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Summary

Women who conceive at 35 years of age or older, commonly known as 
advanced maternal age, have a higher risk of facing parturition complica-
tions and their children have an increased risk of developing diseases later 
in life. However, the immunological mechanisms underlying these patho-
logical processes have yet to be established. To fill this gap in knowledge, 
using a murine model and immunophenotyping, we determined the effect 
of advanced maternal age on the main cellular branch of adaptive im-
munity, T cells, at the maternal–fetal interface and in the offspring. We 
report that advanced maternal age impaired the process of labor at term, 
inducing dystocia and delaying the timing of delivery. Advanced maternal 
age diminished the number of specific proinflammatory T-cell subsets  
[T helper type 1 (Th1): CD4+IFN-γ+, CD8+IFN-γ+ and Th9: CD4+IL-9+], 
as well as CD4+ regulatory T cells (CD4+CD25+FoxP3+ T cells), at the 
maternal–fetal interface prior to term labor. Advanced maternal age also 
altered fetal growth and survival of the offspring in early life. In addition, 
infants born to advanced-age mothers had alterations in the T-cell rep-
ertoire but not in CD71+ erythroid cells (CD3−CD71+TER119+ cells). This 
study provides insight into the immune alterations observed at the  
maternal–fetal interface of advanced-age mothers and their offspring.
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Introduction

During the past three decades, the mean childbearing age 
has steadily increased in developed and high-income  
countries, due largely to social and career-based changes 
as well as advances in contraceptives and assisted repro-
ductive technologies [1]. Women aged 35  years or older, 

commonly defined as being of advanced maternal age, 
now comprise a significant proportion of the pregnant 
population [1,2]. Such delayed pregnancy is associated 
with a wide range of perinatal complications, including 
a higher risk of developing hypertensive disorders [3-5] 
and gestational diabetes mellitus [6,7]. Additionally, women 
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of advanced maternal age more commonly face parturition 
complications such as dystocia/prolonged labor [8,9], indi-
cated cesarean section [10-12] and maternal near-miss 
events or morbidity [13,14]. While the associations between 
advanced maternal age and these pregnancy complications 
are well established, the immunological mechanisms under-
lying these pathological processes, particularly prolonged 
labor, are poorly understood.

Labor is considered a state of systemic [15-19] and 
local [20-31] physiological inflammation [32-35]. The latter 
concept is supported by consistent evidence showing that 
labor is characterized by an increase in cellular and soluble 
inflammatory mediators in the cervix [32,36-48], myome-
trium [37-38,40,49-52], chorioamniotic membranes 
[38,40,53-59], and decidual tissues (i.e. maternal–fetal 
interface) [38,40,53-54,57,60-63]. Specifically, in the decid-
ual tissues, the process of labor at term has been associ-
ated with proinflammatory phenotypes of macrophages 
(i.e. M1-like phenotype) [64] and effector T cells [65,66]. 
Indeed, these immune cell types are also detected in women 
who underwent the pathological process of preterm labor 
[64,65]. Therefore, we have proposed that a tight balance 
among the cellular components at the maternal–fetal inter-
face is implicated in the physiological and pathological 
processes of labor [67-69]. However, whether alterations 
in the adaptive immune responses, specifically T cells, 
take place at the maternal–fetal interface in women of 
advanced maternal age has yet to be shown.

Beyond the pregnancy consequences associated with 
advanced maternal age, several studies reported that the 
children born to women of advanced maternal age have 
an increased risk of developing diseases later in life, includ-
ing type 1 childhood diabetes [70-72], allergies [73], male 
infertility [74] and female menstrual disorders [75], among 
others [76-82]. While the etiology of some of these long-
term sequelae remains unknown, most have no known 
linkage to maternal transmission of genes, defective mito-
chondria, or chromosomal abnormalities [83]. Furthermore, 
there is an increasing body of evidence suggesting that 
the intrauterine environment shapes developmental out-
comes, including immunological development in the off-
spring [84-86]. This hypothesis, in tandem with the 
understanding that aging is characterized by chronic  
systemic inflammation [87] and that pregnancy is tightly 
regulated by the immune system [88-91], begs the ques-
tion of how the intrauterine environment in women of 
advanced maternal age may alter T-cell responses in the 
offspring.

