Skip to main content
. 2020 Jun 5;10:790. doi: 10.3389/fonc.2020.00790

Table 1.

Summary of reviewed literature.

Cancer type References No. of pts Type of RT Type of predicted toxicity Features type Classifier Results*
Breast (10) 90 RT Dermatitis R RF Acc = 0.87 (test)
(11) 2277 Moist desquamation, dermatitis, chest pain, fatigue D, C LR, RF, gradient boosting 0.56–0.85
(12) 827 RT Telangiectasia D, C LASSO
Esophagus (13) 101 IMRT or 3D-CRT Pneumonitis D, C LR Acc = 0.63
Gyneco (14) 42 EBRT+BRT Rectal toxicity D SVM 0.82–0.91
(15) 42 EBRT+BRT Rectal toxicity D CNN (transfer learning) 1.29
(16) 35 BRT Fistula formation D, C SVM 1.30
H&N (17) 437 RT (397) PT (40) Toxicity (grade ≥3) C LR, RF, XGBoost 0.63–0.65
(18) 2121 RT Unplanned hospitalizations,
Feeding tube placement,
Weight loss
D, C LR, gradient boosting, RF 0.64–0.76
(19) 153 RT Xerostomia D, R, C 6 ML algotithms Best SVM and extra-trees 0.74–0.89
(20) 86 RT Trismus D IBDM Identification of a cluster of voxel related with toxicity
(21) 427 RT Xerostomia D, C LR, LASSO, RF Best LR (0.70)
(22) 173 RT Acute dysphagia D, C SVM, RF 0.82
(23) 297 IMRT Xerostomia (grade ≥2) D, C LR Model updating
is beneficial
(24) 134 IMRT and PT Esophagitis R, D LASSO 0.75
(25) 47 3D-CRT Sensorineural hearing loss R, C Decision stump, Hoeffding 76.08% accurarcy 75.9% precision
(26) 37 IMRT Parotid shrinkge
Xerostomia
D, C Fuzzy logic
Naïve Bayes
Acc = 0.79–0.86
(27) 249 IMRT Xerostomia, sticky saliva R, D Multivariate LR 0.77
(28) 351 IMRT Mucositis D, C LR, SVM, RF 0.71 (RF)
(29) 1 (H&N)
1 (Prostate)
IMRT Xerostomia (H&N),
Rectal bleeding (prostate)
D Decision tree, SVM 0.42% MAE (H&N) 97% acc (prostate)
Liver (30) 125 SBRT Hepatobiliary toxicity D, C CNN (transfer learning) 1.25
Lung (31) 110 SBRT LC, DFS, OS, and fibrosis R Cox regression
(32) 203 IMRT or PT Pneumonitis C RF 1.06
(33) 192 IMRT and 3D-CRT Radiation pneumonitis R, D, C LASSO 0.68
(34) 197 SBRT Chest wall syndrome D, C Descision tree
RF
n/a
(4) 3496 (lung+brain
+H&N)
RT Classifiers comparison D, C Decision tree, RF, ANN, SVM, elastic net, logit-boost Best: elastic net LR and RF
(35) 14 SBRT Lung injuries R, D LR 0.64–0.78
(36) 201 SBRT Pneumonitis D, C Decision trees, RF, RUSBoost
(37) 115 RT Esophagitis D, C LASSO 0.78
(38) 54 3D-CRT Pneumonitis D, C Bayesian network
LR
Single variable
0.66–0.83
(39) 748 RT Esophagitis D, C LR 0.83
(40) 219 3D-CRT Pneumonitis D, C SVM 1.16
(41) 55 (H&N)
219+166 (Lung)
3D-CRT Xerostomia,
Pneumonitis (166)
Esophagitis (216)
D, C LR, SVM, ANN Best: modified SVM
(42) 219 RT Radiation pneumonitis D, C Decision tree, ANN, SVM, self-organizing maps 0.79
(43) 234 RT Radiation pneumonitis D, C Decision tree 0.72
(44) 166 EBRT Esophagitis
xerostomia
D LR
(45) 142 3D-CRT Pneumonitis D ANN 0.61–0.85
Prostate (46) 64 IMRT (52 pts), 3D-CRT (12 pts) Urinary toxicity
Gastro-intestinal toxicity
R, D, C LR 0.65–0.77
(47) 33 IMRT Cystitis R LR 0.62–0.75
(48) 33 IMRT Rectal wall changes R LR 0.46–0.81
(49) 351 RT Rectal bleeding
Fecal incontinence
Urinary incontinence
Nocturia
R, D, C LR 0.58–0.73
(50) 598 RT Late fecal incontinence D, C ANN 0.78
(51) 593 RT Rectal bleeding D, C ICA 0.83, 0.80, 0.78
(52) 324 BRT+-EBRT GU toxicity symptoms D, C, G RF 0.7
(53) 118 EBRT, BRT GI toxicities D LR Identification of spatial constraint for toxicity reduction
(54) 368 RT Rectal bleeding,
Erectile dysfunction
C, G RF, LR 0.71 (rectal bleeding) 0.68 (erectile dysfunction)
(55) 79 IMRT Rectal toxicity (grade ≥2) D, C LR 1.28
(56) 754 EBRT Dysuria, hematuria, incontinence, frequency D, C LR, Elastic-net,
SVM, RF, ANN, MARS
Best: LR, MARS
AUC = 0.65
(57) 99 EBRT Rectal bleeding D LDA, SVM, k-means, kNN, PCA, CP-DMA Best: CP-DMA
(58) 261 3D-CRT Rectal toxicity, rectal bleeding D, C RF NTCP, NTCP 0.76, 0.66
(59) 718 RT Rectal bleeding LR, ANN 0.655, 0.704
(60) 321 RT Acute bladder and rectal toxicity D, C ANN, SVM 0.7
(61) 119 RT Rectal bleeding
Nocturia
D ANN Sensitivity and specificity >55%

3D-CRT, 3D conformal RT; Acc, accuracy; ANN, artificial neural network; AUC, area under the curve; BRT, brachytherapy; CNN, convolutional neural network; CP-DMA, canonical polyadic decomposition–deterministic multi-way analysis; DFS, disease free-survival; EBRT, external beam RT; GI, gastrointestinal; GU, genitourinary; H&N, head and neck; IBDM, image-based data mining; ICA, indipendent component analysis; IMRT, intensity-modulated RT; kNN, k-nearest neighbors; LASSO, Least Absolute Selection and Shrinkage Operator; LC, local control; LDA, linear discriminant analysis; LR, logistic regression; MAE, mean absolute error; MARS, multivariate adaptive regression splines; ML, machine learning; NTCP, normal tissue complication probability; n/a, not applicable; OS, overall survival; PCA, principal component analysis; pt, patient; PT, proton therapy; RF, random forest; RT, radiotherapy; RUSBoost, random under-sampling Boost; SBRT, stereotactic body RT; SVM, support vector machine. Features were classified as clinical (C), dosimetric (D), genomic (G), or radiomic (R).

*

If not specified, AUC values are reported.