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Detection of Hepatocellular 
Carcinoma in Contrast-Enhanced 
Magnetic Resonance Imaging Using 
Deep Learning Classifier: A Multi-
Center Retrospective Study
Junmo Kim   1 ✉, Ji Hye Min2, Seon Kyoung Kim   2, Soo-Yong Shin3,4,5 & Min Woo Lee1,2,5 ✉

Hepatocellular carcinoma (HCC) is one of the most common malignant tumors and a leading cause of 
cancer-related death worldwide. We propose a fully automated deep learning model to detect HCC 
using hepatobiliary phase magnetic resonance images from 549 patients who underwent surgical 
resection. Our model used a fine-tuned convolutional neural network and achieved 87% sensitivity 
and 93% specificity for the detection of HCCs with an external validation data set (54 patients). We 
also confirmed whether the lesion detected by our deep learning model is a true lesion using a class 
activation map.

Primary liver cancer is the fifth most common malignant tumor worldwide and the third most common cause 
of cancer-related mortality, with hepatocellular carcinoma (HCC) accounting for 85–90% of primary liver can-
cers1,2. Many practice guidelines for HCC management state that tumor size is one of the important prognostic 
factors in patients with HCC, along with liver function and patient performance status3,4. Therefore, earlier detec-
tion and diagnosis of HCC would be of paramount importance for better survival outcomes after treatment.

In terms of the diagnosis of HCC, magnetic resonance imaging (MRI) provides higher sensitivity than com-
puted tomography (CT). Currently, gadoxetic acid-enhanced liver MRI is widely used for HCC diagnosis and 
has shown significantly higher sensitivity than MRI performed with other contrast agents5. This improved sen-
sitivity of gadoxetic acid-enhanced MRI is mainly attributed to hepatobiliary phase images as most HCCs (80–
90%) are hypointense in this phase6,7. However, the per lesion sensitivity for HCC on gadoxetic acid-enhanced 
MRI was 87% (95% confidence interval: 83–92%) in a recent meta-analysis5. This implies that computational 
decision-support tools may play an important role in improving the diagnostic performance of gadoxetic 
acid-enhanced MRI8.

Deep learning has shown remarkable results in the field of computer vision9. Deep learning-based methods 
have also demonstrated that they are well suited for recognition and classification of medical images10 and they 
can be used as an effective screening tool in medical image analysis11. Therefore, deep learning systems can be 
an auxiliary diagnostic system for the diagnosis of HCC, as well. To our knowledge, however, there are no deep 
learning-based HCC detection systems using liver MRI in the English literature. Therefore, the purpose of this 
study was to develop a fully automated deep learning model to detect HCC using hepatobiliary phase MR images 
in patients who underwent surgical resection for HCC and evaluate its performance in detecting HCC on liver 
MRI compared to human readers.
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Results
Our CNN architecture.  Tables 1–3 show the experimental results of combinations of heuristically chosen 
hyperparameters to optimize the CNN architecture for HCC detection in liver MRI. Table 1 shows the results of 
the comparison of batch normalization (BN)12 and dropout13 to prevent overfitting. Since training was terminated 
when there was no improvement in the accuracy of validation datasets within 10 epochs, the number of epochs 
in each case were different. As a result, BN only showed the best performance.

To solve the vanishing gradient problem, various activation functions, including the leaky rectified linear 
function (LeakyReLU)14, a Parametric Rectified Linear Unit (PReLU)15, Exponential Linear Units (ELUs)16, and 
Rectified Linear Unit (ReLU)17 were compared. Among these activation functions, ReLU showed the best perfor-
mance (Table 2).

To minimize information loss, we prefixed the stride as 1 and then changed the kernel size from 2 × 2 to 7 × 
7. As shown in Fig. 1., the 2 × 2 kernel achieved the minimum validation loss. To choose the right optimizer for 
the lowest possible error and steady learning speed, we compared optimization functions, including the adaptive 
gradient algorithm (AdaGrad)18, a method for stochastic optimization (Adam)19, a mini-batch version of rprop 
(RMSprop)20, and stochastic gradient descent (SGD)21. The Adam optimizer was found to be the most accurate 
optimization function that affected learning speed and probability (Table 3).

The CNN components included widely used components such as the convolution filter, pooling, BN, dropout, 
padding, activation functions, and optimization functions. Each component also had diverse parameters, such as 
convolution filter size, pooling method, and stride size. Figure 2 shows the designed CNN architecture.