In the current study, we first evaluated the perinatal 
consequences of advanced maternal age using a murine 
model. Additionally, we performed immunophenotyping 
of decidual and splenic infantile murine T cells to deter-
mine the impact of advanced maternal age on the main 

cellular branch of adaptive immunity at the maternal–fetal 
interface and in the offspring, respectively.

Materials and methods

Mice

B6N.129(Cg)-forkhead box protein 3 (FoxP3)tm3Ayr/J mice 
were purchased from the Jackson Laboratory (Bar Harbor, 
ME, USA), bred in the animal care facility at the C. S. 
Mott Center for Human Growth and Development (Wayne 
State University, Detroit, MI, USA), and housed under a 
circadian cycle (light/dark  =  12  :  12  h). This mouse strain 
was chosen because initial studies were focused on regula-
tory T cells (Tregs). Syngeneic mating was used to evaluate 
the effect of advanced maternal age as the sole variable. 
Older females [≥ 20 weeks, advanced maternal age (AMA)] 
were mated with males of proven fertility in three dif-
ferent cohorts: the first to obtain observational data and 
the second two for flow cytometry data. Young females 
(aged 8–12  weeks, ideal reproductive age, controls) were 
also mated with males of proven fertility as controls. The 
females were checked between 8:00 a.m. and 9:00 a.m. 
daily for the appearance of a vaginal plug indicating  
0·5 days post-coitum (dpc), at which point female mice 
were removed from the mating cages and housed sepa-
rately. Pregnancy was confirmed by a weight gain of ≥ 2 g 
at 12·5  dpc. All mouse experiments were approved by the 
Institutional Animal Care and Use Committee at Wayne 
State University (Protocol no. A-09-08-12). The authors 
adhered to the National Institutes of Health Guide for 
the Care and Use of Laboratory Animals.

Murine model of advanced maternal age

In the first cohort, fertility rates were recorded, defined 
as the proportion of mice who successfully became preg-
nant after the identification of a vaginal plug among the 
total number of mice with a vaginal plug. Pregnancy 
parameters, including duration of labor, rate of dystocia, 
and gestational length, were monitored via video camera 
(Sony, Tokyo, Japan). Duration of labor was defined as 
the time between delivery of the first and last pup in 
undisturbed, successful deliveries. The rate of dystocia was 
defined as the proportion of mice who underwent dis-
turbed progression of labor (duration of labor  >  6  h) 
among the total number of pregnant mice. Gestational 
length was calculated as the time from the presence of 
the vaginal plug until the observation of the first pup in 
the cage bedding. Litter sizes of all successful deliveries 
were recorded. After delivery, the mother and her pups 
were kept under observation, and offspring survival and 
weights were recorded 1, 2, and 3  weeks after birth.
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Immunophenotyping by flow cytometry

Older and young dams from the second cohort were 
euthanized prior to term parturition, the day before deliv-
ery, on 18·5  dpc. The number of fetuses, fetal weights, 
and placental weights were recorded. Additionally, the 
maternal spleen, uterine draining lymph nodes (ULN), 
and decidual tissues were collected. In the third cohort, 
neonates (1  week) and infants (3  weeks) from older and 
young dams were weighed and euthanized, and spleens 
were collected. The isolation of leukocytes from lymphatic 
and decidual tissues was performed using mechanical dis-
sociation followed by enzymatic disaggregation, as previ-
ously described [67,92]. The cells were incubated with 
anti-CD16/CD32 (FcγIII/II receptor; BD Biosciences, San 
Jose, CA, USA) for 10 min, followed by extracellular stain-
ing with specific fluorochrome-conjugated anti-mouse 
monoclonal antibodies (Supporting information, Table S1). 
For intracellular/intranuclear staining, the cells were first 
fixed and permeabilized using the Cytofix/Cytoperm fixa-
tion/permeabilization solution (Cat. no. 554714; BD 
Biosciences) or the FoxP3 staining buffer kit (Cat. no. 
005523-00; eBiosciences, San Diego, CA, USA), respectively, 
prior to incubation with intracellular/intranuclear antibod-
ies, which included staining for cytokines (Supporting 
information, Table S1). For the staining of CD71+ erythroid 
cells, the 1X fluorescence activated cell sorter (FACS) lys-
ing solution (BD Biosciences) was used. After staining, 
cell pellets were washed and resuspended in 0·5  ml FACS 
buffer. Samples were acquired using the BD LSRFortessa® 
flow cytometer (BD Biosciences) and analyzed with BD 
FACSDiva® Software version 7.0 (BD Biosciences). The 
analysis and figures were performed using FlowJo software 
version 10 (FlowJo, LLC, Ashland, OR, USA). The absolute 
number of cells was determined using CountBright absolute 
counting beads (Molecular Probes, Eugene, OR, USA).

