Figure 1F and G). We noted no significant dif-
ference in colonic motility as assessed by output of fecal pellets 
in uninfected WT vehicle and RTX-treated mice or WT and 
TRPV1 mice (Supplementary Figure S1). These results high-
light that TRPV1 + neurons exert a host protective role during 
infection with an enteric bacterial pathogen.

Ablation of Nociceptive Neurons Reduces Expression of Select Host 

Protective Genes

To understand how nociceptive sensory neurons regulate host 
defenses against C rodentium, we assessed the expression of 

genes involved in the innate and adaptive immune response to 
this enteric bacterial pathogen (Figure  2A). Infection with C 
rodentium significantly increased Il-1b, Il-6, and Il-17a expres-
sion on day 10 p.i., returning to baseline by day 29 p.i., as previ-
ously reported [35, 36]. Although Tnf and Ifng expression were 
also significantly increased by day 10 p.i., increased expression 
continued until 29 days p.i. and was further increased in infected 
RTX-treated mice compared with infected vehicle-treated con-
trols. Both of these cytokines can be produced as part of the 
host response to C rodentium infection by T cells recruited 
to the colon [36, 37]. In striking contrast, ablation of sensory 
neurons before infection reduced Il-22 expression at day 10 p.i. 
compared with vehicle-treated infected controls. These results 
suggest that only select aspects of the host immune response is 
impinged upon by the lack of sensory neurons. In support of 
this contention, expression of genes characteristic of inflamma-
tory (Nos2) and alternatively activated macrophages (Chi3l3) 
or the AMP RegIIIy were not significantly different in infected 
mice ± RTX 10  days p.i. (Figure  2B). However, expression of 
Nos2 and RegIIIy were significantly increased in infected RTX-
treated mice after 29 days p.i. This inability of RTX-treated mice 
to increase Il-22 expression 10  days p.i. suggests that sensory 
innervation could aid the recruitment of immune cells that pro-
duce this cytokine during infection.

Delayed T-Cell Recruitment After Loss of Nociceptive Neurons

To determine whether mice with ablation of sensory noci-
ceptors regulate T-cell recruitment during C rodentium in-
fection, we assessed the number of these cells in the colonic 
mucosa. Confocal microcopy of colonic sections revealed that 
C rodentium infection significantly increased the number of T 
cells (CD3+ DAPI+) at day 10 and 29 p.i. The number of T cells 
was significantly reduced in RTX-treated C rodentium-infected 
mice compared with vehicle-treated infected controls at 10 days 
p.i. However, at day 29 p.i., the number of T cells was signifi-
cantly increased in RTX-treated infected mice compared with 
infected controls (Figure  3). These data indicate that sensory 
nociceptive neurons aid recruitment of CD3+ T cells to the 
colon during C rodentium infection.

Control of T-Cell Migration to the Colonic Mucosa by Nociceptive Neurons 

During Citrobacter rodentium Infection

To evaluate mechanisms that could lead to reduced T-cell re-
cruitment in the colonic mucosa during C rodentium infec-
tion in RTX-treated mice, expression of adhesion molecules 
and chemokines was assessed (Figure  4A). Expression of 
Madcam1, required for T-cell entry into the colon, was signif-
icantly reduced 10 days p.i. in RTX-treated mice infected with 
C rodentium versus controls. At 29 days p.i., expression of this 
addressin molecule was significantly increased in the RTX-
treated C rodentium-infected mice compared with controls. 
No change in Madcam1 expression was observed in uninfected 
RTX-treated controls, suggesting that this was not a general 
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effect of RTX. Expression of the Icam1 and Vcam1 were not 
significantly different in any treatment group 10 days p.i., with 
significant increases observed only at day 29  p.i. in RTX + C 
rodentium mice compared with controls.

Because immune cell recruitment is partially controlled 
by chemotactic signals from the tissues, we evaluated che-
mokine expression in naive and infected mice with intact 
or ablated sensory neurons (Figure  4B). Infection with C 
rodentium ± RTX treatment significantly increased expression 
of Ccl2 (monocyte chemoattractant protein [MCP]-1), Ccl3 
(macrophage-inflammatory protein [MIP]1a), Ccl4 (MIP-1β), 

