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Abstract

Target fishing is the process of identifying the protein target of a bioactive small molecule. To do 

so experimentally requires a significant investment of time and resources, which can be expedited 

with a reliable computational target fishing model. The development of computational target 

fishing models using machine learning has become very popular over the last several years due to 

the increased availability of large amounts of public bioactivity data. Unfortunately, the 

applicability and performance of such models for natural products has not yet been reported. This 

is in part due to the relative lack of bioactivity data available for natural products compared to 

synthetic compounds. Moreover, the databases commonly used to train such models do not 

annotate which compounds are natural products, which makes the collection of a benchmarking 

set difficult. To address this knowledge gap, a dataset comprised of natural product structures and 

their associated protein targets was generated by cross-referencing 20 publicly available natural 

product databases with the bioactivity database ChEMBL. This dataset contains 5,589 compound-

target pairs for 1,943 unique compounds and 1,023 unique targets. A synthetic dataset comprised 

of 107,190 compound-target pairs for 88,728 unique compounds and 1,907 unique targets was 

used to train k-nearest neighbors, random forest, and multi-layer perceptron models. The 

predictive performance of each model was assessed by stratified 10-fold cross-validation and 

benchmarking on the newly collected natural product dataset. Strong performance was observed 

for each model during cross-validation with area under the receiver operating characteristic 

(AUROC) scores ranging from 0.94 to 0.99 and Boltzmann-enhanced discrimination of receiver 

operating characteristic (BEDROC) scores from 0.89 to 0.94. When tested on the natural product 
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dataset, performance dramatically decreased with AUROC scores ranging from 0.70 to 0.85 and 

BEDROC scores from 0.43 to 0.59. However, the implementation of a model stacking approach, 

which uses logistic regression as a meta-classifier to combine model predictions, dramatically 

improved the ability to correctly predict the protein targets of natural products and increased the 

AUROC score to 0.94 and BEDROC score to 0.73. This stacked model was deployed as a web 

application, called STarFish, and has been made available for use to aid in the target identification 

of natural products.

Graphical Abstract

INTRODUCTION:

Experimental approaches for identifying small molecule hits in a drug discovery project 

typically include target-based screening or phenotypic screening. Target-based approaches 

involve selecting a protein target believed to be relevant to the disease state of interest and 

then measuring, directly or indirectly, a compound’s ability to bind the target. Phenotypic 

approaches are target agnostic and instead measure a compound’s effect on a biologically 

relevant system, such as cell cytotoxicity or tumor growth inhibition.1 Both approaches are 

widely used in drug discovery and development. While traditionally viewed as opposing 

alternatives, target-based and phenotypic assays can also be complementary approaches.2 An 

important limitation of the phenotypic approach is the inherent lack of understanding of the 

target and molecular mechanism of action. While a known target and molecular mechanism 

of action are not required to progress a new chemical entity to the clinic, it is considered a 

significant risk factor by most large pharmaceutical companies for the clinical development 

and regulatory approval process.2 Due to the importance of target identification, both 

experimental and computational target fishing methods have been developed.

The process of experimental target fishing requires a significant investment of time and 

resources. One method commonly used to directly identify the target protein of a small 

molecule is biochemical affinity purification. This process involves immobilization of a 

compound on a column, exposure to cell extracts, stringent washing to remove non-specific 

binding, proteomic profiling to determine the identity of bound proteins, and ultimately a 

confirmatory binding assay.3 While this process has been very successful, it is not without 

limitations.4 For example, it requires the bioactive small molecule to be modified in order to 

be immobilized on the column. Points of modification can be difficult to determine as they 

require a synthetic handle in a region where a bulky linker can be attached without 
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interfering with target binding. Overall, experimental target fishing requires a great deal of 

biological and synthetic expertise and effort.

In an effort to aid and accelerate the target identification process, a variety of computational 

target fishing methods have been developed. Computational target fishing methods generally 

fit into one of three broad categories: ligand-based, structure-based, or network-based. A 

recent review by Sydow et al. gives a good overview on the specifics and current methods 

applied for each category.5 Ligand-based methods rely on the assumption that proteins will 

bind similar small molecules. A simple ligand-based target fishing approach typically 

involves computing Tanimoto similarities between a compound of interest and compounds 

with known targets in a bioactivity database. The protein targets of compounds with high 

similarity to a query compound are then predicted as potential protein targets. An early and 

successful ligand-based target fishing method, similarity ensemble approach (SEA), builds 

upon this approach by comparing a query molecule’s similarity to a group of compounds of 

a potential target and assessing the statistical significance of the resulting similarity score.6 

The growing amount of publicly available bioactivity data in databases such as ChEMBL 

and PubChem has made the application of machine learning methods to computational target 

fishing popular.7,8 Methods such as Random Forest (RF), Support Vector Machines (SVM), 

and Naive Bayes (NB) have long been used in this regard, but deep learning methods have 

recently garnered significant attention due to their impressive performance.9-13 The majority 

of the data that these models were trained with is synthetic compound bioactivity data and 

despite the impressive performance observed for these machine learning target fishing 

models, there is little known about how they might perform when applied to natural 

products.