T-cell phenotypes were determined in the maternal tis-
sues and infantile tissues. Such immunophenotyping included 
the identification of: conventional T cells (CD3+), CD4+ T 
cells (CD3+CD4+), CD8+ T cells (CD3+CD8+), T helper 
type 1 (Th1) cells [CD3+CD4+IFN-γ+], Th2 cells 
[CD3+CD4+IL-4+], Th9 cells (CD3+CD4+IL-9+), Th17 cells 
(CD3+CD4+IL-17A+), CD8+IFN-γ+ cells (CD3+CD8+IFN-γ+), 
CD8+IL-4+ cells (CD3+CD8+IL-4+), CD8+IL-9+ cells 
(CD3+CD8+IL-9+), CD8+IL-17A+ cells (CD3+CD8+IL-17A+), 
CD4+ regulatory T cells (CD3+CD4+CD25+FoxP3+) and 
CD3+CD8+CD25+FoxP3+ cells. CD71+ erythroid cells 
(CD3−CD71+TER119+) were also identified in neonatal and 
infantile tissues and reported as proportions due to low 
cell counts.

Statistical analysis

Data were analyzed using SPSS Statistics software version 
19.0 (IBM, Armonk, NY, USA). For the rates of fertility 

and dystocia, Fisher’s exact test was used. Kaplan–Meier 
survival curves were used to plot and compare the ges-
tational length and neonatal survival data (Mantel–Cox 
test). For the duration of labor, litter size, placental weights, 
offspring weights, and all flow cytometry data, the Shapiro–
Wilk normality test was performed. For non-normally 
distributed data, the Mann–Whitney U-test was utilized 
to compare experimental data between the control and 
study groups. Alternatively, for normally distributed data, 
the unpaired t-test was performed. A P-value of ≤  0·05 
was considered statistically significant.

Results

The negative effects of advanced maternal age in 
pregnancy outcomes

Mice reach sexual maturity at ~6–8 weeks of age [93]; 
however, the mating age used in reproductive studies 
is between 8 and 12  weeks of age [65,94,95]. Therefore, 
in the current study, control mice were mated within 
this range (8–12  weeks of age), which represents the 
ideal reproductive age (Fig. 1a). In rodents, fertility begins 
to decline at approximately 6 months of age (~24 weeks), 
which mirrors the decline in fertility of women who 
are aged ~35–40  years [96]. Therefore, older females 
were allowed to reach 20–24  weeks of age, which rep-
resents the decline in fertility seen in women of advanced 
maternal age (AMA, Fig. 1a). Consistently, we found 
that AMA dams tended to have a lower fertility rate 
compared to controls [73.9% (17 of 23) versus 100% 
(13 of 13), Fig. 1b]. In addition, AMA dams that suc-
cessfully reached term pregnancy had significantly longer 
durations of labor than controls (Fig. 1c), which is con-
sistent with human data associating prolonged labor with 
increased maternal age [9]. Furthermore, the rate of 
dystocia was notably higher in the AMA group than 
the control group [35.2% (six of 17) versus 7·7% (one 
of 13), Fig. 1d]. The gestational length of AMA dams 
tended to be longer than that of controls (Fig. 1e). 
However, the litter size between AMA and control dams 
was not significantly different (Fig. 1f). These data show 
that advanced maternal age is associated with adverse 
effects during pregnancy, including impaired fertility, 
increased duration of labor and gestation and a higher 
frequency of dystocia.

Advanced maternal age alters the T-cell repertoire at 
the maternal–fetal interface

Previous studies have shown that T cells at the maternal– 
fetal interface participate in the physiological [57,65-
66,69,97-99] and pathological [65,69,99-103] processes 
of labor. Therefore, we next quantified decidual T-cell 
subsets prior to term delivery (18·5  dpc) using flow 
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cytometry (Fig. 2a,b). We first determined the numbers 
of conventional T cells in the decidua, and found no 
differences in the decidual CD4+ (Fig. 2c) or CD8+  
(Fig. 2d) T cells between AMA dams and controls. We 
next analyzed the expression of stereotypical cytokines 

associated with helper T-cell subsets: namely, IFN-γ (Th1) 
[14,105], IL-4 (Th2) [14,105], IL-9 (Th9) [16-109], and 
IL-17A (Th17) [110] (Fig. 2b, right panels). Advanced 
maternal age was associated with a marked reduction 
in decidual Th1 cells compared to controls (Fig. 2e). 