Regularization Layer Kernel size
Activation 
function Optimizer

Number of 
Epochs Accuracy

BN 2 × 2 ReLUa Adamb 46 93.7%

BN and Dropout 
(0.1)c 2 × 2 ReLU Adam 28 74.6%

BN and Dropout 
(0.2) 2 × 2 ReLU Adam 165 92.7%

BN and Dropout 
(0.3) 2 × 2 ReLU Adam 48 86.6%

BN and Dropout 
(0.4) 2 × 2 ReLU Adam 46 85.0%

BN and Dropout 
(0.5) 2 × 2 ReLU Adam 55 73.9%

Dropout (0.1) 2 × 2 ReLU Adam 59 86.6%

Dropout (0.2) 2 × 2 ReLU Adam 116 88.2%

Dropout (0.3) 2 × 2 ReLU Adam 96 87.7%

Dropout (0.4) 2 × 2 ReLU Adam 112 87.9%

Dropout (0.5) 2 × 2 ReLU Adam 28 72.1%

Table 1.  Comparison results of combination of batch normalization (BN) and dropout rate. BN only showed 
the best accuracy. aReLU: rectified linear unit. bAdam: Adam optimizer. cDropout (0.1) indicates a dropout rate 
of 0.1.

Optimizer
Learning 
Rate

Number of 
Epochs

Validation 
loss Accuracy

AdaGrada 0.001 23 0.83 55.7%

Adamb 0.001 46 0.18 93.7%

RMSpropc 0.001 62 0.18 91.4%

SGDd 0.001 14 0.98 58.7%

Table 3.  Comparison of diverse optimizers. Optimization with Adam had the best performance. aAdaGrad: 
adaptive gradient algorithm. bAdam: a method for stochastic optimization. cRMSprop: a mini-batch version of 
rprop. dSGD: stochastic gradient descent.

Activation function Number of Epochs Accuracy

LeakyReLU (0.1)a 37 84.2%

PReLUb 28 90.4%

ELU (0.1)c 73 91.6%

ReLUd 46 93.7%

Table 2.  Comparison of diverse activation functions. ReLU showed the best accuracy. aLeakyReLU: leaky 
rectified linear function. bPReLU: parametric ReLU. cELU: exponential linear unit. dReLU: rectified linear unit.
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Performance.  The optimized CNN architecture achieved 94% sensitivity, 99% specificity, and 0.97 area under 
curve (AUC) for HCC cases in the test dataset (Fig. 3) and achieved 87% sensitivity and 93% specificity and an 
AUC of 0.90 for external validation datasets (Fig. 4). The mean size of HCCs that were missed by the less experi-
enced radiologist but detected by our model was 1 ± 0.2 cm (Fig. 5). Therefore, our model seemed to have advan-
tages over the performance of the less experienced radiologist in detecting very small HCCs (Fig. 5). However, 
our model showed false positive detections including the gallbladder, blood vessels, and heart (Fig. 6). The overall 
performance was not significantly different between our model and the less experienced radiologist (Table 4).

In terms of image classification time, our model was much faster than human readers, regardless of the degree 
of experience (Table 4). Our model took 0.03 seconds to classify one image and the average image classification 
time of 100 images in a single patient was 3.4 seconds using a commercial PC (3.8 GHz Intel Core i5, 16 GB RAM, 
Radeon Pro 580 8 G). We used the CPU version considering the PC without an expensive GPU usually used in 
the doctor’s office. In comparison, it took 0.18 seconds to classify one image and average image classification time 
of 100 images in a single patient was 18 seconds in both radiologists.

Discussion
Recently, deep learning has gained attention in the field of medical imaging, including radiologic imaging8,22–24. 
In this study, we performed deep learning of the hepatobiliary phase images of 92,645 gadoxetic acid-enhanced 
MR images using a fine-tuned CNN. External validation using the training generation model for 4,537 images 
obtained by various MR scanners from multiple vendors showed an 87% sensitivity for HCC, 93% specificity, and 

Figure 1.  Comparison results of diverse kernel size. Kernel size with 2 × 2 showed the smallest loss.

Figure 2.  CNN structure of our model for HCC detection in MR images.