Natural products have been a tremendous source of new drugs over the past three decades. 

Unaltered natural products and natural product derivatives comprise over one-third of the 

FDA approved small molecule drugs.14 Taken even more broadly with the inclusion of 

“natural product mimics”, natural products account for or have inspired in some way up to 

60% of all of these approved drugs. Historically, natural products have made up a substantial 

portion of first-in-class drugs identified through phenotypic methods.15 Therefore, the 

process of target identification is very important for natural products, but this area is 

currently underexplored. An example of applying a computational target fishing model to 

natural products is the self - organizing map–based prediction of drug equivalence 

relationships (SPiDER)16, which has been successfully used to identify the targets of several 

natural products, such as archazolid A.17,18 SPiDER is a ligand-based target-fishing method 

that was trained and validated on a set of 12,661 compounds and considers 251 biomolecular 

targets. The prospective use of SPiDER for natural product target identification is 

encouraging, but its performance was not comprehensively assessed on a dataset of natural 

products. In 2017, Fang et al. used a network-based target fishing approach for natural 

product target prediction. A balanced substructure-drug-target network-based inference 

(bSDTNBI) model was trained and tested on 2,388 unique natural products and 751 targets.
19 However, the majority of available binding data is for synthetic compounds and almost all 

target fishing models are trained using synthetic data. A study by Keum et al. in 2016 

developed a target fishing model using the bipartite local model method and support vector 

machines (SVM) trained on 3,612 compounds and 831 targets.20 The trained model was 
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used to predict the targets of 6,320 natural product compounds. Unfortunately, the protein 

targets for these natural products were unknown. Model predictions were examined on the 

basis of whether a predicted target was implicated in the disease state for which a given 

herb, containing the natural product, was associated. Ultimately, how well a model trained 

on synthetic data can predict targets for natural products remains unknown.

To address this, a stacked ensemble target fishing (STarFish) approach has been developed 

and was benchmarked on a newly collected natural product set that considers the largest 

number of protein targets for a natural product dataset so far. Model stacking is a popular 

and successful approach in Kaggle competitions and has also been recently applied to other 

areas of cheminformatics.21-24 This model stacking approach expands upon the idea that the 

combination of model predictions can produce better predictions than individual models 

alone. In this study, different combinations of stacked classifiers are trained on a large 

synthetic data training set comprised of 107,190 compound-target pairs for 88,728 unique 

compounds and 1,907 unique targets. The trained stacked classifiers are subsequently 

evaluated through cross-validation on the synthetic compound dataset and through 

benchmarking on the newly collected natural product dataset comprised of 5,589 

compounds-target pairs for 1,943 unique compounds and 1,023 unique targets. Furthermore, 

a multi-label classification approach is taken. Historically, computational target-fishing 

models have been trained under the assumption that a single molecule binds a single protein, 

but in recent years more emphasis has been placed on the consideration of 

polypharmacology during training.25 Therefore, the individual models which comprise the 

stacked model are trained on a multi-label classification problem to account for this 

polypharmacology. Overall, STarFish considers small molecule binding to 1,907 targets and 

its performance on natural products target prediction is explicitly considered. The datasets, 

source code, and API are freely available for download and use at: https://github.com/

ntcockroft/STarFish.

METHODS:

Dataset

Natural product compound records were extracted from the following freely accessible 

datasets/databases: AfroCancer26, AfroDb27, AfroMalaria28, AnalytiCon29, Carotenoids30, 

ConMedNP31, InterBioScreen(IBS) natural product collection32, Mitishamba33, 

NANPDB34, Natural Product Atlas35, NPACT36, NPASS37, NuBBE38, p-ANAPL39, 

SANCDB40, Super Natural II41, TCM42, TlPdb43, UNPD44, and ZINC natural product 

subset45. The compounds from each database were retrieved in various chemical formats and 

were ultimately converted to simplified molecular-input line-entry system (SMILES) strings 

if not provided. All of the provided or generated SMILES strings were cleaned and 

standardized using MolVS.46 The resulting combined set contained 438,258 unique natural 

products in total. Since the majority of the natural product databases listed do not have 

bioactivity annotations, the compound set was cross-referenced with the ChEMBL database 

(version 23) 7 to identify natural product compounds with known protein targets.