Fig. 1. Pregnancy outcomes of advanced maternal age. (a) Experimental design of advanced maternal age (AMA) during pregnancy. (b) Percentage of 
fertile control and AMA mice (n = 13–23 each). The P-values were determined by Fisher’s exact test. (c) Duration of active labor in undisturbed, 
successful deliveries from control and AMA dams (n = 11–12 each) in control and AMA groups. Mid-lines indicate medians, boxes indicate 
interquartile ranges and whiskers indicate minimum–maximum range. The P-values were determined by a Mann–Whitney U-test. (d) Percentage of 
control and AMA dams who went into dystocia (n = 13–17 each). The P-values were determined by Fisher’s exact test. (e) Kaplan–Meier survival 
curves showing the gestational lengths of control and AMA dams (n = 11–12 each). The P-values were determined by Mantel–Cox test. (f) Number of 
pups per litter from control and AMA dams who had successful deliveries (n = 11–12 litters). Mid-lines indicate medians, boxes indicate interquartile 
ranges and whiskers indicate minimum–maximum range. The P-values were determined by a Mann–Whitney U-test. Significant P-values are shown 
in bold type.
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Fig. 2. Immunophenotyping of the T-cell subsets in the decidua of advanced maternal aged dams. (a) Experimental design of decidual tissue 
collection in murine model of advanced maternal age (AMA) and young controls. (b) Gating strategy used to quantify the T-cell subsets in the 
decidua. Number of (c) CD4+ T cells, (d) CD8+ T cells, (e) T helper type 1 (Th1) cells, (f) Th2 cells, (g) Th9 cells, (h) Th17 cells, (i) CD8+ cells 
expressing IFN-γ, (j) CD8+ cells expressing IL-4, (k) CD8+ cells expressing IL-9, and (l) CD8+ cells expressing IL-17A (n = 9–10 each). Mid-lines 
indicate medians, boxes indicate interquartile ranges and whiskers indicate minimum–maximum range. The P-values were determined by an unpaired 
t-test or a Mann–Whitney U-test. Significant P-values are shown in bold type.
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Moreover, a modest but non-significant reduction was 
observed in the numbers of decidual Th9 cells in AMA 
dams compared to controls (Fig. 2g; P  =  0·05). Neither 
the number of decidual Th2 cells (Fig. 2f) nor the num-
ber of Th17 cells (Fig. 2h) were significantly altered by 
AMA. Among the corresponding CD8+ T-cell subsets, 
there was a significant reduction in the population of 
CD8+IFN-γ+ T cells in AMA dams compared to controls 
(Fig. 2i), similar to the trend seen in the Th1 cells. 
There was also a modest decrease in CD8+IL-4+ T cells 
in AMA dams compared to controls (Fig. 2j; P  =  0·06). 
No differences were seen in the number of CD8+IL-9+ 
T cells (Fig. 2k) or CD8+IL-17A+ T cells (Fig. 2l) between 
the study groups. Notably, such alterations in T-cell 
populations were limited to the maternal–fetal interface, 
as no changes were observed in T-cell subsets in the 

maternal ULN or spleen between AMA dams and con-
trols (Supporting information, Figs S1 and S2). Together, 
these results show that AMA impairs the proinflamma-
tory T-cell responses at the maternal–fetal interface prior 
to parturition.

We and others have previously suggested that systemic 
and local Tregs play an important role in the timing of 
parturition [98,111-115]. Therefore, we quantified CD4+ 
Tregs and CD8+CD25+FoxP3+ T cells in the decidual tis-
sues of AMA and control dams (Fig. 3a). We found that 
AMA dams had a significantly diminished population of 
decidual CD4+ Tregs compared to controls (Fig. 3b). However, 
this reduction in CD4+ Tregs was exclusively local, as no 
changes were observed in Tregs from the ULN or spleen 
of AMA and control dams (Supporting information,  
Fig. S3). By contrast, no differences were seen in the 

Fig. 3. Immunophenotyping of regulatory T cells in the decidua of advanced maternal aged (AMA) dams. (a) Gating strategy used to quantify the 
regulatory T cells (Tregs) in the decidua. Number of (b) CD4+ Tregs and (c) CD8+CD25+FoxP3+ T cells (n = 9–10 each) in control and AMA dams. 
Mid-lines indicate medians, boxes indicate interquartile ranges and whiskers indicate minimum–maximum range. The P-values were determined by 
an unpaired t-test or a Mann–Whitney U-test. Significant P-values are shown in bold type.
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numbers of CD8+CD25+FoxP3+ T cells between study 
groups (Fig. 3c). This finding demonstrates that AMA 
results in a reduction of CD4+ Tregs at the maternal–fetal 
interface, but does not affect the CD8+CD25+FoxP3+ T-cell 
population.