Figure 3.  ROC analysis for the proposed model in test datasets.
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an AUC of 0.90. Our model seems to be more sensitive than less experienced radiologists in detecting very small 
HCCs. Furthermore, the classification time of the HCC nodule was 30 milliseconds per image, approximately six 
times faster than human readers (180 milliseconds). The accuracy of HCC detection was as high as 90%. Based on 
these results, our deep learning system may be used as an effective decision-support tool for the detection of small 
HCCs (i.e., sub centimeter HCCs) particularly by less experienced radiologists (Fig. 7).

However, our model exhibited a not infrequent rate of false positive detection. Contrary to our expectation, 
hepatic cysts which show low signal intensity in the hepatobiliary phase was not a frequent false positive. Instead, 
intrahepatic vessels, gallbladder, and heart were common false positives in this study. Among the various false 
positive detections, extrahepatic structures may be explained by our algorithm in which cropping of images was 
not performed in our model. Instead, whole MR images were used as input data. However, given that extrahepatic 
structures such as the heart can be easily discriminated from true HCCs by human readers, this problem may not 
seriously affect our model’s performance. Unlike our model, most studies dealing with deep learning regarding 
radiologic imaging require preprocessing of input data. This means that it is necessary to select images con-
taining lesions, which is performed by human readers, and then regions of interest are cropped8,22,23. Therefore, 
the cropped images include only the liver mass and surrounding liver parenchyma or the organ and cropped 
images are entered into the model as input images. This process may be marginally more complicated and 
time-consuming. In contrast, our method has advantages over other deep learning models as it does not require 
the process of selecting an image containing target lesions and cropping of images. In our model, the only thing 
required is to upload entire hepatobiliary phase MR images. Upon image uploading, our model automatically 
checks for potential candidate HCC nodules in a very short time. In addition, the location of the HCC as detected 
by our model was confirmed using a class activation map (CAM)25 method. Another advantage of our model is 
that it works very fast. The average image classification time of 100 images in a single patient was 3.4 seconds, 

Figure 4.  ROC analysis for the proposed model in external validation datasets.

Figure 5.  True positive detection (arrow) of HCC by our trained model showing the area of interest of the 
trained model using CAM method. Although the expert radiologist was able to detect these small HCCs, the 
less experienced radiologist did not find them. Also, it took longer time for both human readers to detect these 
small HCCs compared to our model.
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which is faster than a previous study in which 10 seconds was required for the computation of 100 images23. 
However, any direct comparison is limited because the previous study used CT images and the PC performance 
may be different from ours.

There are several limitations of our study. First, as a preliminary study, only the hepatobiliary phase of gadox-
etic acid-enhanced liver MRI was used for the detection of HCCs as the image quality of the arterial phase was 
frequently affected by transient severe motion artifacts in the arterial phase26,27. However, arterial enhancement 
on cross-sectional imaging is one of the key imaging findings in the diagnosis of HCC. Moreover, given that 
deep learning with CNN using multiphasic CT images yields higher accuracy than those using single phase 
CT images26, a deep learning model using multiphase MR images may provide higher accuracy. Further study 
is warranted using other MRI sequences, including arterial phase images. Nevertheless, our preliminary study 
found that deep learning can be applied in the detection of small HCCs in the hepatobiliary phase of gadoxetic 
acid-enhanced liver MRI, which showed similar accuracy to that of less-experienced radiologists with a faster 
interpretation time. Second, our study population for training, validation, and test sets had relatively good liver 
function as the patient had undergone surgical resection for HCC. In addition, it may be difficult to detect atyp-
ical HCCs with our deep learning model as whole tumors included in this study showed low signal intensity in 
hepatobiliary phase MRI. That implies that our model may work only for patients with good hepatic function 
and typical HCCs with low signal intensity on hepatobiliary phase MRI. Third, our training data set used MR 
images obtained from a single vendor MR scanner (Philips Healthcare, Best, The Netherlands), which may have 

Figure 6.  Examples of true positive and false positive detections (arrow) of HCC by our trained model using 
CAM method. A physician can intuitively discriminate true HCC from pseudo lesions based on HCC candidate 
indicated by color map.

Class Sensitivity Specificity Accuracy

Interpretation 
time per 
100 images 
(seconds)

Model 0.87 0.93 0.90 3.4

Humana 0.86 0.92 0.91 18

Humanb 0.98 0.93 0.94 18

Table 4.  Comparison between proposed model and human performance in external validation dataset. aless 
experienced radiologist. bexpert radiologist.
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resulted in an overfitting issue and thereby slightly lower accuracy in the validation data set in which a variety of 
MR scanners from multiple vendors were used. We compared our model with various CNNs networks, and our 
model seemed to perform well. However, in order to get a clearer conclusion, it is necessary to confirm more cases 
through additional experiments.

