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Abstract

The circadian clock and the cell cycle are two biological oscillatory processes that coexist within 

individual cells. These two oscillators were found to interact, which can lead to their 

synchronization. Here, we develop a method to identify a low-dimensional stochastic model of the 

coupled system directly from time-lapse imaging in single cells. In particular, we infer the 

coupling and non-linear dynamics of the two oscillators from thousands of mouse and human 

single-cell fluorescence microscopy traces. This coupling predicts multiple phase-locked states 

showing different degrees of robustness against molecular fluctuations inherent to cellular-scale 

biological oscillators. For the 1:1 state, the predicted phase-shifts upon period perturbations were 

validated experimentally. Moreover, the phase–locked states are temperature-independent and 

evolutionarily conserved from mouse to human, hinting at a common underlying dynamical 

mechanism. Finally, we detect a signature of the coupled dynamics in a physiological context, 

explaining why tissues with different proliferation states exhibited shifted circadian clock phases.
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The circadian clock and the cell cycle are two periodic processes that cohabit in many types 

of living cells. In single mammalian cells, circadian clocks consist of autonomous feedback 

loop oscillators ticking with an average period of about 24h1, and controlling many 

downstream cellular processes2. In conditions of high proliferation such as those found in 

cultured cells or certain tissues, the cell cycle progresses essentially continuously and can 
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thus be abstracted as an oscillator with an average period matching the cell doubling time. 

Both processes fluctuate due to intra-cell molecular noise, as well as external fluctuations. 

While the precision of the circadian period is typically about 15% in fibroblast cells1, the 

cell cycle can be more variable depending on the conditions and cell lines3,4. Interestingly, 

previous work showed that the two cycles can mutually interact1, which may then lead, as 

theory predicts, to synchronized dynamics5,6 and important physiological consequences 

such as cell-cycle synchrony during liver regeneration7. In tissue-culture cells, which are 

amenable to systematic microscopy analysis, it was found that the phase dynamics of two 

oscillators shows phase-locking5,6, defined by a rational rotation number p:q such that p 
cycles of one oscillator are completed while the other completes q.

Concerning the nature of those interactions, the influence of the circadian clock on cell-cycle 

progression and division timing has been analyzed in several systems7–13. In contrast, we 

showed in mouse fibroblasts that the cell cycle strongly influences the circadian oscillator5, 

which was also investigated theoretically and linked with DNA replication in bacteria14. In 

addition, human cells can switch between a state of high cell proliferation with a damped 

circadian oscillator, to a state of low proliferation but robust circadian rhythms, depending 

on molecular interactions and activities of cell cycle and clock regulators15.

Here, we exploit the fact that the two coupled cycles evolve on a low dimensional and 

compact manifold (the flat torus) to fully characterize their dynamics. In particular, starting 

from a generic stochastic model for the interacting phases combined with fluorescence 

microscopy recordings from thousands of individual cells, we obtained a data-driven 

reconstruction of the coupling function describing how the cell cycle influences the 

circadian oscillator. This coupling phase-locks the two oscillators in a temperature-

independent manner, and only few of the deterministically predicted phase-locked states 

were stable against inherent fluctuations. Moreover, we established that the coupling 

between the two oscillators is conserved from mouse to human, and can override systemic 

synchronization signals such as temperature cycles. Finally, we showed in a physiological 

context how such coupling explains why mammalian tissues with different cell proliferation 

rates have shifted circadian phases.

Modeling the dynamics of two coupled biological oscillators

To study the phase dynamics of the circadian and cell cycle oscillators, we reconstructed a 

stochastic dynamic model of the two coupled oscillators from single-cell time-lapse 

microscopy traces of a fluorescent Rev-erbα-YFP circadian reporter1,5. Our approach 

consists in explicitly modeling the measured fluorescent signals, using a set of stochastic 

ordinary differential equations (SODEs) whose parameters are estimated by maximizing the 

probability of observing the data over the entire set of cell traces (Methods). We here present 

the key components of the model (detailed in Supplementary Information).

Phase model

First, we represent the phase dynamics of the circadian oscillator (θ = 0 corresponds to 

peaks of fluorescence) and cell cycle (ϕ = 0 is the cytokinesis) [0,2π)×[0,2π) on a torus. 

Since we showed previously that the influence of the clock on the cell cycle was negligible 

Droin et al. Page 2

Nat Phys. Author manuscript; available in PMC 2020 June 11.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



in NIH3T3 cells5, we here model only how the cell-cycle progression influences the 

instantaneous circadian phase velocity ωθ using a general coupling function F(θ,ϕ) (Fig. 1a). 