Advanced maternal age impairs neonatal survival and 
growth of the offspring

Given that AMA has been associated with adverse neonatal 
outcomes such as low birth weight [116] and a higher 
rate of stillbirth [117,118], we next investigated the impact 
of older maternal age on the immediate and long-term 
health of the offspring (Fig. 4a). There was a significant 
reduction in neonatal survival in the AMA group compared 
to controls, with neonatal mortality predominately occur-
ring within the first week of life among the different litters 
(Fig. 4b). To further elucidate this discrepancy in neonatal 
survival and assess the long-term health of the offspring, 
placental and fetal weights at 18·5  dpc as well as neonatal 
growth trajectories were compared between AMA mice and 
controls. There was no difference in the placental weights 
at 18·5  dpc between the study groups (Fig. 4c). However, 
there was a significant reduction in the fetal weights from 
AMA dams at 18·5  dpc compared to controls (Fig. 4d), 
indicating that the pup-to-placenta weight ratio contributes 
to AMA-related neonatal consequences. Interestingly, neo-
nates born to AMA dams were significantly heavier than 
those from young controls at 1  week of age (Fig. 4e). This 
disparity in offspring growth was overcome by 3  weeks 
of age, as a difference was not observed between the infants 
from AMA dams and controls (Fig. 4f). These results pro-
vide supporting evidence showing that AMA not only 
impairs the process of labor, but also affects the early 
survival and growth of the offspring.

Advanced maternal age disrupts T-cell phenotypes in 
infants

Infants born to AMA dams were apparently healthy; how-
ever, there is a substantial body of literature associating 
advanced maternal age with multiple disorders in the 
offspring later in life [70-83]. Therefore, we evaluated T-cell 
responses in infants born to AMA dams to determine 
the integrity of the cellular limb of their adaptive immune 
system. First, we characterized the conventional T-cell 
repertoire in the infant spleen (Fig. 5a,b). Infants from 
AMA dams had modestly increased numbers of splenic 
CD4+ T cells compared to those from controls (Fig. 5c; 
P  =  0·05). Moreover, the numbers of splenic CD8+ T cells 
were also elevated in infants from AMA dams compared 
to those from controls (Fig. 5d). We next investigated 
splenic helper T-cell subsets in the offspring of AMA 
dams, and found that the numbers of Th1 cells were sig-
nificantly increased compared to the offspring of controls 

(Fig. 5e). Similarly, splenic Th2 T cells were also augmented 
in infants from AMA dams (Fig. 5f; P  =  0·05). However, 
the numbers of Th9 cells (Fig. 5g) and Th17 cells  
(Fig. 5h) remained stable when compared between the 
study groups.

In line with these findings, the numbers of splenic 
CD8+IFN-γ+ T cells were significantly elevated in the 
offspring of AMA dams compared to controls (Fig. 5i), 
as were the numbers of splenic CD8+IL-4+ T cells  
(Fig. 5j). There were no differences in the numbers of 
splenic CD8+IL-9+ T cells (Fig. 5k) or in the numbers of 
splenic CD8+IL-17A+ T cells (Fig. 5l) between infants from 
AMA dams and those from controls.

We also characterized splenic CD4+ Tregs from the infants 
of AMA and control dams (Fig. 6a). Consistent with the 
numbers of conventional T cells, the numbers of splenic 
CD4+ Treg cells were increased in infants from AMA dams 
compared to those from controls (Fig. 6b; P  =  0·05). 
Moreover, the numbers of splenic CD8+CD25+FoxP3+ T 
cells were also elevated in infants from AMA dams com-
pared to those from controls (Fig. 6c). These results sug-
gest that the offspring from advanced-age mothers who 
survive past the neonatal window undergo compensatory 
alterations in the T-cell repertoire.

