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ABSTRACT: The reaction of sym-pentakis(4-aminothiophenyl)corannulene with 2-formyl-6-methylpyridine and Cu' or 2-formyl-
1,10-phenanthroline and M" (M = Co, Zn) yields an S;y-symmetric S-fold interlocked [2]catenane of two interpenetrating

[Cu'sL,]°* cages or Dg-symmetric [M"(L,]'*

cages, respectively. The new structures were characterized by X-ray crystallography,

NMR spectroscopy, and mass spectrometry. Density functional theory computations point to dispersive energies on par with
traditional covalent bond energies. Subcomponent exchange reactions favored formation of the [Co'L,]'"" cage over the
[Cu',oL,]'** catenane. The single cage and catenane each cocrystallized with a corannulene guest to form a bowl-in-bowl

substructure.

espite the intricate and challenging nature of interlocked

molecules, knots,' ravels,” and catenanes’ of manifold
forms have been structurally characterized, including inter-
locked cages of higher order.” A rational synthetic approach for
these systems is not yet available, but studies have begun to
assess structure—energy relationships for these complexes.” In
favorable situations, host—guest studies® have provided insight
into structure—energy correlations of molecular aggregation
phenomena more generally.” Dispersive interactions become
more important with increasing size and can rival covalent
bonding energies.”

The assembly of subcomponents around metal ion
templates’ yields thermodynamically stable aggregates that
may have complex topologies. Judicious choice of subcompo-
nent geometries results in high-symmetry Platonic or
Archimedean polyhedra”™ or even entwined higher-order
topological architectures such as links and knots.'” In this
context, corannulene, with S-fold symmetry, has been the focus
of dodecahedral “capsid” construction."” Herein, pentafold-
substituted corannulene subcomponents capable of generating
ligands for tetrahedral Cu' assembled into a surprisingly highly
entangled S-fold interlocked [2]catenane of exceedingly rare
Sio symmetry.'” These interlocked [2]catenanes expand the
class of interlocked cages from 3-fold"* and 4-fold"* to 5-fold
structures. A related assembly binding octahedral Zn" or Co!
provides a noninterlocked cognate of Dy symmetry.

Corannulene was chosen as a suitable S-fold-symmetric
scaffold' "' because of its potential for functionalization via a
variety of synthetic routes'® and its curved aromatic surface,
which may enhance the guest binding properties'” of
assemblies via aromatic stacking interactions.'® sym-Pentakis-
(4-aminothiophenyl)corannulene (subcomponent A, Figure 1)
was synthesized by nucleophilic aromatic substitution from
sym-pentachlorocorannulene and 4-aminothiophenol in 1,2-
dimethylimidazolone in the presence of sodium hydride
(Scheme S1).

The reaction of pentaaniline A (2 equiv) with 2-formyl-6-
methylpyridine (12 equiv) and tetrakis(acetonitrile)copper(I)
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tetrafluoroborate (Cu'(MeCN),BE,) (6 equiv)"’ in CD;CN at
room temperature gave product 1 (Figure 1a). The '"H NMR
spectrum of 1 was well-resolved but complex, consisting of two
magnetically distinct environments of equal intensity per ligand
proton (Figure 2a). All of the peaks between 2.26 and 9.31
ppm displayed a single diffusion constant in the diffusion-
ordered '"H NMR (DOSY) spectrum, suggesting that they
belonged to a single species.”

Crystals of 1 were grown through vapor diffusion of diethyl
ether into an acetonitrile solution, and the solid-state structure
of 1 was elucidated by single-crystal X-ray diffraction using
synchrotron radiation.”’ The crystal structure revealed a
[Cu',oL,]'** assembly consisting of a pair of S-fold interlocked
[Cu'sL,]** cages (Figure 1). The distances of 11.3—11.9 A
between neighboring metal centers create windows of
sufficient size to allow two [Cu'sL,]** cages to interlock to
form a [2]catenane. The two ligands within each [Cu'sL,]**
cage display the same handedness, resulting in idealized Dj
cage symmetry. The interlocking of each cage with its
enantiomer lends the complete [Cu'(L,]'"" assembly S,
point-group symmetry.

The two [CusL,]’* cages of the [2]catenane interlock
tightly, forming two bowl-in-bowl substructures with stacked
corannulenes'® separated by a distance of 3.69(1) A. Within a
single cage, the distance of 6.93(1) A between the mean planes
of the central pentagons of the corannulenes creates a cavity
that matches the form of the intercalated corannulene from the
other cage.

