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Automated multi-model deep neural network for sleep stage scoring
with unfiltered clinical data
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Abstract
Purpose To develop an automated framework for sleep stage scoring from PSG via a deep neural network.
Methods An automated deep neural network was proposed by using a multi-model integration strategy with multiple signal
channels as input. All of the data were collected from one single medical center from July 2017 to April 2019. Model perfor-
mance was evaluated by overall classification accuracy, precision, recall, weighted F1 score, and Cohen’s Kappa.
Results Two hundred ninety-four sleep studies were included in this study; 122 composed the training dataset, 20 composed the
validation dataset, and 152 were used in the testing dataset. The network achieved human-level annotation performance with an
average accuracy of 0.8181, weighted F1 score of 0.8150, and Cohen’s Kappa of 0.7276. Top-2 accuracy (the proportion of test
samples for which the true label is among the twomost probable labels given by themodel) was significantly improved compared
to the overall classification accuracy, with the average being 0.9602. The number of arousals affected the model’s performance.
Conclusion This research provides a robust and reliable model with the inter-rater agreement nearing that of human experts.
Determining the most appropriate evaluation parameters for sleep staging is a direction for future research.
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Introduction

Obstructive sleep apnea (OSA) is a disease characterized
by recurrent partial or complete upper airway collapse ob-
struction during sleep, which can cause repeated apnea and
hypopnea, often accompanied by hypoxemia, sleep distur-
bance, hypertension, coronary heart disease, and diabetes.
OSA is the source of various cardiovascular and cerebro-
vascular diseases, endocrine diseases, and throat diseases.
Epidemiological studies revealed that 936 million people
worldwide suffer from moderate to severe OSA, and the
number of people affected in China is among the highest in
the world, causing a substantial social and economic bur-
den [1]. Furthermore, studies suggest that 80%–90% of
cases remain undiagnosed [1]. Therefore, it is crucial to
improve the efficacy of diagnosis of OSA.

The diagnosis of OSA relies on overnight polysomnography
(PSG) and manual data analysis in sleep laboratories. Sleep
stage scoring criteria are standardized and follow the latest up-
dates from the American Academy of SleepMedicine (AASM)
[2]. However, sleep stage scoring still relies on manual inter-
pretation from skillful technicians. Thus, the traditional PSG
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scoring is time consuming [3], and therefore an automated sleep
staging system would assist sleep experts and provide great
clinical utility.

Deep learning, as a field in machine learning research, has
undergone an expansion of its application space in recent
years, promoting rapid analysis of complex image data;
assisting in the screening, diagnosis, and follow-up of related
diseases; and significantly shortening the diagnostic time with
limited medical resources. Electroencephalography (EEG) is a
nonstationary signal and has a low signal-to-noise ratio
(SNR), but new ways are needed to improve EEG processing
to achieve better generalization capabilities and more flexible
application. Recently, deep learning (DL) has shown great
promise in identifying EEG signals due to its capacity to learn
good feature representations from raw data. The majority of
studies tackling this issue adopt convolutional neural net-
works (CNNs), recurrent neural networks (RNNs), or a
CNN +RNN as the neural network architecture for sleep stag-
ing [4], and an accuracy rate greater than 87% has been
reached [4].

In clinical settings, the scoring of sleep staging is compli-
cated because the PSG processing could be confronted with
challenging conditions, such as electrode shedding, signal ar-
tifacts, and noise. In this study, we use unfiltered clinical data
and deep learning to develop automated analysis algorithms
and validate them and to explore the scope of application in
clinical practice.

Materials and methods

This retrospective study was approved by the institutional
review board of Beijing Tongren Hospital (TRECKY2017–
032).

Subjects

All of the subjects were 18–70 years of age and had a history
of habitual snoring. All of the subjects underwent overnight
PSG in the sleep medicine center, Beijing Tongren Hospital
from July 2017 to April 2019. Patient demographics were
obtained for all of the subjects. The training dataset, validation
dataset, and testing dataset were independent of one another
based on inspection time. Patients less than 14 years old or had
a time in bed (TIB) less than 4 h were excluded. Details are
summarized in Table 1.

