Skip to main content
. 2020 May 11;11(5):532. doi: 10.3390/genes11050532
Algorithm 1. Sparsity penalized stacked denoising autoencoders for single cell RNA-seq data (scSDAE).
Input: normalized expression vector x=(x1,xn), network layer width vector dim=(n,d1,dk) with dk denoted the bottleneck layer width
Output: imputed expression vector ximputed
fori in {1,k} do
          if i==1 do
               corrupt x into x˜ with noise, build neural network NN1(nd1n): x=gω1(fω1(x˜)) and train NN1 to minimize LscSDAE(x, x); predict h1=fω1(x)
          else do
               corrupt hi1 into h˜i1 with noise, build neural network NNi(di1didi1): hi1=gωi(fωi(h˜i1)) and train NNi to minimize formula ||hi1hi1||2/di1
ifi<kdo
predict hi=fωi(hi1)
end for
build neural network NN: x=gω1gωk(fωkfω1(x)) and train NN to minimize LscSDAE(x, x)
predict xout=gω1gωk(fωkfω1(x))
calculate the mask vector m: mj=I(xj>0), j=1n  (I(·) is the indicator function.)
calculate the output ximputed=xout(1m)+xm ( denotes element-wise multiplication.)