The ChEMBL database was queried to retrieve compound activity records which had 

reported activities (IC50, Ki, Kd, EC50) of 1 μM or better in assays with a confidence score 
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of 9 and had a known target with a corresponding UniProt ID. A confidence score of 9 was 

selected so that only assay data that resulted in a single protein target being assigned with a 

high degree of confidence were used. This query yielded a dataset of 485,813 compound-

target activity pairs with many redundant activity pairs. The SMILES strings in this dataset 

were cleaned and the natural product dataset was standardized using MolVS. Following 

standardization, the ChEMBL dataset was used to determine protein targets for the natural 

product dataset by identifying InChIKeys or SMILES that were present in both datasets. 

After this comparison, any redundant compound- target pairs were removed, which yielded 

two datasets: a “synthetic” set consisting of 395,590 unique compound-target pairs and a 

natural product set consisting of 6,339 unique compound-target pairs.

The synthetic set was pruned further prior to model training. Only compound-target pairs 

containing targets with at least 10 compounds were kept. Furthermore, the number of 

compounds per target class was capped at 100 through random sampling to limit the 

imbalance between protein target classes. This pruning resulted in 107,190 compound-target 

pairs for 88,728 unique compounds and 1,907 unique targets. A breakdown of the target 

protein classes present in these 1,907 unique targets is shown in Figure 1. For the natural 

product dataset, compound-target pairs that contained protein targets in common with the 

pruned synthetic set (Figure SI) were retained resulting in 5,589 compound-target pairs for 

1,943 unique compounds and 1,023 unique targets. The size of the collected natural product 

dataset relative to the number of targets considered was insufficient to be used for both 

model training and validation on its own. Therefore, the synthetic set was used for model 

training and cross-validation while the natural product set was used to benchmark model 

performance on a more realistic and difficult test case.

All compound-target activity pairs were converted to a multi-label format. For each 

compound record, a binary label vector was constructed that annotated the protein targets to 

which these compounds are known to bind. On average, compounds in the synthetic 

compound dataset have 1.2 annotated protein targets per compound and compounds in the 

natural product dataset have 2.9 annotated protein targets per compound. Therefore, while 

1,907 possible target associations are considered for each compound, these associations have 

not all been tested experimentally and most are unknown. It was assumed that for these 

unknown cases that the compound did not bind to the protein and this unknown data was 

treated as negative data. According to a recent estimate of drug polypharmacology, drugs 

have on average 11.5 targets below 10 μM.47 Applying this estimate to the unknown small 

molecule compound-target associations implies a negative label would be correct for 99% of 

the labels. However, it is likely that many compound records will be assigned a negative 

protein target label for a protein that they actually interact with. This will influence training 

as strong classifier predictions for such labels would be penalized. Additionally, during 

performance evaluation such labels are considered false positives and negatively impact 

performance when ranked highly. While the assumption of negative labels for unknown 

compound-protein target records is reasonable, there are indeed drawbacks.

The use of a multi-label format does not fully capture the ways in which compounds can 

interact with protein targets. While a set of ligands may all be reported to bind to a common 

protein, the compounds may bind at different sites or have different effects on the protein. 
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For example, one compound may bind to a catalytic site on the protein while another binds 

to an allosteric site. Additionally, two compounds may bind to the same site on the protein, 

but one may be an agonist while the other an antagonist. Currently, there is not sufficient 

data regarding these potential binding differences for the 1,907 targets considered and so in 

the multi-label format described here, these pharmacological differences are ignored and all 

compound-protein interactions are treated as equivalent. Therefore, a classifier trained using 

ligands that bind to the catalytic site would be expected to perform poorly when used to 

predict the target of compounds which bind to the allosteric site of the same protein.

