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Abstract

Neurotoxicity linked to excessive brain manganese levels can occur as a result of high level Mn 

exposures and/or metabolic aberrations (liver disease and decreased biliary excretion). Increased 

brain manganese levels have been reported to induce oxidative stress, as well as alterations in 

neurotransmitter metabolism with concurrent neurobehavioral and motor deficits. Two putative 

mechanisms in which manganese can produce oxidative stress in the brain are: (1) via its oxidation 

of dopamine, and (2) interference with normal mitochondrial respiration. Measurements of 

antioxidant species (e.g., glutathione and metallothionein), and the abundance of proteins 

(enzymes) exquisitely sensitive to oxidation (e.g., glutamine synthetase) have been commonly 

used as biomarkers of oxidative stress, particularly in rat brain tissue. This paper examines the link 

between manganese neurotoxicity in the rat brain and common pathways to oxidative stress.

Keywords

Brain; Manganese; Neurotoxicity; Glutathione; Metallothionein; Glutamine synthetase; MMT

1. Introduction

1.1. Manganese neurotoxicity

Manganese is an essential nutrient and it is important for optimal cellular function. However, 

exceedingly high brain manganese concentrations are known to cause neurotoxicity (Cotzias 

et al., 1968). Manganese has been implicated in oxidative stress (Stokes et al., 2000; DeSole 

et al., 1997), as well as disturbance of neurotransmitter metabolism (Miele et al., 2000; 

Montes et al., 2001). Few reports exist on brain manganese concentrations upon manganese 

intoxication. The concentrations of manganese in human striatum and globus pallidus 

(primary target areas) are unknown. Cerebellar concentrations of manganese are available 

from Japanese accident victims, and at the time of autopsy they ranged between 9 and 10 
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μM (Sumino et al., 1975). However, these values are likely lower than those in the striatum 

and globus pallidus, both of which are known to accumulate more manganese than 

cerebellum. A study performed almost three decades ago examined manganese 

concentration in striatum and globus pallidus (two regions in the nonhuman primate known 

to accumulate manganese) of monkeys dosed for 3 months with manganese dioxide (Suzuki 

et al., 1975). Striatal manganese concentration reached 264 μM, while manganese 

concentration in globus pallidus peaked at 334 μM. In rats, manganese concentrations can 

reach up to 200 μM depending upon the brain region and dosing regiment (Ingersoll et al., 

1999; Lai et al., 1999; Roels et al., 1997). Thus, during manganese toxicity, it is possible for 

brain levels to exceed 350 μM. Manganese concentrations in various parts of the rat striatum 

have been reported to range from 4.4 to 18 μM, and in exposed rats, the levels of manganese 

in the striatum increase to 23–70 μM (Ingersoll et al., 1999; Lai et al., 1999; Roels et al., 

1997). Notably, these studies suggest that both in primates and rodents, homeostatic control 

of brain manganese concentrations is tight, because even in conditions of high exposures, 

levels of brain manganese increase only by several fold (3–4).

The manganese from MMT is in the form of several aerosolized salts when it is combusted. 

The most abundant species represented by manganese phosphate and manganese sulfate 

(Lynam et al., 1999; Zayed et al., 1999). Pharmacokinetic studies have shown that the salt 

characteristics will determine the rate of transport into the brain with the following rank 

order: MnCl2>MnSO4>MnPO4 (Drown et al., 1986; Dorman et al., 2001). Nonetheless, it is 

important to note that regardless of exposure, once absorbed and within biological media 

(e.g., blood, cerebrospinal fluid), manganese would be expected to bind to the same ligands 

and behave in an analogous pharmacokinetic fashion. Thus, the physical and chemical 

properties of these aerosolized salts will only govern their absorption and elimination 

properties, but overall the tissue distribution and their mechanisms of toxicity would be 

expected to be similar, yet on a differential temporal scale (e.g., attainment of toxic 

concentrations of manganese in target tissue would be reached faster for the more soluble 

manganese salts).