To account for circadian phase fluctuations and variability in circadian period length known 

to be present in single cells1,16, we added a phase diffusion term σθ dWt. For the cell-cycle 

phase, we assumed a piecewise linear and deterministic phase progression in between two 

successive divisions. The SODEs for the phases read:

dθ = 2π
Tθ

dt + F θ, ϕ dt + σθdW t

dϕ = 2π
Tϕ

i dt
(1)

Here, Tθ represents the intrinsic circadian period, while the term Tϕ
i  represents the ith cell-

cycle interval between two successive divisions.

Model of the signal

We linked the circadian phase with the measured time traces through a 2π-periodic function 

w(θ). In addition, as suggested by typical data traces (Supplementary Fig. 1a), we 

considered amplitude (At) and baseline (Bt) fluctuations, which for simplicity we modeled 

as independent from θt, an assumption that was supported a posteriori (Supplementary 

Information). The full model for the observed signal St thus reads:

St = eAtw θt + Bt + ξ (2)

where ξ is a normally distributed random variable (measurement noise) and At,Bt are 

Ornstein-Uhlenbeck processes varying more slowly than the phase distortion caused by 

F(θ,ϕ), i.e., on timescales on the order of the circadian period (Supplementary Information).

Inference of phases & coupling function

From this stochastic model (Equations 1&2, Fig. 1b), we built a Hidden Markov Model 

(HMM) to calculate posterior probabilities of the oscillator phases at each measured time 

point, using the forward-backward algorithm17. To estimate F(θ,ϕ), we used a maximum-

likelihood approach that combines goodness of fit with sparseness and smoothness 

constraints, which we implemented with an Expectation-Maximization (EM) algorithm 

(Methods, Supplementary Information).

The successive steps of our approach are illustrated in Figure 1c. Dividing cells indicated 

that, typically, the circadian phase progression shows variations in phase velocity 

(Supplementary Fig. 1a). To validate that these variations can identify F(θ,ϕ), we generated 

noisy traces in silico with pre-defined F(θ,ϕ) and reconstructed the coupling function, 

showing excellent qualitative agreement (Supplementary Fig. 1b-c).

Influence of the cell cycle on the circadian phase

In mouse embryonic fibroblasts (NIH3T3), we showed that due to the coupling, circadian 

periods decrease with temperature in dividing cells, but not in quiescent cells5. To further 
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understand how temperature influences the interaction between the two oscillators, we re-

analyzed NIH3T3 traces (24-72h long) obtained at 34°C, 37°C, and 40°C5. From those, we 

found that both the inferred coupling functions and phase densities at the three temperatures 

were very similar, with almost identical 1:1 phase-locked orbits (Supplementary Fig. 2a-c). 

We therefore modeled the coupling as temperature-independent and re-constructed a 

definitive F(θ,ϕ) from traces at all temperatures (Fig. 2a, Supplementary Fig. 2d). This 

function shows a diffuse structure mainly composed of two juxtaposed diagonal stripes: one 

for phase acceleration (red), and one, less structured, for deceleration (blue). The slopes of 

these stripes are about one, which indicates that an approximate minimal model of the 

coupling would be a function F(θ,ϕ) = f (θ − ϕ). However, the phase velocity varies along 

the stripes and attractor (see below), which justifies using a 2D parameterization of the 

coupling function. The phase density for cells with fixed cell-cycle period of 22h 

(corresponding to the mean cell-cycle period in the full dataset) (Fig. 2b, and Movie 1) 

clearly suggests 1:1 phase-locking. In fact, analyzing the predicted deterministic dynamics 

(Equation 1, with the reconstructed F(θ,ϕ), and without the noise) shows a 1:1 attractor (Fig. 

2c). Thus, in this 1:1 state, the endogenous circadian period of 24h is shortened by two 

hours, which results from acceleration occurring after cytokinesis (ϕ = 0) when the circadian 

phase is near θ ≈ 0.8 × 2π, and lasting for the entire G1 phase, until about θ ≈ 0.4 × 2π 
when cells typically enter S phase (ϕ ≈ 0.4 × 2π at the G1/S transition, Supplementary 

Information, Fig. 2d).