Ccl5 (RANTES), and Ccl8 (MCP-2) 10  days p.i. Although 
Ccl2, Ccl3, and Ccl4 were not increased at day 29 p.i., Ccl5 re-
mained elevated at this time point. In contrast, Ccl8 expres-
sion remained significantly increased at day 29 p.i. only in the 
C rodentium + RTX-treated mice. Because the cell surface re-
ceptors CCR4 and CCR6 are expressed by Th17 and Th22 cells, 
expression of the cognate ligands for these receptors was as-
sessed. Expression of ligands for CCR4 (Ccl2, Ccl4, Ccl5, Ccl17, 
Ccl22), CCR6 (Ccl20), and CCR10 (Ccl27, Ccl28) were either 
not affected or significantly reduced during C rodentium infec-
tion in vehicle and RTX-treated mice compared with controls 
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(Figure 4B). Infection with C rodentium significantly increased 
expression of Cxcl9 and Cxcl10, chemoattractants that are also 
bactericidal proteins against C rodentium [38, 39] at day 10 p.i. 
irrespective of RTX treatment (Figure 4B). These data suggest 
that reduced colonic T-cell recruitment in mice with prior sen-
sory nociceptor ablation is due to loss of mucosal addressin 
and not reduced expression of chemokines that serve to recruit 
Th17 and Th22 T cells.

Calcitonin Gene-Related Peptide Receptor Antagonism Does Not Alter the 

Citrobacter rodentium Infection

Because the sensory neuropeptide CGRP exerts a significant 
effect on host immune functions in the lung, skin, and small 
intestine [13–15], the role of CGRP was assessed using a potent 
and selective CGRP receptor antagonist [40]. Administration 
of BIBN 4096 beginning on the day of infection and every 
other day thereafter did not affect fecal (Figure  5A, left) and 
colonic adherent (Figure  5A, right) C rodentium 10  days p.i. 
compared with vehicle-treated mice. Confocal microscopy re-
vealed that colonic T-cell recruitment in C rodentium-infected 
mice + BIBN was not significantly reduced compared with 
infected vehicle controls (Figure  5B). Despite this lack of ef-
fect on bacterial burden and T-cell recruitment, mice in the 
C rodentium + BIBN 4096 treatment group had significantly 
reduced (1) colonic crypt hyperplasia (Figure 5C) and (2) co-
lonic expression of Il-6 and Ifng compared with infected vehicle 
controls (Figure 5D). In contrast, expression of Il-1b, Tnf, and 
Il-22 was significantly increased 10  days p.i. infection in ve-
hicle and BIBN 4096-treated mice. Unlike our data with RTX, 

Madcam1 expression in the C rodentium + BIBN 4096 treat-
ment group was not significantly reduced compared with the C 
rodentium + vehicle control group. These data, taken together, 
indicate that although CGRP signaling controls select aspects 
of host immune responses, other non-CGRP-dependent host-
protective effects are provided by sensory afferent neurons 
during enteric bacterial infection.

DISCUSSION

Although there is a wealth of literature describing the effect of 
sensory nociceptive peptides on inducing neurogenic inflam-
mation [10, 41] and enhancement of immunopathology [42], 
little was known about the host responses to pathogens [43]. 
Although recent studies identified the involvement of sensory 
nociceptive neurons in the host response to infection of the 
skin, lung, and small intestine [13–15], the role of these neurons 
during C rodentium infection was unknown. Our studies high-
light a previously unappreciated role for nociceptive neurons 
in coordinating the host response to C rodentium infection. 
Immune responses to this noninvasive, nontoxin-producing 
pathogen involves complex interactions between the bacteria, 
epithelial cells, and successive waves of immune cells. Early in 
the course of infection ILC dominate, serving as a major source 
of IL-22, followed by CD4+ T cells that assume a critical host-
protective role at the height of infection [17]. The resulting 
IL-22 from these cells induces IEC production of AMP, with 
T-cell derived IL-17A, and interferon-γ further reinforcing in-
flammation by inducing cytokine production and macrophage 
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activation [44]. Our data indicate that TRPV1 + nociceptive 
neurons are a critical component in the development of host 
immune responses against C rodentium that serve to induce re-
cruitment of IL-22- producing T cells to the colon.

The development of T-cell responses in the intestine is a 
multistep process allowing naive antigen-specific T cells to be-
come activated, home to, and enter the mucosa. During activa-
tion in the draining lymph nodes, preferential homing to the 
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intestine is achieved by imprinting due to dendritic cells and 
lymph node stromal cells that produce retinoic acid to increase 
expression of chemokine receptors and the α 4β 7 integrin [28, 
29]. During extravasation into the colon, α 4β 7-expressing T 
cells interact with the mucosal addressin molecule MAdCAM-1 
on the luminal surface of endothelial cells [24]. Thus, the ex-
pression of chemokines, chemokine receptors, integrins, and 
addressin proteins are critical in mounting host-protective im-
mune responses in the intestine. Because ablation of sensory 
afferent neurons reduced T-cell infiltration into the colonic mu-
cosa at the peak of infection, we assessed whether these path-
ways were altered by RTX treatment. We noted no significant 
reductions in chemokines broadly associated with the homing 
immune cells or chemokines selective for Th17 or Th22 T cells. 
These data suggested that lack of T-cell recruitment to the colon 
during C rodentium infection in RTX-treated mice was not due 
to a deficiency in chemokine expression.