Manganese neurotoxicity (manganism) shares neurological symptoms with several clinical 

disorders commonly described as “extrapyramidal motor system dysfunction”, and in 

particular, Parkinson’s disease (PD) (Calne et al., 1994). Evidence for the involvement of 

oxidative stress in the etiology of PD exists, supported by the following observations: (1) 

Monoamine oxidase (MAO) activity, which catabolizes intraneuronal dopamine and yields 

hydrogen peroxide (H2O2), increases with age (Fahn and Cohen, 1992). (2) Pharmacological 

manipulations that enhance dopamine turnover cause an increase in oxidized glutathione 

(GSH), which can be suppressed by simultaneous treatment with the MAO inhibitors 

clorgyline and deprenyl, indicating that MAO activity is a source of oxidative stress (Cohen 

and Spina, 1989). (3) In postmortem studies of PD brains, the activity of glutathione 

peroxidase and the amounts of glutathione (GSH) in the substantia nigra are reduced 

(Riederer et al., 1989). (4) Oxidative stress is one of the proximate causes of 1-methyl-4-

phenyl-1,2,3,6-tetrahyrdopyridine (MPTP)-induced dopaminergic neuronal degeneration, 

and transgenic mice overexpressing copper/zinc superoxide dismutase are resistant to the 

neurotoxic action of MPTP (Przedborski et al., 1992).
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1.2. Oxidative stress

Oxidative stress has been implicated as a contributing mechanism by which manganese can 

be toxic to cells (Galvani et al., 1995; Aschner, 1997). A potential mechanism for 

manganese-induced oxidative stress is via the oxidation of dopamine and other 

catecholamines (Sloot et al., 1996). This is likely because in primates, manganese 

accumulates in dopamine-rich regions, especially in the basal ganglia (Newland, 1999). 

Another possibility is that sequestration of manganese in mitochondria interferes with proper 

respiration, thereby leading to excessive production of reactive oxygen species (ROS). Small 

initial amounts of oxygen can be self-propagating via damage to the electron transport chain 

in mitochondria. When proteins or quinones that participate in transfer of electrons are 

damaged, the chain begins to donate electrons directly to molecular oxygen, thereby creating 

the highly reactive superoxide radical. This leak of electrons to form superoxide is most 

commonly reported at complex I (Blake et al., 1997; Bautista et al., 2000).

Galvani et al. (1995) reported inhibition of complex I of the electron transport chain after 

treatment of PC12 cell cultures with MnCl2. Divalent manganese treatment in HeLa cells 

was shown to increase in the production of ROS (peroxides), and to induce manganese 

superoxide dismutase and catalase activities without an effect on the Cu,Zn-superoxide 

dismutase level (Oubrahim et al., 2001). Gavin et al. (1999) showed evidence suggesting that 

the ATPase complex is inhibited at very low levels of mitochondrial manganese, and that 

complex I is inhibited only at higher manganese concentrations. In agreement with the 

earlier suggestion of Tyree and Archibald and Tyree (1987) and the findings of Ali et al. 

(1995), Chen et al. (2001) demonstrated that trivalent manganese is more potent at inhibiting 

complex I, but the divalent form is the predominant species within cells and is largely bound 

to ATP. Nevertheless, manganese in any oxidation state will likely spontaneously give rise to 

infinitesimal amounts of trivalent manganese, and HaMai et al. (2001) demonstrated that 

even at trace amounts, trivalent manganese can cause formation of ROS. They also showed 

evidence that divalent manganese fails to induce oxidative effects. Finally, a recent report 

showed that exposure of dopaminergic cells to MMT resulted in rapid increases in ROS 

followed by mitochondrial-induced apoptosis (Anantharam et al., 2002). However, because 

combustion of MMT in cars yields various manganese salts, direct exposure of cells to 

MMT does not seem to represent a toxicologically relevant experimental model, and it is not 

germane to a discussion on the neurotoxicity of inorganic manganese.