Phase dynamics in perturbation experiments

The reconstructed model allows us to simulate the circadian phase dynamics in function of 

the cell-cycle period, which is relevant as the cells display a significant range of cell-cycle 

lengths (Supplementary Fig. 3a). In the deterministic system, we find 1:1 phase-locking over 

a range of cell-cycle times varying from 19h to 27h, showing that the cell cycle can both 

globally accelerate and slow down circadian phase progression (Fig. 3a). The attractor shifts 

progressively to the right in the phase-space, yielding a circadian phase at division ranging 

from θ ≈ 0.7 × 2π at division when Tϕ = 19h to θ ≈ 0.9 × 2π when Tϕ = 27h. Since the 

attractor for different cell-cycle periods shifts, the circadian phase velocity profile also 

changes (Supplementary Fig. 3b). To validate the predicted shifts, we experimentally 

subjected cells to perturbations inducing a large variety of cell-cycle periods and compared 

the observed circadian phase to the model prediction at three different cell-cycle phases, 

revealing an excellent agreement, with no additional free parameters (Fig. 3b).

The simulations also clearly revealed multiple phase-locked states (1:2, 1:1, 2:1, 3:1, etc, p:q 
indicating the number of cell cycles p and the number of clock cycles q), represented as 

Arnold tongues (Fig. 3c, and Movie 2 for an animated phase-space representation). We 

identified cell data trajectories following almost perfectly the deterministic attractors, both in 

the 1:1 and 1:2 phase-locking states (Fig. 3e and 3f, respectively); however, cells showing 

other p:q states were rarely observed.
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Fluctuations extend 1:1 phase-locking asymmetrically

To understand the differences between the simulated deterministic system and observed cell 

traces, we simulated the stochastic dynamics (Equation 1). We then compared measured data 

trajectories stratified by cell-cycle periods (Fig. 4a) with deterministic (Fig. 4b) and 

stochastic simulations (Fig. 4c). This revealed that data agree better with stochastic than 

deterministic simulations, indicating that the phase fluctuations qualitatively change the 

phase portrait. One striking observation is the increased range of 1:1 phase-locking in the 

noisy system, however asymmetrically, since this occurs for shorter, but not for longer cell-

cycle periods. Indeed, while 1:2 phase-locking is observed in the data and the noisy 

simulations, the deterministically predicted 2:1 state is replaced in the data and stochastic 

system by 1:1-like orbits. Consistently, spectral analysis revealed significant differences 

between deterministic and stochastic simulations (Supplementary Fig. 4a-b, Movie 3); in 

addition, the coupling, specifically in the 1:1 state, was able to efficiently filter the noise 

(Supplementary Fig. 4b, right).

Evolutionarily conserved phase-locking

Most studies investigating the interaction between the cell cycle and the circadian oscillators 

in mammals are from rodent models1,5–8,18. To test if the above phase-locked dynamics are 

conserved in human U2OS cells, an established circadian oscillator model19,20, we 

engineered a U2OS cell line termed U2OS-Dual expressing a dual circadian fluorescent 

(Rev-erbα-YFP) and luminescent (Bmal1-luc) reporter system. U2OS-Dual cells possess a 

functional circadian clock behaving similarly to NIH3T3 cells also expressing a Bmal1-Luc 

luminescent reporter21 (Fig. 5a). We scrutinize the relation between the two cell lines by 

comparing their behavior in different conditions: at 34°C and 37°C for cells with 

synchronized and non-synchronized circadian cycles5 (Fig. 5b-g).

Similarly to NIH3T3 cells, the division events of non-synchronized U2OS-Dual cells grown 

at 37°C occurred 4.96 ± 2.6 h before a peak in the circadian fluorescent signal (Fig. 5c), 

indicating that the cell cycle and the circadian clock interact. To investigate the directionality 

of this interaction, we tested, like in NIH3T3 cells5, whether the circadian clock phase could 

influence cell-cycle progression by resetting the circadian oscillator using dexamethasone 

(dex), a circadian resetting cue22 that does not perturb the cell cycle1. We found the expected 

resetting effect of dex on the circadian phase by the density of peaks in reporter levels during 

the first 10h of recording, but with unnoticeable effects on the timing of the first division 

(Fig. 5d). However, the circadian peak following the first division occurred systematically 

around 5h after the division in both conditions, suggesting that cell division in U2OS can 

reset circadian phases and overwrite dex synchronization. Synchronization of the circadian 

clocks for dex- vs non- treated cells was expectedly higher for dex and gradually decreased 

to reach the level of the untreated cells (Fig. 5e), contrasting with the generally lower 

synchronization of cell divisions in both conditions. To then test if the cell cycle could 

influence the circadian clock, we lengthened the cell-cycle period by growing cells at 34°C 

and compared with 37°C. Interestingly, cells at 34°C showed a longer circadian period 

compared to 37°C (Fig. 5f), unlike the temperature compensated circadian periods (~25h) in 

non-dividing cells (Fig. 5a, g-h).
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Thus, similarly to mouse NIH3T3 cells, the coupling directionality is predominantly from 

the cell cycle to the circadian clock. In fact, the reconstructed coupling function for U2OS-

Dual cells grown at 37°C (Fig. 5i) is structurally similar to that obtained in mouse fibroblasts 

(Fig. 2a), with the ensuing dynamics also showing a 1:1 attractor.