Polysomnography

Overnight, PSG was performed on all of the participants by
the Philips Respironics G3 sleep diagnostic system, including
a 2-channel electroencephalography (EEG) (C3/A2, C4/A1),
2-channel electrooculography (EOG), anterior tibial

electromyogram (EMG), electrocardiogram (ECG), 2-
channel airflow measurement with nasal cannula pressure,
recording of respiratory (thoracic and abdominal) movements,
and pulse oximetry for oxygen saturation (SpO2). All of the
ECG and EOG channels were captured at a 200 Hz sampling
frequency and displayed with a 0.3–35 Hz band-pass filter.
Anterior tibial EMG had a sampling rate of 200 Hz, and the
band-pass filter was 10–100 Hz.

Two highly trained, experienced (more than 10 years) PSG
technologists scored sleep stages and respiratory events in 30 s
epoch in accordance with the American Association of Sleep
Medicine (AASM 2012) guidelines [5]. The apnea–hypopnea
index (AHI) was defined as the number of apnea and
hypopnea events per hour of sleep and was used to indicate
the severity of sleep apnea (normal: AHI < 5; mild OSA, 5 ≤
AHI < 15; moderate OSA, 15 ≤ AHI < 30; severe OSA,
AHI ≥ 30).

Data processing

According to the AASM standard, the central band of the EEG
signal is concentrated below 35 Hz, while the sampling rate is
200 Hz. Instead of getting more information from the exces-
sive sampling frequency, we only get high-frequency noise.
Therefore, we first filtered the signal at 66 Hz and then
downsampled the signal sampling frequency to 66 Hz (which
is one-third of the original sampling frequency) to remove the
influence of high-frequency noise while ensuring that no spec-
tral aliasing occurs and to reduce the amount of data.

Considering the sleep continuity, the staging of each epoch
may correlate with the previous and subsequent epochs. A 90-
s window (3 epochs) to redivide the signal was applied with a
stride of 30 s, which means that newly divided epoch’s length
was three times the original length. The newly divided epoch
took the stage label of the original 30 s epoch as its label (Fig.
1).

Neural network

(The details are in the supplementary materials)

Training

(The details are in the supplementary materials)

Noise detection

(The details are in the supplementary materials)

Expert rules

The REM stage is exceptional in EEG staging. Although the
REM stage has specific characteristics, rapid eye movements
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do not occur within every 30-s epochs. However, it is quite
difficult for the model to determine whether these epochs with
no rapid eye movements are in the REM stage because it relies
on prior knowledge of the current stage. Therefore, we
checked each epoch’s next eight epochs: if there was a REM
stage epoch, we forcibly converted this epoch to the REM
stage, thus ensuring the continuity of the REM period.

Model architecture

The overall algorithm framework is shown in Fig. 2. After
preprocessing, the signal was input into the corresponding
CNN model and the real-time noise detection module. The
outputs of multiple models were integrated while setting the
weights of the falloff signal models to zero. Then the model
modified the integrated prediction of multiple models by
expert-defined rules to get the final prediction.

Model evaluation and statistical analysis

The performance of sleep stage prediction was measured by
overall classification accuracy, precision, recall, weighted F1
score, and Cohen’s Kappa. Top-2 accuracy was applied, which

means that the two most probable predictions for the model
prediction were considered “correct.”

The confusion matrix was applied to the visualization of
the performance of algorithms.

Statistical analysis was performed using SPSS 25 software
(SPSS Inc., Chicago, IL). The Shapiro–Wilk test was used to
verify normal value distribution. Differences in variables were
analyzed by Student’s t-test or Mann–Whitney U test. All of
the P values were 2-sided, and P values less than 0.05 were
considered to be significant.

Cross dataset experiments

To further evaluate the performance of our method, we
evaluated it on a public dataset named Sleep-EDF. In
order to compare our method with others, we used the
2013 version, which contains two sets of subjects from
two studies: age effect in healthy subjects (SC) and
Temazepam effects on sleep (ST). Two PSGs of about
20 h each were recorded during two subsequent day–
night periods at the subjects’ homes. Well-trained techni-
cians manually scored corresponding hypnograms (sleep
patterns) according to the Rechtschaffen and Kales

Table 1 Demographics and characteristics of datasets

Training Validation Testing P value

Number of participants/epochs 92/93,788 21/20,845 152/150103

Normal 13/13081 3/2958 23/22741

Mild OSA 19/19612 4/3976 23/22580

Moderate OSA 17/17163 4/4262 29/27774

Severe OSA 43/43932 10/9649 77/77008

Sex (male: female) 64:28 16:4 129:33 > 0.05

Age (median, range) 42.5 (19–68) 47.5 (22–57) 38.0 (79–61) < 0.05*

BMI (kg/m2) (median, range) 25.95 (16.1–38.4) 27.65 (18.8–34.0) 26.55 (13.8–46.3) > 0.05