Advanced maternal age does not alter infant CD71+ 
erythroid cells

There is an increasing body of evidence reporting that 
neonatal innate and adaptive immunity depends on the 
critical immunomodulatory functions of CD71+ nucleated 
erythroid cells [119-124]. Indeed, we have shown that 
CD71+ erythroid cells play a central role by modulating 
immune responses in neonates born to mothers who 
underwent the process of preterm or term labor [125,126]. 
Therefore, we investigated the effect of AMA on the CD71+ 
erythroid cell population of the offspring at 1 and 3 weeks 
of age (Fig. 7a). The proportions of CD71+ erythroid 
cells in the offspring of AMA dams were unaffected at 
1  week of age compared to those from controls  
(Fig. 7b). Similarly, CD71+ erythroid cells were unchanged 
at 3  weeks after birth (Fig. 7c). These findings show that 
AMA does not affect the proportion of CD71+ erythroid 
cells in the offspring; however, further studies are required 
to investigate whether AMA alters the functionality of 
these cells.

Discussion

The current study provides evidence that advanced maternal 
age: (1) impairs fertility, the process of labor, and the 
timing of delivery; (2) diminishes the number of specific 
proinflammatory T-cell subsets (Th1, Th9, and CD8+IFN-γ+) 
at the maternal–fetal interface prior to term parturition; 
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Fig. 4. Neonatal outcomes in advanced maternal aged dams. (a) Experimental design of data collection from the offspring of advanced maternal aged 
(AMA) and control dams. (b) Kaplan–Meier survival curves showing the rate of survival of offspring from AMA dams and controls at birth and 1, 2, 
and 3 weeks of life. The P-values were determined by Mantel–Cox test. (c) Weights of the placentas from controls and AMA dams at 18·5 days 
post-coitum (dpc). Weights of the offspring from control and AMA dams at (d) 18·5 dpc, (e) 1 week and (f) 3 weeks of age (n = 22–103 each). Data are 
shown as scatter-plots mean with standard error of the mean (s.e.m.)]. The P-values were determined by a Mann–Whitney U-test. Significant P-values 
are shown in bold type.
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Fig. 5. Immunophenotyping of T-cell subsets in the spleen of infants from advanced maternal aged dams. (a) Experimental design of infant spleen 
collection from offspring of control and advanced maternal aged (AMA) dams. (b) Gating strategy used to quantify the T-cell subsets in the infant 
spleen. Number of (c) CD4+ T cells, (d) CD8+ T cells, (e) T helper type 1 (Th1) cells, (f) Th2 cells, (g) Th9 cells, (h) Th17 cells, (i) CD8+ cells expressing 
IFN-γ, (j) CD8+ cells expressing IL-4, (k) CD8+ cells expressing IL-9, and (l) CD8+ cells expressing IL-17A (n = 7 each). Mid-lines indicate medians, 
boxes indicate interquartile ranges and whiskers indicate minimum–maximum range. The P-values were determined by an unpaired t-test or a 
Mann–Whitney U-test. Significant P-values are shown in bold type.
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(3) reduces the number of CD4+ Tregs, but not 
CD8+CD25+FoxP3+ T cells, at the maternal–fetal interface 
prior to parturition; (4) alters the growth and survival of 
the offspring in early life; (5) induces an expansion of 
IFN-γ- and IL-4-producing CD4+ and CD8+ T cells, as 
well as CD4+ Tregs and CD8+CD25+FoxP3+ T cells, in the 
infant; and (6) does not alter the proportion of CD71+ 
erythroid cells in the offspring. Collectively, these findings 
provide a phenotypical characterization of the effects of 
advanced maternal age on T-cell responses at the maternal– 
fetal interface prior to term labor and in the offspring.

In recent years, a growing body of evidence suggests 
a role for maternal T cells in the processes of labor: (1) 
T cells are actively recruited from the periphery into 
the decidual tissues through chemotactic processes during 
the onset of term labor [57,97,127]; (2) T cells, including 
exhausted T cells, are enriched at the human 

maternal–fetal interface prior to the onset of term labor 
[99,128-135]; (3) T-cell exhaustion at the maternal–fetal 
interface is reversed by inflammatory mediators associ-
ated with term labor [99]; (4) activated T cells at the 
maternal–fetal interface express labor mediators such as 
tumor necrosis factor (TNF)-α, IL-1β, and matrix metal-
loproteinase (MMP)-9 during the process of term labor 
[66]; (5) effector T cells expressing perforin are increased 
at the maternal–fetal interface of women with term labor 
compared to non-labor controls [65]; (6) IL-6, a cytokine 
that participates in the timing of parturition [136], con-
trols decidual T-cell subsets prior to term labor [98]; 
(7) activation of T cells by administration of an anti-CD3 
antibody induces the process of preterm labor [13]; (8) 
effector and activated T cells expressing granzyme B and 
perforin are enriched at the maternal–fetal interface of 
women who underwent spontaneous preterm labor and 