Dividing cells lose circadian temperature entrainment

In mammals, circadian clocks in tissues are synchronized by multiple systemic signals23. In 

fact, temperature oscillations mimicking those physiologically observed can phase-lock 

circadian oscillators in non-dividing (contact-inhibited) NIH3T3 cells in vitro24. To study 

how the found interactions influence temperature entrainment, we applied temperature 

cycles (24h period ranging from 35.5°C to 38.5°C) to U2OS cells growing at different rates 

(plated at different densities) and monitored population-wide Bmal1-luc signals (Fig. 6a). 

We found that, independently of initial densities, as the populations reach confluency, the 

phases and amplitudes become stationary, showing 1:1 entrainment (Fig. 6b, c and 

Supplementary Fig. 5a). During the initial transients, emerging circadian oscillations in non-

confluent cells showed phases that were already stationary, at least once cell numbers were 

sufficiently high to obtain reliable signals.

As cell confluence increases, the proportions of cells which stop cycling (exit to G0) 

increases25. We therefore hypothesized that the observed phase and amplitude profiles in 

Bmal1-luc signals (Fig. 6b, c) originate from a mixture of two populations: an increasing 

population of non-dividing cells (G0) showing ‘normal’ entrainment properties, and dividing 

cells. We considered three scenarios for the dividing cells: i) the circadian oscillators in 

dividing cells adopt the same circadian profile as non-dividing entrained cells; ii) are not 

entrained; or iii) are entrained, but with a different phase compared to non-dividing cells 

(Supplementary Fig. 5b). These scenarios can be distinguished by the predicted phase and 

amplitude profiles (Supplementary Fig. 5c). Clearly, the measured profiles for U2OS-Dual 

cells favored the second scenario, suggesting that circadian oscillators in dividing cells do 

not entrain to the applied temperature cycles.

Proliferation is associated with tissue-specific circadian phases

The above findings suggest that phases or amplitudes of circadian clocks in organs in vivo 
might be influenced by the proliferation state of cells in the tissue. To test this, we 

investigated circadian clock parameters in different mouse tissues using a study of mRNA 

levels in twelve adult (6 weeks old males) mouse tissues, which revealed that clock phases 

span 1.5 hours between the earliest and latest tissues (Fig. 6d)26,27, an effect which is 

considered large in chronobiology as even period phenotypes of core clock genes are often 

smaller2,28,29. We noticed that the mean mRNA levels across tissues of many genes 

correlated with the phase offsets (Supplementary Table 1). However, gene functions related 

to cell proliferation stood out as the most strongly enriched (Fig. 6f, Supplementary Table 

1). Among those genes, the levels of known markers of cell proliferation such as Mki67 or 

Myc were strongly correlated with the phase offsets (Fig. 6g-h, Supplementary Table 1). 

Amplitudes, on the other hand, were not correlated with proliferation genes, but rather with 

neuronal specific genes, as expected owing to the damped rhythms present in those tissues 
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(Fig. 6i, Supplementary Table 1)26. Thus, this analysis suggests that the differences in basal 

proliferation levels observed in normal tissues might underlie the dephasing of the circadian 

clock, suggesting a physiological role for the interaction of the cell cycle and circadian 

clocks.

Discussion

A goal in quantitative single-cell biology is to obtain data-driven and dynamical models of 

biological phenomena in low dimensions. In practice, the heterogeneity and complex physics 

underlying the emergence of biological function in non-equilibrium living systems, as well 

as the sparseness of available measurements pose challenges. Here, we studied a system of 

two coupled biological oscillators, sufficiently simple to allow data-driven model 

identification, yet complex enough to exhibit qualitatively distinct dynamics, i.e. p:q states 

and quasi-periodicity.