TST (min) (median, range) 423.10 (200.5–577.6) 436.10 (285.5–510.4) 426.85 (92.0–578.5) > 0.05

AHI (median, range)

Normal 1.8 (0.5–4.2) 1.2 (0.6–2.2) 1.4 (0.2–4.9) > 0.05

Mild OSA 11.1 (5.4–13.5) 9.7 (7.7–14.3) 9.1 (5.4–14.1) > 0.05

Moderate OSA 19.9 (15.3–29.2) 18.45 (15.1–29.7) 23.7 (15.1–28.8) > 0.05

Severe OSA 51.8 (30.6–105.3) 66.6 (37.3–97.7) 56.9 (30.9–112.4) > 0.05

Sleep stage (n, %)

W 16,201 2339 26,112

N1 14,839 3574 24,489

N2 47,889 10,744 73,395

N3 1881 648 3289

R 12,978 3540 22,818

Minimum SpO2 (%)
(median, range)

85 (51–96) 83 (37–94) 83 (35–95) > 0.05

Number of arousals
(median, range)

79.5 (1–592) 97 (7–528) 79.5 (0–692) > 0.05

BMI body mass index, TST total sleep time, AHI apnea–hypopnea index, SpO2 pulse oxygen saturation
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manual. As AASM recommends, N3 and N4 of the
sleep-EDF dataset were merged in this study. Twenty
in-bed SC subjects (age 28.7 ± 2.9) were used. Each
PSG recording contained 2 scalp-EEG signals (Fpz-Cz
and Pz-Cz), 1 EOG (horizontal), 1 EMG, and 1 oral–
nasal respiration signal. All EEG and EOG had the same
sampling rate of 100 Hz. The SC dataset was divided
into five folds for training and independent validation.

Result

Population characteristics

The numbers of PSG subjects in the training dataset, the val-
idation dataset, and the testing dataset were 122, 20, and 152,
respectively. Of the three datasets, males accounted for the
vast majority. No significant differences were detected in
sex, BMI, total sleep time, AHI, sleep stage distribution, min-
imum SpO2, and number of arousals, suggesting that the sam-
ples in the three datasets were homogeneous. The only signif-
icant difference was detected in age.

Comparative study to choose the best algorithm

To select the most appropriate model, comparative studies
were conducted to evaluate the same testing dataset; the re-
sults are summarized in Table 2. Models with neither the 3-
epoch splice, expert rules nor noise detection resulted in lower
evaluation parameters (Fig. 2).

Model performance

Table 3 presents more detailed results of the model de-
scribed above. The average predicted TST was
410.18 min, compared 426.85 min calculated by human
experts. The population of the testing dataset was divid-
ed into four groups according to the degree of AHI. The
normal population received the highest accuracy and the
highest weighed F1 score. The confusion matrix demon-
strated that the most appropriate model after compara-
tive studies possesses higher consistency for W, N2, and
R identification but has poor performance for N1 and
N3 (Fig. 3). Moreover, the F1 score and Cohen’s Kappa
indicated moderate to strong inter-rater agreement be-
tween the model performance and human experts on

Fig. 1 Overall architecture of our method. The left side shows the input
signals, consisting of 5 channels: EEG C3/A2, EEG C4/A1, 2-channel
EOG, and EMG. The 5-channel signal is divided into 5 groups, as shown
in the middle of the figure: Groups 1 to 4 are EEG C3/A2, EEG C4/A1,
and 2-channel EOG, respectively, and the fifth group consists of all 5
input signals. Then each group of signals was feed into a CNN model
for training and prediction. At the same time, a noise detection algorithm

detected the noise in each group. The right part of the illustration shows
the integration, and the colored nodes represent integration weights cor-
responding to different CNN models. We take the weighted-average as
each stage’s probability. Notice that the “X” on the weight means that this
weight is reset to zero due to noise. After integration, the output prediction
was modified by expert-defined rules

Sleep Breath (2020) 24:581–590584



weighted average performance for both classification by
AHI and by sleep stage (Table 4).

Top-2 accuracy on sleep stage scoring

Since there is inter-rater variability between technicians
in sleep staging, in this study, we introduce an evalua-
tion index called the top-2 accuracy, defined as the pro-
portion of test samples for which the correct label is

among the two most probable labels given by the mod-
el. The neural network is an appropriate method math-
ematically; in classification tasks, it judges the similarity
between the input sample and the data distribution cor-
responding to each label, scores the similarities, and
normalizes them into probability. If the correct label of
a sample is among the two most probable labels given
by the neural network, we consider this sample as an exact
sample in the context of the top-2 accuracy (Table 5).