Fig. 6. Immunophenotyping of regulatory T cells (Tregs) in the spleen of infants from advanced maternal aged (AMA) dams. (a) Gating strategy used 
to quantify the Tregs in the infant spleen. Number of (b) CD4+ Tregs and (c) CD8+CD25+FoxP3+ T cells (n = 7 each) in control and AMA dams. 
Mid-lines indicate medians, boxes indicate interquartile ranges and whiskers indicate minimum–maximum range. The P-values were determined by 
an unpaired t-test or a Mann–Whitney U-test. Significant P-values are shown in bold type.
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birth [65]; and (9) single-cell RNA signatures of activated 
T cells precede term and preterm labor [69,90]. Herein, 
we put forward evidence that advanced maternal age is 
associated with a pathological delay of the process of 
term labor, and this is associated with alterations in T-cell 
subsets at the maternal–fetal interface.

The mechanisms whereby advanced maternal age induces 
dystocia and extended duration of labor may involve altera-
tions in the proinflammatory milieu localized at the mater-
nal–fetal interface. For example, we found that mothers of 
advanced age had fewer Th1 and Th9 cells in the decidual 
tissues. These T-cell subsets have been previously reported 
at the maternal–fetal interface [98,137,138]. The differentia-
tion of Th1 and Th9 cells results from stimulation with 
specific cytokines such as IL-12/IFN-γ [139-141] and IL-4/
transforming growth factor (TGF)-β1 [18-109,142], respec-
tively. Therefore, it is tempting to suggest that the decidual 
tissues of advanced-age mothers are deficient in local 
cytokines required for the differentiation of the Th1 and 
Th9 subsets. Herein, we also report that advanced-age moth-
ers had fewer IFN-γ- and IL-4-expressing CD8+ T cells at 
the maternal–fetal interface. This observation may also reflect 
defective inflammatory signaling pathways in the decidual 
tissues of advanced-age mothers. Further investigation is 
required to elucidate the molecular mechanisms whereby 
advanced maternal age causes impaired T-cell subset 

differentiation at the maternal–fetal interface prior to term 
labor.

CD4+ Tregs are an important subset of T cells that express 
CD25 and FoxP3 [143-146]. These cells play a central 
role in immune tolerance by exhibiting suppressive activity 
towards both self- and non-self-antigens [147-149]. This 
suppressive activity is due largely to the expression of the 
transcription factor FoxP3 [144,150]. CD4+ Tregs have been 
localized at the human [151,152] and murine [67,153,154] 
maternal–fetal interface. These cells seem to play an impor-
tant role in promoting maternal–fetal tolerance from early 
to mid-pregnancy [153,155-157]. However, this T-cell subset 
has not been involved in the timing of parturition at 
term, as shown herein at the maternal–fetal interface of 
advanced-age mothers. The cellular mechanisms (e.g.  
TGF-β1 signaling) whereby advanced age causes a reduc-
tion in the number of CD4+ Tregs in the decidua are 
worthy of further research.

Our study provides a phenotypical characterization of 
the T-cell subsets that are defective at the maternal–fetal 
interface of advanced-age mothers. However, it is important 
to note that aging of the reproductive organs [158-162], 
as well as other pathological processes [163-166], must 
be considered when studying the mechanisms whereby 
advanced maternal age causes prolonged labor. It is worth 
mentioning that the pathological processes involved in 

Fig. 7. Immunophenotyping of CD71+ erythroid cells in the spleen of offspring from advanced maternal aged (AMA) dams. (a) Gating strategy used 
to quantify CD71+ erythroid cells. Proportion of CD71+ erythroid cells (b) in the neonatal spleen at 1 week of age and (c) in the infant spleen at  
3 weeks of age (n = 8–19 each) in control and AMA groups. Mid-lines indicate medians, boxes indicate interquartile ranges and whiskers indicate 
minimum–maximum range. The P-values were determined by an unpaired t-test or a Mann–Whitney U-test. Significant P-values are shown in  
bold type.
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prolonged labor are confined to the intrauterine space, 
given that the alterations in T-cell subsets were not observed 
in the lymphatic tissues.