The solution NMR data for 1 in CD;CN are consistent with
the solid-state structure, wherein the exo and endo ligands give
rise to distinct magnetic environments (Figure 2a). The imine,
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Figure 1. (a) Synthesis of 1—3 and the conversion of 1 to 2 through subcomponent exchange. Side-on views of the crystal structures of 1 and 2 are
shown. (b) View down the S, axis of the crystal structure of 1. (c) View down the C; axis of the crystal structure of 2. In the images of 1, the
carbon atoms of the two interlocked [Cu'sL,]** cages are colored differently, and only one of the two crystallographically unique assemblies is
shown; in all cases hydrogen atoms, counterions, solvent molecules, and disorder have been omitted for clarity.

corannulene, and phenylene signals for the endo ligand are
shielded relative to those of the exo ligand. NOE cross-peaks
are observed between NMR signals of the two ligands (Figure
S8) in a manner consistent with the interlocked structure
observed in the solid state. ESI-MS results are also consistent
with the [Cu'}(L,]'"" composition (Figure 2b).

Density functional theory (DFT) computations of the
[Cu'\oL,])'"" catenane and the hypothetical [Cu'sL,]** cage
allowed an assessment of dispersion effects on their relative

energetics based on the crystal structure of 1 vs those on the
optimized geometry and of the effects of solvation. Neglecting
dispersion effects, the energetics of the catenation process in
the acetonitrile environment was calculated to be +42.0 kcal/
mol (B3LYP/6-31G(d,p)//B3LYP/6-31G(d,p):acetonitrile),
indicating that the complex is unbound. With fixed geometry,
the energetics including dispersion in the acetonitrile environ-
ment is —212 kcal/mol (B3LYP-D3/6-31G(d,p)//B3LYP/6-
31G(d,p):acetonitrile). Estimation of the effects of dispersion
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Figure 2. (a) "H NMR spectra (500 MHz, CD,CN, 298 K) of 1. Peak
assignments for the interior and exterior ligands are marked with bold
blue and italic red labels, respectively. (b) ESI-MS spectrum of 1. The
inset shows the theoretical and observed isotope patterns for the +5

peak.

on the geometry carried out by single-point analysis resulted in
a contribution of ~52 kcal/mol. This gives in total ~264 kcal/
mol for the catenation process including the effects of
dispersion in an acetonitrile environment. Full optimization
of the complex including dispersion in the acetonitrile
environment (B3LYP-D3/6-31G(d,p):acetonitrile) resulted
in a complexation energy of 272.2 kcal/mol, a difference of
<8 kcal/mol from the estimated value. This substantial energy
contribution for the catenation process is consistent with the
large surface area of the corannulene moieties giving rise to
substantial van der Waals interactions. Tight packing and the
large contact area between ligands within 1 play a central role
in driving the selective assembly of this structure.'***

Tridentate donor sites formed from imine condensation with
2-formyl-1,10-phenanthroline, suitable for the octahedral
coordination of Co" and Zn'",** enabled investigation of
whether octahedral metal centers also give catenanes
incorporating A. The reaction of A (2 equiv) with 2-formyl-
1,10-phenanthroline (10 equiv) and cobalt(II) bis-
(trifluoromethanesulfonyl)imide (Co(NTf,),-SH,0) (S
equiv) in CD;CN at 353 K yielded 2. The 'H NMR spectrum
reveals a single resonance for each symmetry-equivalent
proton, with the signals spread over the range —65.9 to
+259.4 ppm as a result of the paramagnetism of Co™.** The
ESI-MS spectra are consistent with the formula [Co'(L,]'**
(Figures S14 and S17).

Crystals of 2 (cocrystallized with coronene) were obtained
through vapor diffusion of diisopropyl ether into an acetonitrile
solution of the BF,™ salt containing excess coronene.”” Single-
crystal X-ray measurements revealed non-interlocked
[Co"L,]'** cages composed of two 5-fold-symmetric ligands
of the same handedness bridging five octahedral Co" centers
(Figure 1). Both enantiomers of the Dg-symmetric cage are

present in the unit cell, related by inversion. The hub pentagon
mean planes of the two corannulene moieties sit at a distance
of 3.18(1) A from each other, closer than the 3.2—3.3 A of
graphite planes. The corannulenes in 2 are also flattened
compared with those in 1, with an average bowl depth® of
0.84(3) A versus 0.95(3) and 0.91(1) A for the exo and endo
corannulenes in 1. Significant distortion from regular
octahedral geometry around the metal centers is also observed,
with angles of 81—84° between the Co"Nj chelate planes,
compared with angles of 84—90° between the Cu'N, chelate
planes in 1, which displayed a more regular tetrahedral
geometry.