Notably, other studies have failed to support ROS generation and oxidative stress as a result 

of exposure to manganese. Brenneman et al. (1999) examined the effect of orally [0, 25, or 

50 mg/kg/day of MnCl2 from postnatal day (PND) 1 to 49] administered manganese on 

brain function in developing CD rats. The high-dose manganese exposure was associated 

with increased spontaneous motor activity on PND 21 and ROS levels (8hydroxy-2′ -
deoxyguanosine) were elevated in cerebellum but not striatum, the latter representing the 

primary target site in primates. Additional studies showed that iron sulfate, copper sulfate, 

vanadyl sulfate, cobalt sulfate, nickel sulfate, and zinc sulfate generate ROS (formation of 

malondialdehyde) in aqueous extracts of National Institute of Standards and Technology 

(NIST) ambient particulate matter and diesel engine particles, but that manganese failed to 

do so (oral communication, Lynam). Furthermore, it has been shown that low concentrations 
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of divalent manganese protect cells against oxidative stress and that this protective effect 

derives from the fact that manganese can catalyze the dismutation of superoxide radical 

anions and H2O2 under physiological conditions (Oubrahim et al., 2001).

Astrocytes take up glutamate by a Na+-dependent mechanism (Hertz, 1979). In the presence 

of ammonia, glutamate is metabolized to glutamine by the astrocyte-specific enzyme 

glutamine synthetase (GS; Martinez-Hernandez et al., 1977), maintaining [glutamate]O at 

0.3 μM (Waniewski and Martin, 1986). This represents a 10,000-fold gradient vs. 

[glutamate]i (3 mM). This glutamate-glutamine pathway constitutes the source of a 

glutamate pool in brain (Berl et al., 1961). GS contains eight manganese ions per octamer, 

and accounts for approximately 80% of total manganese in brain. Unlike neurons, astrocytes 

have the ability to concentrate manganese at levels 50-fold higher than the culture media 

(Wedler et al., 1989; Aschner et al., 1992), providing a mechanism by which manganese 

concentrations in astrocytic cytosol could attain the range required for activation of GS. 

Recent studies in our laboratory (Erikson and Aschner, 2002; Erikson et al., 2002) and 

others (Hazell and Norenberg, 1997) have demonstrated that glutamate uptake is 

significantly attenuated in primary astrocyte cultures upon addition of manganese to the 

culture medium. Lafon-Cazal et al. (1993) showed that glutamate receptor (NMDA) 

stimulation produces significant elevations in both superoxide and hydroxyl radicals in 

cultured cerebellar granule cells. Interference with glutamate transporter function will lead 

to increased extracellular glutamate concentrations. Potential ROS generation as a 

consequence of manganese exposure will further oppose the removal of extracellular 

glutamate by inhibiting the high affinity glutamate transporters (Trotti et al., 1998). The 

cumulative sum of these events will trigger an amplifying cycle, potentially contributing to 

the dysfunction of astrocytes and their inability to maintain optimal control over the 

extracellular milieu, thereby indirectly leading to neuronal demise via NMDA receptor 

activation.

1.3. Biomarkers of oxidative stress

Oxidative stress can be measured by detection of different chemical species. 

Dichlorofluroescein (DCF) is useful for detecting oxygen radicals via a fluorescence-

producing reaction. Ali et al. (1995) demonstrated that manganese injected in vivo and 

exposure of brain regions to manganese in vitro both resulted in detection of RO5 by DCF 

fluorescence. A limitation of this method is that living cells are required for analysis. 

Measurement of products directly related to RO5 is also a practical method for assessing 

oxidative stress in tissue. Examples include the measurement of oxidative damage in DNA 

(comet assay), lipid [thiobarbituric acid reactive species (TBAR5)] and protein (glutathione 

peroxidase activity). However, inconsistency between methods has been problematic. 

Another approach for detection of oxidants is to measure the levels of antioxidants 

[glutathione (G5H) or metallothionein (MT)], as well as the abundance of proteins 

[glutamine synthetase (G5)] that are exquisitely sensitive to oxidative stress.

The tripeptide G5H (γ-glutamylcysteinylglycine) is a major antioxidant in mammalian cells 

constituting nearly 90% of the intracellular non-protein thiols (Anderson and Meister, 1983). 

It is important in maintaining the intracellular redox status of protein thiols, for protection 
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against endogenous and exogenous sources of oxidative stress, and for the conjugation and 

excretion of toxic molecules (Meister, 1988,1991).