In the coupled cell cycle and circadian oscillator system, phase-locked states different from 

1:1 have been observed10. While multiple attractors, notably 1:1 and 3:2, were found in 

mouse NIH3T3 cells under transient dexamethasone stimulation6, we here report 1:2 states 

for long cell-cycle times under steady, unstimulated, conditions. Unlike other 

deterministically predicted states, 1:2 was sufficiently robust and observed in some cells. In 

fact, we found that noise extended the range of the 1:1 tongue, but asymmetrically, i.e. 
towards decreased cell-cycle periods. This may be reminiscent of generalized Poincaré 

oscillators showing that the entrainment range is broader for limit cycles with low relaxation 

rates30. Indeed, noise could decrease relaxation rates and thereby broaden Arnold tongues. 

In addition, for certain cell cycle periods, we observed the superposition of multiple states, 

both in the data and in the stochastic simulations, which were not present in the 

deterministic analysis (Fig. 4, see notably T=12h and T=36h). This is reminiscent of mode 

hopping as described in the context of an oscillatory gene circuit underlying inflammatory 

responses31, however, here the corresponding Arnold tongues do not overlap in the range of 

the biologically relevant coupling strength (K=1, Fig. 3d).

While we focused on the emergent dynamics in the coupled oscillator system, considerations 

on possible biological mechanisms are relevant for follow-up biochemical analyses. How 

chromosome condensation or nuclear envelope breakdown may influence the circadian clock 

phase progression via either transcriptional shutdown, or displacement of chromatin bound 

circadian repressors, respectively, was discussed previously5. For example, Rev-erbα 
transcription being so tightly locked to cell divisions (the peak accumulation of the reporter 

occurs 5h after mitosis) could reflect the sudden derepression of its promoter, due to 

displaced CRYPTOCHROME1 (CRY1) containing repressor complex following nuclear 

envelope breakdown32. In turn, REV-ERB-A accumulation influences clock phase by 

binding to promoters of multiple core clock components, including Cry1 33,34. More specific 

transcriptional activities could also play a key role in coupling the cell and circadian cycles. 

In fact, the circadian oscillator is exquisitely sensitive to numerous signaling pathways, 

impinging upon the clock by transcriptional induction of Period genes, which thus provides 

an efficient synchronization method22. Similarly, entrainment via temperature cycles also 

converges onto Period gene transcription24. However, we are not aware of cell-cycle 
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dependent transcriptional regulators, such as E2F factors, targeting clock components like 

the Period genes. Finally, since the regulation of protein stability is important for clock 

function35, it is possible that phosphorylation-controlled proteolytic activities driving the 

cell cycle could target circadian phase regulators36, thereby mediating the observed 

coupling.

In mammals, the circadian oscillator in the suprachiasmatic nucleus (SCN) is the pacemaker 

for the entire organism37, driving 24h rhythms in activity, feeding, body temperature and 

hormone levels. In particular, the SCN can synchronize peripheral cell-autonomous 

circadian clocks located within organs across the body38. Consistent with theory39, in a 

physiological context of entrainment, the coupling of the cell cycle with the circadian clock 

can induce proliferation dependent phase-shifts, which we observed. Such phase shifts could 

reflect a homogenous behavior of all cells, or it could reflect heterogeneity of cell 

proliferation states, possibly leading to wave propagation. The phase shifts we observed in 

tissues were associated with low proliferation, i.e. non-pathological states of tissue 

homeostasis and cell renewal. For example, the liver or the adrenal gland showed a phase 

advance compared to fully quiescent tissues like the brain.

When cell proliferation is abnormally high such as in cancer, circadian clocks are often 

severely damped40. While this absence of a robust circadian rhythm in malignant tissue 

states may reflect non functional circadian oscillators due to mutations in clock genes41, the 

damped rhythms may also reflect circadian desynchrony of otherwise functional circadian 

oscillators. Such desynchrony would readily follow from the coupling between the cell-cycle 

and circadian oscillators we highlight here, in the presence of non-coherent cell-cycle 

progression.

Methodologically, the new approach to reconstruct a dynamical model for the coupled 

oscillator system has significant advantages over previous methods, notably strong 

assumptions such as the sparse and localized coupling are dispensable5. Compared with 

generic model identification techniques42, our approach models the raw data and its noise 

structure explicitly. In the future, such data-driven identification of dynamical models might 

reveal dynamical instabilities underlying ordered states in spatially extended systems, as 

occurring, for instance, during somitogenesis43.