In this study, we also report that advanced maternal 
age is associated with reduced early offspring survival, 
which is in tandem with our finding of reduced fetal 
weight. This is consistent with prior studies that have 
associated advanced maternal age in mice with decreased 
offspring body weight and life expectancy [167-169]. Future 
studies are warranted to determine whether this finding 
is due to postnatal factors such as maternal caring behav-
iors or differences in breast milk quantity and composition, 
or antenatal and perinatal factors that occur in utero. We 
also found that advanced maternal age alters T-cell subsets, 
including CD4+ Tregs, without affecting other immunomodu-
latory cells (e.g. CD71+ erythroid cells) in infants. To our 
knowledge, this is the first demonstration that infants of 
mothers of advanced age have increased numbers of CD4+ 
and CD8+ T cells expressing IFN-γ, IL-4, and FoxP3. This 
rise may be due to a compensatory mechanism in response 
to the adverse/extended intrauterine environment [84,85], 
which is reflected by the appropriate weight gain in infants 
at 3  weeks of age. A similar compensatory mechanism 
has also been observed in infants born to mothers who 
experienced chronic prenatal stress [170]. Nevertheless, the 
immunocompetence of pups born to dams of advanced 
age remains to be elucidated.

Conclusion

The data in the current study provide evidence that 
advanced maternal age impairs the process of labor and 
alters the T-cell repertoire at the maternal–fetal interface 
prior to term labor. Additionally, we show that advanced 
maternal age is associated with adverse consequences 
for the offspring, as demonstrated by affected growth 
patterns and T-cell responses. Together, these findings 
represent the first characterization of the effect of 
advanced maternal age on the main cellular branch of 
adaptive immunity, T cells, at the maternal–fetal interface 
prior to term labor and in the offspring. These findings 
provide insight into the immune mechanisms dysregu-
lated in the pathological process of delayed labor and, 
more importantly, suggest that infants born to mothers 
of advanced age may display impaired T-cell 
immunity.
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Fig. S1. Immunophenotyping of the T-cell subsets in the 
uterine draining lymph nodes (ULN) of advanced maternal 
aged (AMA) dams. Number of (a) CD4+ T cells, (b) CD8+ T 
cells, (c) Th1 cells, (d) Th2 cells, (e) Th9 cells, (f) Th17 cells, 
(g) CD8+ cells expressing IFNγ, (h) CD8+ cells expressing 
IL-4, (i) CD8+ cells expressing IL-9, and (j) CD8+ cells ex-
pressing IL-17A (n = 6-10 each) in control and AMA dams. 
Mid-lines indicate medians, boxes indicate interquartile 
ranges, and whiskers indicate min-max range. The p values 
were determined by an unpaired t test or a Mann-Whitney 
U test.
Fig. S2. Immunophenotyping of the T-cell subsets  
in the spleen of advanced maternal aged (AMA) dams. 
Number of (a) CD4+ T cells, (b) CD8+ T cells, (c) Th1 
cells, (d) Th2 cells, (e) Th9 cells, (f) Th17 cells, (g) CD8+ 
cells expressing IFNγ, (h) CD8+ cells expressing IL-4, (i) 
CD8+ cells expressing IL-9, and (j) CD8+ cells expressing 
IL-17A (n = 7-10 each) in control and AMA dams. Mid-
lines indicate medians, boxes indicate interquartile ranges, 
and whiskers indicate min-max range. The p values were 
determined by an unpaired t test or a Mann-Whitney U 
test.
Fig. S3. Immunophenotyping of regulatory T cells (Tregs) 
in the uterine draining lymph nodes (ULN) and spleen of 
advanced maternal aged (AMA) and control dams. Number 
of (a) CD4+ Tregs and (b) CD8+CD25+FoxP3+ T cells in 
the ULN (n = 6-10 each). Number of (c) CD4+ Tregs and (d) 
CD8+CD25+FoxP3+ T cells in the spleen (n = 7-10 each). 
Mid-lines indicate medians, boxes indicate interquartile 
ranges, and whiskers indicate min-max range. The p values 
were determined by an unpaired t test or a Mann-Whitney 
U test.

Table S1. Antibodies used for immunophenotyping.
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