Similarly, the reaction of A (2 equiv) with 2-formyl-1,10-
phenanthroline (10 equiv) and zinc(Il) bis-
(trifluoromethanesulfonyl)imide (Zn(NTf,),) (5 equiv) in
CD;,CN at 353 K yielded [Zn";L,]'** assembly 3, as confirmed
by ESI-MS. The 'H NMR spectrum also displays a single set of
resonances for each ligand proton environment. Crystals were
obtained by diffusion of diethyl ether into an acetonitrile
solution of 3 containing CsCB; H,,. Single-crystal X-ray
analysis of 3 confirmed it to be isostructural with 2, although
the weakly diffracting nature of the crystals precluded detailed
analysis of the structural parameters (Figures S52 and SS3).

The relative stabilities of 1 and 2 were probed via
subcomponent exchange reactions.”® A mixture of Co(BF,),
6H,0 (10.2 equiv per assembly) and 2-formyl-1,10-phenan-
throline (20 equiv per assembly) was added to a solution of 1
in CD;CN, and the mixture was stirred at 333 K for 24 h and
then at 353 K for 72 h. 'H NMR spectra of the reaction
mixture showed the disappearance of the diamagnetic signals
of 1 followed by the appearance of the paramagnetically shifted
signals of 2. ESI-MS analysis of the resulting mixture indicated
the formation of 2 as the major product in solution, indicating
its greater stability relative to 1. We infer that the formation of
2 is enthalpically favored as a consequence of the stronger
coordination bonds of the tridentate ligand arms with Co" in 2
relative to the bidentate ligand arms with Cu' in 1 and also
entropically favored because one molecule of 1 is converted
into two molecules of 2.

The potential for guests to intercalate®” within diamagnetic
assemblies 1 and 3 or for guests to induce an assembly to
rearrange into a suitable host’® was investigated through the
addition of the prospective guests shown in Figure S33. The
assemblies were initially investigated as hosts for corannulene,
inspired both by the interlocked cage structure of 1 and the
observation of corannulene encapsulation inside other
polyaromatic hosts” and electron-deficient macrocycles.”
Addition of corannulene (10 equiv) to CD;CN solutions of
1 or 3 led to shifts in the signals of the '"H NMR spectra of
both the host and guest, consistent with fast-exchange
complexation on the "H NMR time scale (Figures S34 and
§35).

The host—guest complexes of 1 and 2 with corannulene
were also characterized in the solid state through single-crystal
X-ray diffraction. Crystals of (corannulene),-1 were obtained
from vapor diffusion of diethyl ether into an acetonitrile
solution of 1 saturated with corannulene. The structure reveals
two corannulene molecules stacked on the externally facing
corannulene moieties of 1 at a distance of 3.71(2) A (Figure
3a).

Crystals of corannulene-2 were obtained from vapor
diffusion of diethyl ether into an acetonitrile solution of the
triflimide salt of 2 saturated with corannulene and containing
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Figure 3. Side views of the cationic parts of the crystal structures of
(a) (corannulene),-1 and (b) corannulene-2. Counterions, solvent
molecules, and disorder have been omitted for clarity, and the carbon
atoms of the stacked corannulenes are colored red.

excess tetrabutylammonium perrhenate to aid crystallization.
In this case only a single corannulene was observed to stack
with one of the corannulene moieties of 2, with a refined
occupancy of ca. 0.6 and a distance of 3.57(4) A between the
stacked rings (Figure 3b). The close packing of corannulene on
the exterior of 2 in the structure of corannulene-2 contrasts
with that observed in the cocrystal of 2 with coronene (Figures
S46 and S47), where the cocrystallized coronene molecules
intercalate between ligand arms but do not show any specific
stacking interactions with the [Co"L,]"** cation.

The binding mode observed in the solid state is consistent
with the solution NMR data, with the largest shifts in host
proton signals observed for the exo-corannulene protons of 1,
consistent with corannulene undergoing stacking interactions
with the exterior of the cage.”” No interactions were observed
between 1 or 3 and Zplanar polycyclic aromatic hydrocarbons,”'
CB,,H,,” anions,”” or spherical Cg, despite the known
tendency for fullerenes to interact with corannulenes'’ and
corannulene-based hosts.'****

In summary, a 5-fold interlocked [Cu',,L,]'* [2]catenane,
representing a new structure type, has been prepared from Cu'
and corannulene-based subcomponent A. A DFT study
revealed the dominant role of aromatic stacking interactions
in driving the formation of the interlocked structure, which is a
common feature'** of other interlocked cage systems. This
study demonstrates the power of van der Waals interactions

together with coordination-driven assembly to generate new
types of highly complex structures.
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