Table 2 Model performance with different training algorithms

Training algorithm Macro-accuracy Weighted F1 score Cohen’s Kappa

Without the 3-epoch splice 0.8034 0.7885 0.7044

Without noise detection 0.8050 0.7996 0.7105

Without expert rules 0.8173 0.8115 0.7266

The proposed model 0.8181 0.8150 0.7276

AHI apnea–hypopnea index

Fig. 2 (a) Example of an overnight PSG record scored by the model vs. human expert. (b) t-SNE for the last hidden layer of the CNN. Each differently
colored point indicates a sleep stage scored by the model, suggesting that the model can discriminate different sleep stages well
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Table 6 presents the model’s predictions for each ep-
och with the two most probable predictions. For exam-
ple, the difference between N1 and W in EEG is some-
times not obvious, and different technicians will have
different judgments. The model in this paper has a judg-
ment ability close to that of a human technician for the
confusing EEG. The most striking result was that when
the model output N2, the second possible sleep stage
was N1 stages accounted for 66.79%. Similarly, the
second possible sleep stage was N2 when the model
outputs N3 in most instances. Since the REM stages
can be divided into the phasic mode and tonic mode,
the second identification of the model distributed in the
W stages, N1 stages, and N2 stages, accounts for the
majority.

In order to explore the reasons behind this, we try to
divide the data in the testing dataset into two groups:
the increased rate of accuracy greater or equal to the
average increase rate (0.1419) and the increase rate
smaller than the average. Statistical analysis showed that
the greater the number of arousals, the higher the top-2
accuracy. In other words, the number of arousals affect-
ed the model’s performance on sleep staging (Fig. 4).

Evaluation of cross dataset experiments

Studies comparing the proposed model to other methods on
sleep-EDF are summarized in Table 7. The model showed
improvement in all metrics. Compared with the testing dataset
results from our clinical center, the per-class F1 of the N3

Fig. 3 Confusion matrix for the predicted sleep stage, displaying the
agreement with expert scores.The vertical rows represent the sleep
staging scored by the human expert, while the horizontal rows are the
predictions for the same epoch of the testing dataset. The diagonal

numbers are the epochs for which the prediction of the model matches
the human expert at each sleep stage. The model possesses higher
consistency for W, N2, and R identification

Table 3 Model performance on testing dataset according to AHI

Testing dataset Macro-accuracy Weighted-F1 score Cohen’s Kappa

Normal 0.8361 0.8277 0.7560

Mild OSA 0.8265 0.8221 0.7433

Moderate OSA 0.8222 0.8153 0.7288

Severe OSA 0.8088 0.7981 0.7124

Weighted average 0.8181 0.8150 0.7276

AHI apnea–hypopnea index
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stages was significantly improved. However, the per-class F1
of the N1 period was still lower than that of other sleep stages,
which is consistent with the findings of other studies [6–8].

Discussion

In this study, the model performed robustly under dif-
ferent levels of AHI and performed slightly better in the
healthy population than in patients with severe OSA. As
the AHI increased, the accuracy and F1 values gradually
decreased. In patients with severe OSA, the lowest val-
ue is considered to be related to fragmented sleep, and
the EEG is relatively complicated. Cohen’s Kappa was
to evaluate the inter-rater variability between the model
and the technician’s scoring. The literature suggests that
there is inter-rater variability between different human
technicians, and both N1 and N3 are relatively low,
ranging from 20% to70% [9–12]. The average Cohen’s
Kappa of this study was 0.7276, indicating a substantial
agreement with human technicians. Similar to the previ-
ous pieces of literature, the model displayed a low con-
sistency in the N1 and N3 stages. Such a result con-
siders that the waveform characteristics of the low am-
plitude in the N1 stage are not prominent, and the mod-
el may confuse N1 with N2 during scoring (like when
the EEG is not typical and thus a technician confuses
N1 and N2). However, the agreement of N3 is weak due to
the high proportion of OSA patients in the training dataset,

which may lead to the number of N3 periods being inade-
quate, accounting for only 2% of the total number of epochs.
In clinical practice, the number of sleep stages in clinical data
is imbalanced. Compared with healthy people, sleep fragmen-
tation in OSA patients has more W and N1 stages and fewer
N3 stages. In this study, because the unfiltered data was closer
to the clinical situation, the imbalanced sample categories will
result in too few features and too diminutive a sample size to
extract the data pattern, or in over-fitting problems because of
limited samples. For the test of the public dataset, the metrics
were significantly improved in N3 stages