Methods

Cell lines

All cell lines (U2OS-Dual, NIH3T3-Bmal1-Luc, and U2OS-PGK-Luc) were maintained in a 

humidified incubator at 37°C with 5% CO2 using DMEM cell culture media supplemented 

with 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin-glutamine (PSG). One 

day before luminescence or fluorescence acquisitions, we replaced DMEM with FluoroBrite 

DMEM media supplemented with 10% FBS and 1% PSG. NIH3T3 perturbation 

experiments were generated in Bieler et al5. Briefly, they correspond to temperature changes 

(34, 37, and 40°C), treatment with CDK1 (RO-3306, Sigma-Aldrich) and CDK1/2 

(NU-6102, Calbiochem) inhibitors at 1, 5, 7 and 10μM (CDK1in-[1,5,7,10] and 

CDK2in-[1,5,7,10]), and shRNA-mediated knockdown of Cry2 (shCry).
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Fluorescent time-lapse microscopy

Time-lapse fluorescent microscopy for U2OS-Dual cells was performed at the biomolecular 

screening facility (BSF, EPFL) using an InCell Analyzer 2200 (GE healthcare). Experiments 

were performed at different temperature (34°C, 37°C, or 40°C) with a humidity and CO2 

(5%) control system. We used 100 ms excitation at 513/17 nm and emission at 548/22 nm to 

record the YFP channel. Cells were recorded by acquiring one field of view per well in a 96-

well black plate (GE healthcare). We used our previously developed semi-automated 

pipeline for segmentation and tracking of individual cells5. In total, traces from n=551 

U2OS cells were obtained (typically 50 cells are obtained per movie). NIH3T3 single cells 

trace are reanalyzed from previous work 5; here, we used n=2504 of those time traces. In all 

cases (NIH3T3 and U2OS), we followed several quality control metrics from 5. Briefly, we 

discarded all traces that left the field-of-view at some point during the acquisition. We also 

visually inspected all traces, using a custom-made Matlab tool, to remove traces with 

problematic segmentation and tracking. In addition, we only kept traces with significant 

circadian amplitude (peak height >0.25, rescaled signals, Supplementary Information). To 

minimize boundary artifacts, typically, only traces with at least 2 full cell cycles were kept. 

The number of cells used for specific analyses, including sub-selections of traces based on 

the cell-cycle intervals, are indicate in the figure captions.

Inferring the phase dynamics of two biological oscillators

Denote by D the entire set of single cells traces comprising temporal intensity measurements 

(∆t=30 min) from all fluorescent traces and Λ the set of model parameters, comprising the 

gridded coupling function Fij. Note that all parameters are shared by all cells in D. To 

reconstruct the phase dynamics of our model, we seek to maximize the likelihood of the data 

ℒ(Λ|D), that is, we solve:

Λ∗ = argmax ℒ Λ D

In practice, we used an EM algorithm, by iteratively optimizing the function Q (Λ, Λ′) over 

its first argument, where Q can be written as follow:

Q Λ , Λ′ = E log p D, X Λ X, Λ′

That is, Q (Λ, Λ′) corresponds to the expected value of the log-likelihood of the data with 

respect to the posterior probabilities of the hidden phases X (latent variables), computed 

using the current parameter Λ′. This process guarantees a monotonous convergence of the 

log-likelihood, although a global maximum is not necessarily reached44.

To control for the many parameters Fij, we added regularization constraints for both the 

smoothness and sparsity:

Qp Λ , Λ′ = Q Λ , Λ′ − λ1∑
ij

Fij 2 − λ2∑
ij

Fij2
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This expression is also guaranteed to converge45.

Details about the optimization method, choice of the regularization parameters, and 

computation of the phase posteriors using a HMM are provided in Supplementary 

Information.

Long-term temperature entrainment and luminescence recording

We performed long-term temperature entrainment experiments using a Tecan plate reader 

Infinite F200 pro with a CO2 and temperature modules. One day before starting the 

experiment, serial dilution ranging from 40,000 to 2,500 cells were seeded in 96-well white 

flat bottom plates (Costar 3917). To prevent media evaporation, all wells were filled with 

300μl of media composed of FluoroBrite, 10% FBS, 1% PSG, and 100 nM D-luciferin 

(NanoLight technology) and covered with a sealing tape (Costar 6524). We set up 

temperature entrainment using stepwise increase (or decrease) of 0.5°C every 2 hours to 

produce temperature oscillating profiles going from 35.5°C to 38.5°C and back to 35.5°C 

again over a period of 24 hours. Intensities from all wells were recorded every 10 minutes 

with an integration time of 5000 milliseconds. Since temperature impacts the enzymatic 

activity of the luciferase46, we corrected the signal for this systematic effect (Supplementary 

Information).