 Because expression of adhesion molecules and vasodilation 
can occur during neurogenic inflammation, we assessed expres-
sion of ICAM1, VCAM1, and MadCAM-1. We noted no signif-
icant difference in ICAM1 or VCAM1 expression in RTX ± C 
rodentium-infected mice 10 days p.i. In contrast, colonic Madcam1 
expression was significantly reduced 10 days p.i. followed by in-
creased expression 29 days p.i., mirroring colonic CD3+ T-cell re-
cruitment in C rodentium-infected mice with prior sensory nerve 
ablation. Increased Madcam1 expression at this late time point, de-
spite ablation of sensory innervation, is likely due to persistence of 
C rodentium and consequently increased inflammatory cytokines 
such as tumor necrosis factor (TNF)α driving expression at this 
time point [45, 46]. This contention is in keeping with nociceptive 
neuropeptides acting synergistically with stimuli, such as TNFα 
[47], to enhance expression of NF-κB-regulated genes including 
Madcam1 in endothelial cells [46]. These data suggest that sensory 
nociceptive neurons and their neurotransmitters induce or act syn-
ergistically to increase the expression of select endothelial adhe-
sion molecules during enteric bacterial infection. Although there 
are redundant mechanisms that allow for increased expression of 
Madcam1 and delayed colonic T-cell homing, this delay could sig-
nificantly impinge on the development of protective immunity.

Although sensory nociceptors can release multiple neuro-
peptides, CGRP has been the predominant focus in host 
defenses against bacterial pathogens [15, 41, 43]. Because ab-
lation of sensory nociceptors in our studies identified a host-
protective function, we investigated the role of CGRP using 
the highly selective CGRP receptor antagonist BIBN 4096 
concurrent with infection. Our results indicate that CGRP re-
ceptor blockade significantly reduced crypt hyperplasia and 
expression of specific cytokines. These data indicate that as a 
nociceptive neurotransmitter, CGRP exerts a host-protective 
role by inducing select aspects of host immune responses 
during C rodentium infection. It is likely that other nociceptive 
neuropeptides contribute to different aspects of host immune 

function. In support of this, SP can be proinflammatory, 
exacerbating models of colonic inflammation, and is host pro-
tective during Salmonella typhimurium infection [48]. Recent 
studies indicate that sensory innervation-derived CGRP can 
control the small intestinal microbiota and induce differenti-
ation of microfold “M” cells, an entry point for invasion by S 
typhimurium. The consequences of CGRP release in the small 
intestine is enhanced susceptibility to S typhimurium infection 
[15]. These data highlight the unique roles that sensory inner-
vation could exert depending on the site of infection in the in-
testinal tract and pathogen.

CONCLUSIONS

Our findings, taken together, demonstrate a unique host-
protective role of sensory nociceptors during enteric bacterial 
infection with C rodentium infection. This innervation appears 
to aid in the coordination of the host immune system and the 
production of inflammatory cytokines. Modulation of these 
unique nociceptive neurons or their target cells could provide 
new therapeutic avenues for control of these pathogens. It is 
also important to consider that RTX-mediated nociceptor ab-
lation is also being used in preclinical [49] and clinical trials 
(Clinical trial registration: NCT00804154) in management of 
pain [49, 50]. Our data suggest that increased susceptibility to 
certain bacterial infections could occur in these patient groups, 
highlighting the importance of understanding neuroimmune 
circuits in health and during infection.
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Supplementary materials are available at The Journal of 
Infectious Diseases online. Consisting of data provided by 
the authors to benefit the reader, the posted materials are 
not copyedited and are the sole responsibility of the authors, 
so questions or comments should be addressed to the corre-
sponding author.

Supplementry Figure S1. Fecal pellet output is not altered 
by ablation of sensory nociceptors or TRPV1 deficiency. The 
effect of RTX or TRPV1−/− on colonic motility was assessed 
by monitoring fecal output over a 20-minute period. Pellets 
were counted (left panel) and weighed (right panel). One-way 
ANOVA with Tukey posttest, 6–7 animals per group.
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