Methods
Data collection.  The study protocol was in line with ethical guidelines of the 1975 Declaration of Helsinki. 
This study was approved by the institutional review board (IRB) of Samsung Medical Center (2019-03-101-002), 
and the IRB waived the requirement to obtain written informed consent from the patients. We reviewed the 
hepatobiliary phase images of the pre-operative gadoxetic acid-enhanced liver MRI of 549 patients from 2010 to 
2014 who were confirmed to have HCC after surgical resection. The equipment used for MR acquisition is listed 
in Table 5.

Data categorization.  Among 549 patients (442 male patients and 107 female patients with a mean age of 56 
years ± SD 9.7), 94 patients were excluded due to severe motion artifacts (n = 31), missing images (n = 44), low 
image quality (n = 18), or absence of preoperative MR images (n = 1) (Fig. 8). The remaining 455 patients who all 
had Child-Pugh score A were included in this study. There was a total of 92,645 hepatobiliary phase MR images. 
They were categorized into no HCC (41,485 images) and HCC (51,160 images) according to whether HCC was 
present in the image. Among the 92,645 images, 70%, 15%, and 15% were chosen as the training dataset, valida-
tion dataset, and test dataset, respectively.

Data preprocessing and augmentation.  Due to the various structures and image sizes included in the 
MR images, it was difficult to accurately and efficiently learn the characteristics of HCC. Thus, pre-processing 
that standardizes image size and eliminates unwanted noise was important for improving model learning results 
and accuracy.

Therefore, all images were scaled to 320 × 320 pixels using bicubic interpolation and area interpolation since 
MR images have diverse pixel sizes (from 256 × 256 to approximately 400 × 400)28,29. In addition, among the 
approximately 100 MR images of each patient, only 3–10 images usually contained an HCC nodule. This relative 
data shortage problem can lead to excessive over-fitting of the model into classes with large amounts of data in 
learning. Therefore, we augmented the data in various ways to prevent this. First, the HCC area in the chosen 
image was extracted using a mask. The mask was generated using a human-annotated label map which distin-
guished the HCC area. To increase the number of data, the HCC images were augmented using rotation, shift, and 
zooming as shown in Table 6. We tried not to distort the images since image distortion can reduce performance. 
Therefore, image rotation was only permitted within 90°. Image shift was performed within 10 pixels for all direc-
tions. The image was zoomed from 0.8 to 1.2 times. In addition, shift and zoom were combined. Consequently, we 
had 44,765 HCC images following the image augmentation process (Fig. 9).

Figure 7.  ROC analysis for the proposed model and human readers in external validation dataset.

Manufacturer Model Name (Tesla)
Number of 
patients

PHILIPS Achieva (1.5) 388

PHILIPS Achieva (3.0) 117

PHILIPS Ingenia (3.0) 25

Table 5.  List of data collection equipment.

https://doi.org/10.1038/s41598-020-65875-4
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Overall procedure.  The overall process of the proposed deep learning system to detect HCC is explained in 
Fig. 10. The detailed explanation will be described in the following subsections.

Convolutional neural network (CNN) architecture.  Since there is no solid theory for hyperparameter 
optimization, we experimented to identify the best combination of the chosen hyperparameters, including batch 
normalization, dropout, activation function, kernel size, and optimizer. We randomly selected 11,117 images 
(4,902 no HCC images and 6,215 HCC images) from the training dataset to optimize the CNN architecture. Then 
we selected 9,449 images (4,167 no HCC images and 5,282 HCC images) as the learning dataset and 1,668 images 
(736 no HCC images and 932 HCC images) as the validation data set.

CNN training details.  First, all training images were shuffled. Training was terminated when there was no 
improvement of accuracy in the validation datasets within 20 epochs. The batch size was 128 to balance training 
quality and convergence speed. The parameters were initialized using the He initializer17 and the learning rate was 
0.001. ReLU was used as the activation function and the Adam Optimizer was applied. Cross entropy was used for 

Figure 8.  Patient inclusion and exclusion criteria in dataset.

Method Range

Rotate −90° ≤ rotation angle ≤ 90°

Shift 1–10 pixels

Zoom 0.8–1.2×

Shift and Zoom Shift (1–10 pixels) and zoom (0.8–1.2×)

Table 6.  Data augmentation methods.