Association between gene expression and phase in tissues

We used the average gene expression obtained from a selected set of twelve adult (6 weeks 

old males) mouse tissues from the Zhang et al. dataset (GEO accession GSE54650)26. For 

this analysis, we estimated the Pearson’s correlation between the averaged gene expression 

and the circadian tissue phases or amplitudes reported in ref27. We selected the top 200 

genes positively or negatively associated with either the phases or the amplitudes for gene 

ontology analysis47 (Supplementary Table 1).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Reconstructing the phase dynamics and coupling of two biological oscillators.
(a) In mouse fibroblasts, the cell cycle (left) can influence the circadian oscillator (right) 

according to a coupling function F(θ, ϕ), where ϕ denotes the cell cycle and θ the circadian 

oscillator phases. (b) Stochastic model for the signal St using diffusion-drift SODEs for the 

circadian phase θt, amplitude At and background Bt fluctuations, as well as a function W(θ) 

linking the phase θt to the measured observations, and F(θ, ϕ) (c) Fluorescence microscopy 

traces (Rev-erbα-YFP circadian reporter) are recorded for non-dividing and dividing cells 

(top left and top right boxes). Coupling-independent parameters (*) are estimated from non-

dividing cells while dividing cells are necessary to infer F(θ, ϕ) (**). The optimization 

problem is solved by converting the model to a HMM in which θt, At and Bt are latent 

variables. The HMM is used on traces to compute posterior probabilities of circadian phases 

(bottom right box), while the cell-cycle phase is retrieved using linear interpolation between 
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successive divisions (top right box, vertical orange lines). An iterative EM algorithm then 

yields the converged F(θ, ϕ) (bottom left box).
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Figure 2. Influence of the cell cycle on the circadian phase enables 1:1 phase-locking.
(a) Coupling F(θ, ϕ) optimized on dividing single-cell traces. Due to similar results 

(Supplementary Fig. 2) traces from the three temperatures (n=154, 271, 302 traces at 34°C, 

37°C, 40°C, resp.) are pooled. (b) Density of inferred phase traces from all the dividing 

traces with 22±1h cell-cycle intervals indicates a 1:1 phase-locked state. (c) Numerical 

integration of phase velocity field (arrows, deterministic model) yields 1:1 attractor (green 

line) and repeller (red line). Here, the cell-cycle period was set to 22 h. (d) Circadian phase 

velocity is not constant along the attractor, here for cells with 22±1h cell-cycle intervals. 

Data (blue line, standard deviation in light-blue shading) and deterministic simulation 

(orange line). Inset: integrated time along the attractor. The gray line shows constant bare 

phase velocity ωθ = 2π
24ℎ .
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Figure 3. The coupling between the cell cycle and the circadian oscillator predicts phase shifts 
and phase-locking attractors in perturbation experiments.
(a) Simulated (deterministic) attractors for cell-cycle periods ranging from 19h to 27h show 

that the dephasing of the cell cycle and the circadian oscillator changes within the 1:1 state. 

Periods just outside of this range yield quasiperiodic orbits. The horizontal dashed lines 

indicate three different cell-cycle phases ϕ = 0, ϕ = 1
3 × 2π, ϕ = 2

3 × 2π used in panel (b). (b) 

Predictions from a) (dashed grey lines) against independent experimental data collected 

from 12 perturbation experiments (colored symbols, see legend, notation explained in 
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Methods). (c) Multiple phased-locked states are predicted, recognizable by rational 

relationships between the frequencies of the entraining cell cycle and the entrained circadian 

oscillator, interspersed by quasiperiodic intervals. (d) Arnold tongues showing multiple 

phase-locked states in function of cell-cycle periods and coupling strength (K=1 corresponds 

to the experimentally found coupling). Stable zones (white tongues) reveal attractors 

interspersed by quasi-periodicity. Although there are only two wider phased-locked state 

(1:1 and 1:2), several other p:q states are found. (e-f) Representative single-cell traces (data 

in yellow) evolving near predicted attractors (green lines). A cell with Tϕ = 24h (e) and one 

with Tϕ = 48h (f) near the 1:1 and 1:2 orbits, respectively.
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Figure 4. Single-cell data and stochastic simulations reveal robust 1:1 and 1:2 phase-locked 
states.
(a) Phase-space densities from the experimental traces stratified by cell-cycle periods (±1h 

for each reference period); n=16, 223, 303, 54, 4 cell traces in the T=12, 16, 24, 36, 48 h 

panels, resp. (b) Vector fields and simulated (deterministic) trajectories for the different cell-

cycle periods. Attractors are shown in green (forward time integration) and repellers 