The MTs, a class of cysteine-containing intracellular proteins, are highly conserved and are 

widely distributed throughout all cells in an organism. They are an important metal binding 

protein, with zinc serving as the primary regulator of MT metabolism in cells (Andrews, 

1990; Dunn et al., 1987; Hamer, 1986). Evidence suggests that MT acts as an antioxidant by 

neutralizing RO5 both systemically and in the brain. In situ hybridization studies showed 

that bacterial endotoxin induces MT gene expression (Itano et al., 1991). Oxidative stress, 

kainic acid, and 6-hydroxydopamine, a known dopaminergic toxin and RO5 generator, 

induced MT-I gene expression in the brain (Shiraga et al., 1993). Likewise, compounds (e.g., 

diquat) that generate free oxygen species via the redox cycling increase MT in tissue, along 

with compounds (e.g., 3-methylindole) that cause lipid peroxidation, and compounds (e.g., 

diamide and di-methyl maleate) that deplete cellular defense mechanisms (Bauman et al., 

1991).

Within the CN5, G5 is exclusively expressed in astrocytes (Martinez-Hernandez et al., 

1977). A manganese-dependent enzyme, G5 catalyzes the formation of glutamine from 

glutamate. This glutamine is taken up by neighboring glutamatergic or γ-aminobutyric acid 

(GABA-ergic) neurons and deamination back to glutamate occurs. This process is 

considered the primary glutamate-recycling pathway (Van den Berg and Garfinkel, 1971; 

Westergaard et al., 1995; Ottersen et al., 1992). Inhibition of G5 activity can have serious 

consequences on neuronal functioning (e.g., decreased glutamate and GABA levels and the 

inability to detoxify ammonia). Given its high susceptibility to oxidation, and subsequent 

rapid degradation, G5 serves as an excellent marker for the presence of RO5 in the brain 

(Stadtman, 1992).

2. Results and discussion

Given the above, two recent studies in our laboratory have examined the relationship 

between manganese exposure and oxidative stress in rat brain tissues. The first study 

employed oral administration of manganese chloride (MnCl2) (0, 25, and 50 mg/kg) to rat 

neonates throughout the lactational period (postnatal days, PND 0–21) (Dorman et al., 2000; 

Weber et al., 2002), and the second study investigated the effects of inhaled manganese 

sulfate (MnSO4) (0, 0.03, 0.3, 3.0 mg Mn/m3) for 6 h/day for 14 days on adult rats (PND 70) 

(Dorman et al., 2001; Dobson et al., 2003).

Due to differences in study protocols and design, and limitations in tissue availability the 

neonatal study was restricted to investigating oxidative stress biomarkers in the cortex and 

cerebellum (Weber et al., 2002). The inhalation study (adult rat) was broader and included 

the striatum, olfactory bulb, hypothalamus, hippocampus, and cerebellum (Dobson et al., 

2003). Accordingly, direct comparisons between the two studies are limited, and the 

discussion of the results is focused on the effects of manganese exposure on oxidative stress 

biomarkers only within the cerebellum.
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A 50 mg/kg oral manganese caused a significant increase in cerebellar manganese 

concentrations in neonatal rats (Dorman et al., 2000), and there was a slight, albeit not 

statistically significant, increase in cerebellar manganese concentration upon inhalation of 

3.0 mg Mn/m3 in adult rats (Dorman et al., 2001) (Fig. 1). Given differences in exposure 

paradigms (oral vs. inhaled) and differences in total administered doses, the two studies 

cannot be directly compared in terms of net brain manganese accumulation. Nevertheless, 

the magnitude of increased manganese brain concentrations is greater in the neonatal cohort, 

corroborating earlier observation that the developing brain takes up a significant proportion 

of the manganese retained by the body during the early neonatal period.

For example, Keen et al. (1986) have reported that approximately 8% of the total oral 

manganese dose is retained in the neonatal rat brain, exceeding the retention in the adult 

CNS. Known pharmacokinetic processes that may contribute to the increased tissue 

concentrations and susceptibility of neonatal animals to manganese-induced neurotoxicity 

include increased manganese absorption from the gastrointestinal tract, an incompletely 

formed blood-brain barrier, and the virtual absence of biliary manganese excretory 

mechanisms until weaning (Ballatori et al., 1987; Rehnberg et al., 1982; Miller et al., 1975). 