Figure 9.  Examples of image augmentation.

https://doi.org/10.1038/s41598-020-65875-4
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the loss function. A global average pooling layer was applied to the last layer instead of fully-connected layer, since 
the fully-connected layer loses location information from the image. By using the global average pooling layer, 
we were able to reduce the size of the parameters and apply the CAM method to generate the heat map. After this 
layer, softmax was adopted to predict each class. We used a commodity PC (3.7 GHz × 12 Intel Core i7, 64 GB 
RAM, GeForce GTX 1080Ti 8 G × 2) and TensorFlow V1.8.0.

Performance evaluation of our model.  Data collection.  To verify the performance of our model, we 
also collected the hepatobiliary phase images from the pre-operation gadoxetic acid-enhanced MRI of 54 patients 
(42 male and 12 female patients with a mean age of 57 years ± SD 9.6), who had undergone MR imaging at one 
of four external hospitals from 2015 to 2017. Their histopathologic results were available as they had undergone 
hepatic surgery in our institution. Among them, nine patients were excluded due to motion artifact (n = 1), miss-
ing image (n = 1), or low image quality (n = 7). We randomly selected 502 hepatobiliary phase MR images from 
3,189 images with no HCC (Fig. 11). We validated the model using these 502 images and 448 images in which 
the HCC nodules were included. The equipment used for MR acquisition is listed in Table 7. As in Table 7, the 
external dataset consisted of MR images obtained with a variety of MR scanners compared to the validation and 
test datasets.

Figure 10.  Our proposed Deep Learning system for HCC detection.

Figure 11.  Patient inclusion and exclusion criteria in external validation set.

https://doi.org/10.1038/s41598-020-65875-4
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Comparison of performance between our model and human readers.  To validate the performance of our model, 
the sensitivity, specificity, and accuracy of HCC detection were compared between our model and radiologists. 
Two radiologists (a board-certified abdominal radiologist with 10 years of experience with abdominal imaging 
and a trainee with 4 years of experience in the department of radiology) participated in this validation study. The 
two radiologists were blinded to the development of the model and the results of the MR reports and histopatho-
logic results of the external validation datasets. They were only informed that the patients might have risk factors 
for HCC. Therefore, the radiologists were not aware of the presence, number, or location of the HCCs. They were 
instructed to record the image number containing HCC nodules in the datasheet when reviewing MR images 
using a picture archiving and communication system (PACS; Centricity Radiology RA 1000; GE Healthcare, 
Chicago, IL, USA). They were also requested to record the interpretation time using a stopwatch. The interpreta-
tion time was defined as the time between image opening and finishing filling out the datasheet.

Image validation.  To validate the model, we applied a CAM that points to the correct location and provides clues 
to the physician. Figure 12 shows where the model automatically predicted the HCC.

Comparison with other CNNs.  We compared our own CNN with three other popular deep learning models 
including ResNet5030, AlexNet31, VGG-1632 and Inception-ResNetV233. We found that our own CNN architec-
ture outperformed ResNet50, AlexNet, VGG-16 and Inception-ResNetV2. The summary of the result is shown in 
Table 8 and Supplementary Fig. S1.

Conclusions
We have created a fully automated, deep learning system that detects and classifies HCCs in gadoxetic 
acid-enhanced MRI using a new fine-tuned CNN structure. The system classified HCCs six times faster than 
human readers and achieved 87% sensitivity and 93% specificity in an external validation data set. This result 
seems to be comparable to the performance of less experienced radiologists. However, our deep learning model 

Manufacturer Model Name (Tesla)
Number of 
patients

PHILIPS Achieva (1.5) 9

PHILIPS Ingenia (3.0) 8

PHILIPS Ingenia CX (3.0) 1

SIEMENS Avanto (1.5) 6

SIEMENS Skyra (3.0) 18

SIEMENS SMS Avanto (1.5) 1

SIEMENS Verio (3.0) 3

GE DISCOVERY MR750w 
(3.0) 2

GE SIGNA EXCITE (1.5) 2

GE Signa HDxt (3.0) 4

Table 7.  List of data collection equipment for external dataset.

Figure 12.  An example of true positive detection (arrow) of HCC by our trained model using CAM method 
showing the area of interest of the trained model.
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has the advantage of detecting very small HCCs better than less experienced radiologists. Finally, for use as a deci-
sion support system, we have created a program that categorizes HCCs with a single click and shows the location 
of candidate HCCs in hepatobiliary phase MR images.
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