(backward integration) in red (see also Movie 2). (c) Phase-space densities obtained from 

stochastic simulations of the model match better with the data compared to b).
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Figure 5. Conserved influence of the cell cycle on the circadian clock in human U2OS 
osteosarcoma cell.
(a) Mean luminescence intensities (±SD, n=3) from non-dividing NIH3T3 and U2OS cells 

grown at 37°C expressing a Bmal1-Luc reporter. Values in the legend correspond to the 

mean periods ±SD. (b) Semi-automated segmentation and tracking of U2OS cell lines 

expressing the Rev-erbα-YFP circadian fluorescent reporter. Red vertical lines represent cell 

divisions (cytokinesis) and blue vertical lines show Rev-erbα-YFP signal peaks. (c) Top: 

stack of divisions (red) and Rev-erbα-YFP peaks (blue) for single U2OS traces centered on 

divisions. Bottom: distribution of the time of division relative to the next Rev-erbα-YFP 

peaks (in read mean±SD, n=1298). (d) Divisions and Rev-erbα-YFP peaks from single non-

synchronized (top), and dexamethasone (dex)-synchronized (bottom) U2OS traces ordered 

on the first division. (e) Synchronization index (SI) from non-synchronized (black) and dex-

synchronized (red) traces for the circadian phase (top) and cell-cycle phase (bottom) 

estimated as in Bieler et al. 5. The circadian SI from non-synchronized cells is relatively 

high due to plating. Dashed gray lines show 95th percentiles of the SI for randomly shuffled 

traces. (f) Cell-cycle and circadian periods for U2OS cells grown at 34°C and 37°C (n > 90 

for all distributions). (g) Mean luminescence intensities (±SD, n=3) for non-dividing U2OS 

cells grown at 34°C expressing a Bmal1-Luc reporter. Values in the legend correspond to the 

mean periods ±SD. (h) Mean and standard deviation of the circadian period for non-dividing 

U2OS cells grown at 34°C and 37°C (n=8 at 34 and n=9 at 37, two-sided Wilcoxon’s test). 

(i) Coupling function F(θ, ϕ) optimized on n=551 dividing U2OS traces grown at 37°C, 

superimposed with the attractor (Tϕ = 22h) obtained from deterministic simulations (green 

line).
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Figure 6. Temperature cycles do not entrain circadian oscillators in dividing cells and 
proliferation genes are associated with tissue-specific circadian phases.
(a) Corrected and averaged Bmal1-Luc intensities and 95% confidence intervals (n=6) from 

U2OS-Dual cells plated at different initial densities and subjected to a temperature 

entrainment (top). (b) Acrophases (times of the local peaks in luminescence) of the Bmal1-

Luc signal in function of the reporter intensity for the cells in a). Loess fit (black) and 95% 

confidence intervals (gray). (c) Amplitude (log of peak to mean ratio) of the Bmal1-Luc 

oscillations in function of the reporter intensity for the cells in a). Loess fit (black) and 95% 

confidence intervals (gray). (d-e) Circadian phases (d) and amplitudes (e) of different mouse 

tissues obtained in ref27, relative to liver. (f) Expression levels of genes positively associated 

with phases from d) and linked to cell proliferation. (g-h) Correlations between Mki67(g) 
and Myc (h) mRNA expression and circadian phases across mouse tissues (Pearson’s 

correlation, two-sided P-values from t-distribution with n-2 degrees of freedom). (i) 
Expression levels of genes negatively associated with amplitudes and linked to nervous 

system development.

Droin et al. Page 21

Nat Phys. Author manuscript; available in PMC 2020 June 11.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts


	Abstract
	Modeling the dynamics of two coupled biological oscillators
	Phase model
	Model of the signal
	Inference of phases & coupling function

	Influence of the cell cycle on the circadian phase
	Phase dynamics in perturbation experiments
	Fluctuations extend 1:1 phase-locking asymmetrically
	Evolutionarily conserved phase-locking
	Dividing cells lose circadian temperature entrainment
	Proliferation is associated with tissue-specific circadian phases
	Discussion
	Methods
	Cell lines
	Fluorescent time-lapse microscopy
	Inferring the phase dynamics of two biological oscillators
	Long-term temperature entrainment and luminescence recording
	Association between gene expression and phase in tissues

	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6