Compound Descriptors

RDKit was used to generate molecular fingerprints for each compound.48 Molecular 

fingerprints are bit vector representations of a compound. A kernel is applied to a molecule 

to extract chemical features, hash them, and set bits based on the hash. If two compounds 

contain the same functional group they will both set a bit for that functional group. However, 

more than one functional group can set the same bit resulting in collisions. Increasing the 

number of bits used to represent molecules reduces collisions, but increases the 

computational cost of working with the fingerprint. The SMILES string for each compound 

was converted to a 2048 bit Morgan Functional-Class Fingerprint (FCFP) using a radius of 

2. FCFP was selected over Extended-connectivity fingerprints (ECFP) to generate a more 

abstract and pharmacophoric representation of each compound.49

Machine Learning Models

All models were built using Scikit-Learn 0.19.1 in Python 3.6.5.50 Since compounds can 

bind to more than one target protein, compound-target identification was formulated as a 

multi-label classification problem. Different classification models handle multi-label 

classification problems differently and therefore how each handles multi-label problems is 

addressed specifically for each classifier. Additionally, each classifier was asked to predict 

label probabilities instead of assigning labels directly.

k-Nearest Neighbors—The k-nearest neighbors (KNN) algorithm is a type of instance-

based learning and computes the distance between the query point and the training instances 

to determine the closest k points. The KNN classification scheme is easily applied to a 

multi-label format. In a multi-label case, the query point is assigned the class labels of the 

closest k points with the probability of each label corresponding to the simple average of 

label counts over k points. These probabilities can also be weighted by the distance of each 

training instance to the query point. The KNN model used herein was trained using 10 

neighbors, brute force distance calculations with the Jaccard metric, and uniform weights.

Multi-layer Perceptron—A multi-layer perceptron (MLP) is class of feedforward 

artificial neural networks that consists of at least three layers: an input layer, a hidden layer, 

and an output layer. Each layer consists of a set of neurons. In the input layer, the number of 

neurons is set to the number of features for a record in the training data. In the case of the 

2048 bit Morgan fingerprint, the number of neurons in the input layer is 2048; one neuron 

for each bit. When used for classification, the number of neurons in the output layer 

corresponds to the number of class labels, in this case one neuron per protein target, and is 
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inherently applicable to multi-label problems. The MLP classifier used herein consists of a 

single hidden layer with 1000 neurons and ReLU activation function. A stochastic gradient-

based optimizer referred to as “Adam” was the solver used for weight optimization with an 

initial learning rate of 0.001, an exponential decay rate of 0.9 and 0.999 for the first and 

second moment vectors respectively, and the constant for numerical stability set to 1e-8. The 

maximum number of iterations was set to 200 with a convergence tolerance of 1e-4 after 2 

consecutive iterations.

Random Forest—Random forests are an ensemble of decision trees that can be used for 

either classification or regression. While inherently applicable to multi-label problems, there 

are technical limitations, such as memory consumption, when training with a large amount 

of high-dimensional data and trying to predict a large number of class labels. To circumvent 

this issue, the multi-label problem was re-cast as many individual binary classification 

problems. In the multi-label learning literature, this strategy is referred to as one-vs-the-rest 

or binary relevance. Therefore, a random forest model was trained for each label and to 

predict whether that label should be assigned or not. A total of 1,907 random forest models 

were trained, one for each protein target, using 1,000 trees and 45 features were considered 

when looking for the best split.

Logistic Regression—Despite the name, logistic regression is used for classification and 

can be applied to binary, multinomial, and ordinal classification problems. Logistic 

regression is a linear method, however, the output of the linear combination of features is 

bounded between 0 and 1 by using a logistic function. To apply logistic regression to a 

multi-label classification problem, the one-vs-the-rest strategy described above must also be 

applied here. Logistic regression models were trained using the “liblinear” solver and L2 

regularization. A total of 1,907 logistic regression models were trained, one for each protein 

target, with C=1.0.

Model Stacking—Model stacking, also referred to as stacked generalization or meta 

ensembling, is a method which combines information from base models to generate a new 

model. A stacking approach takes advantage of the fact that individual models may have 

different strengths in label prediction compared to others and attempts to improve prediction 

through their combination. During stacking, the input features, in this case the level 0 data, 

is passed to all individual base models, the level 0 classifiers, which yield predicted 

probabilities for each individual label. These predicted label probabilities, the level 1 data, 

are then used as the input features for the next model, the level 1 classifiers. Although this 

process can continually be repeated, only two levels were used for the stacked model 

described here as shown in Figure 2.

Model Tuning, Training, and Validation

The synthetic dataset was used for model tuning, training, and testing whereas the natural 

product set was used as an external test set. A stratified 10-fold cross-validation was 

performed on the synthetic dataset resulting in 10 folds of 90/10 split training/testing sets. 

The stratification process guaranteed that examples for each label were present in both the 

training and test cross-validation datasets. Parameters for k-nearest neighbors, random 
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forest, and multi-layer perceptron models were tuned using the training sets for each fold. A 

stratified random split was used to further subdivide the training data portion of each cross-

validation fold into 90/10 training/test sets for tuning. Parameters were chosen based on 

performance on the test tuning set (Tables S1-S3) and were then used to train all subsequent 

models. Following evaluation by cross-validation, the entire synthetic set was used to train 

models which were evaluated on the natural product dataset.