The relative higher net increase in brain manganese concentrations in the neonatal vs. adult 

brain (Fig. 1) should not necessarily be construed as evidence for heightened neurotoxicity 

in developing animals, given the known requirement for manganese for optimal CNS 

development in the neonate. Manganese concentration in the brain of developing rats is 

highest of all age groups, suggesting that manganese is required in a high amount during 

infancy, and that a sufficient manganese supply is critical for normal brain development 

(Takeda et al., 1999). The high uptake of manganese into the brain of neonatal rats reflects 

blood concentrations of manganese that are threefold higher than in adults (Dupont and 

Tanaka, 1985; Spencer, 1999).

Increased GS mRNA expression in the cerebellum of both PND 21 rats (high dose exposure) 

and PND 70 rats (low and high dose exposures) exposed to manganese was observed (Fig. 2) 

(Dobson et al., 2003; Weber et al., 2002). This increased GS mRNA expression at the high 

dose in the PND 21 rats correlated with increased cerebellar manganese concentration (Fig. 

1). There was no effect of manganese on cerebellar GS protein levels in either study (Fig. 3), 

nor was there any significant effect on total GSH levels in the cerebellum of manganese 

exposed rats (Fig. 4). Finally, manganese exposure in both studies did not significantly affect 

MT mRNA expression in the cerebellum (Fig. 5).

3. Conclusion

These studies demonstrate that both of these routes of exposure, oral and inhaled (neonatal 

and adult rats, respectively), led to minimal biochemical changes indicative of manganese-

induced oxidative stress in cerebellar tissues. The only ensuing change in response to 

manganese exposures was an increase GS mRNA (in both cohorts), but notably, GS protein 

levels were unchanged, suggesting that posttranslational process maintain adequate GS 

protein expression. Accordingly, in the cerebellum, manganese treatment does not appear to 

inflict functional damage that is correlated with the generation of oxidative stress.
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Fig. 1. 
Manganese (Mn) concentration in the cerebellum of developing (PND 21) and adult (PND 

70) rats: control (CN), low dose (Low), high dose (High). Data represent means ± S.E.M. 

High dose of manganese administered orally caused a significant increase (p < 0.05) in 

cerebellar manganese concentration. Statistical analysis was carried out by one-way analysis 

of variance followed by Newman-Keuls.
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Fig. 2. 
Glutamine synthetase (GS) mRNA levels in cerebellum of developing (PND 21) and adult 

(PND 70) rats: control (CN), low dose (Low), high dose (High). Data represent means ± 

S.E.M. expressed as percentage of control. There was a significant (p < 0.05) increase in GS 

mRNA levels in the cerebellum of rats exposed to manganese, both via the oral and inhaled 

routes. Statistical analysis was carried out by one-way analysis of variance followed by 

Newman-Keuls.
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Fig. 3. 
Glutamine synthetase (GS) protein levels in cerebellum of developing (PND 21) and adult 

(PND 70) rats: control (CN), low dose (Low), high dose (High). Data represent means ± 

S.E.M. expressed as percentage of control. There was no effect of manganese exposure on 

GS levels in the cerebellum of developing or adult rats. Statistical analysis was carried out 

by one-way analysis of variance followed by Newman-Keuls.
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Fig. 4. 
Glutathione (GSH) levels in cerebellum of developing (PND 21) and adult (PND 70) rats: 

control (CN), low dose (Low), high dose (High). Data represent means ± S.E.M. expressed 

as percentage of control. Although GSH levels increased in rats exposed to high manganese 

levels, it was not statistically significant. Statistical analysis was carried out by one-way 

analysis of variance followed by Newman-Keuls.
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Fig. 5. 
Metallothionein (MT) mRNA levels in the cerebellum of developing (PND 21) and adult 

(PND 70) rats: control (CN), low dose (Low), high dose (High). Data represent means + 

S.E.M. expressed as percentage of control. There was no effect of manganese exposure on 

MT mRNA expression in the cerebellum of developing or adult rats. Statistical analysis was 

carried out by one-way analysis of variance followed by Newman-Keuls.
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