To determine the final model architecture, this study
conducted a comparative study on the same testing
dataset. In the clinical PSG, there may be a decrease
in signal quality due to sweating, intolerance to the
environment, limb movement, and so forth. Therefore,
the model design of this study considers the possibility
of abnormal signal acquisition during overnight sleep
PSG. Second, since there are transitional rules associat-
ed with the sleep staging, Markov models, CNNs, and
RNNs have been used in recognition of sleep EEG in
recent years [13–17]. This research innovatively applied
the method of three-epoch splicing to simulate the tech-
nician recognition of EEG, so that if there is an epoch
with atypical or severe interference, technicians could
refer to the previous and following epochs of the
EEG. Another innovation in this study is the addition of ex-
pert rules. In clinical practice, the identification of REM stages
mainly includes rapid eye movement, low-tension diaphrag-
matic electromyography, sawtooth waves, and transient myo-
electric activity. The tonic mode of REM sleep should not
have any apparent ocular activity so that the model does not
make erroneous judgments. Expert rules can substantially
avoid erroneous judgments.

To explore the analysis process of the model, this study
innovatively introduced the concept of top-2 accuracy. As a
result, the overall accuracy was dramatically improved.
Through the analysis of the predicted value of the second prob-
ability of the model, this study finds that the model will have a
certain degree of confusion when distinguishing between theW
and N1 stages, between the N1 and N2 stages, and between N2

Table 4 Model performance on sleep staging of testing dataset

Sleep staging Precision Recall F1 score Number of epochs

W 0.8920 0.8680 0.8799 25,408

N1 0.6352 0.4667 0.5381 17,992

N2 0.8433 0.9059 0.8734 78,843

N3 0.6138 0.3919 0.4784 2100

R 0.8123 0.9171 0.8615 25,760

Weighted average 0.8181 0.8150 0.7276 150,103

Table 5 Model performance on testing dataset

Testing dataset Top-1 macro-accuracy Top-2 macro-accuracy Average increase rate

Normal 0.8341 0.9611 0.1270

Mild 0.8292 0.9698 0.1407

Moderate 0.8228 0.9512 0.1285

Severe 0.8088 0.9619 0.1531

The average performance 0.8184 0.9602 0.1419

AHI apnea–hypopnea index
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and N3 stages; this is consistent with the most common differ-
ences in sleep scoring by human experts [18]. A previous study
pointed out that the definition of divergence and the K complex
wave lacks specificity and is related to the existence of spindle
wave identification [19]. Since the lack of a clear “absolute truth
value” for sleep stage scoring, the substantial increase in top-2
accuracy indicates that the model output is reasonable. This
study found that arousal affects the accuracy of sleep staging;
this may be due to the number of arousals being positively
correlated with the number of N1 stages [20]. Moreover, the
model performance of N1 is lower than that of other sleep
stages. This study proposes a future direction for the evaluation
of deep learning algorithms by analyzing the top two rankings
of maximum probability values for sleep staging. For sleep
staging, which relies on manual scoring and must consider
inter-rater variability, it is worthwhile to study which parame-
ters are chosen to evaluate model performance. Three classifi-
cations (awakening, NREM, and REM) or four classifications
(awakening, shallow sleep (N1 +N2), deep sleep (N3), and
REM)) make sense in clinical practice.

There are some limitations to this study. First, the clinical
data of this study is imbalanced, and the number of N3 stages
in this study is small. Compared with other studies, the recog-
nition of N3 is lower. Second, the clinical dataset used in this
study was derived from retrospective data of a single center,

lacking analysis of homogeneity with the published dataset
sleep-EDF. Additionally, the study applied independent and
homogeneous training sets and testing sets without cross-val-
idation, and thus there may be deficiencies in the assessment
of the generalization capabilities of the model.

Conclusion

In conclusion, this research provides a robust and reliable
model in which the inter-rater agreement nears that of human
experts. In future research, it is essential to address the
abovementioned limitations, explore the evaluation criteria
for neural network models, and develop a lightweight version
of the model to make it work in wearable devices and smart
devices. Eventually, this work can have a positive impact on
population health and healthcare expenditures.
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