Models were trained and tested using High Performance Computing resources from the 

Ohio Supercomputer Center.51 Cross-validation and model combination calculations were 

run in parallel on the Owens cluster dense compute nodes (Dell PowerEdge C6320 two-

socket servers with Intel Xeon E5-2680 v4 Broadwell, 14 cores, 2.40GHz processors, 

128GB memory).

Evaluation Metrics

Area Under Receiver Operating Characteristic Curve (AUROC)—A common 

metric used to assess the performance of a classifier is the receiver operating characteristic 

(ROC) curve. Classifier predicted class probabilities, confidence values, or binary decisions 

are compared to the known labels. The fraction of true positives correctly recovered, the true 

positive rate, is plotted against the fraction of true negatives that were incorrectly identified 

as positive, the false positive rate. The true positive and false positive rates vary with the 

threshold used to split records by their probability or confidence scores into the positive and 

negative classes. Therefore, the true positive and false positive rates are plotted at various 

thresholds. The ROC curve can be summarized by a single value by calculating the area 

under the ROC curve. An AUROC score is represented by a value between 0 and 1, where a 

score of 1 denotes perfect classification, a score of 0.5 denotes random classification, and a 

score of 0 denotes completely incorrect classification. In general, the AUROC value can be 

interpreted as the probability of an active being ranked before an inactive. The AUROC 

score is designed for binary classification problems, but can be easily extended to multi-

label classification problems by averaging over the labels. This averaging can be done 

through either micro- or macroaveraging. In micro-averaging, each record-label pair 

contributes equally to the overall score and essentially treats all labels as a single combined 

binary classification problem. In macro-averaging, the binary AUROC is calculated for each 

label and then averaged. Therefore, each label contributes equally regardless of the number 

of records contained.

Boltzmann-Enhanced Discrimination of Receiver Operating Characteristic 
(BEDROC)—While the AUROC score is a widely used and intuitive metric, it is not 

sensitive to early recognition. Early recognition is particularly important for target fishing 

problems as it is only feasible to run confirmatory experimental tests for a relatively small 

number of protein targets. In 2007, Truchon and Bayly proposed a metric called the 

Boltzmann-enhanced discrimination of receiver operating characteristic (BEDROC) to 

address this early recognition problem and has become a popular metric for assessing virtual 

screening performance.52 Similar to AUROC scores, a BEDROC score is between 0 and 1 

and it has a probabilistic interpretation. However, while AUROC relates to a uniform 

distribution, BEDROC relates to an exponential distribution. These distributions can be 
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considered as reference ranked lists. When a trained classifier makes predictions for a 

protein target label, it ultimately produces a sorted list of compounds ranked by the 

classifier’s confidence in a compound binding to the protein target. The AUROC or 

BEDROC score that this classifier sorted list receives is the probability that a known active 

compound randomly selected from the classifier sorted list would be ranked higher than an 

“active” compound randomly selected from the reference list. For the AUROC score, this 

reference list is random and contains “active” and “inactive” compounds uniformly 

distributed throughout the list. For the BEDROC score, this reference list contains a large 

portion of “active” compounds at the beginning of the list. When calculating the BEDROC 

score a parameter α is required which controls how highly “active” compounds are ranked in 

the reference list. For BEDROC scores to be comparable, they must use the same α value. 

The commonly used value is α=20 and was also used here. This α value indicates that 80% 

of actives are present in the first 8% of the list.

Fraction of Compounds with a True Target in the Top 10 Predictions—Because 

target fishing is concerned with the identification of a protein target for a given compound 

record, the fraction of compounds for which at least a single true target was identified in the 

top 10 of the ranked list was calculated. As with the BEDROC score, this score is concerned 

with early retrieval, however, an arbitrary cutoff of 10 predictions is used and differences in 

classifier performance after this cutoff will be missed. For example, a correct prediction at 

rank 11 is no better than a correct prediction at rank 1000 according to this metric since only 

correct predictions from ranks 1-10 are rewarded. Additionally this differs from the other 

metrics described as both AUROC and BEDROC scores were calculated from the target 

protein label perspective while this is calculated from the compound perspective. A cutoff of 

10 targets was selected as a being a feasible number of protein targets that could be 

screened. This score is relatively harsh as it requires a classifier to have placed a correct 

target for a compound in the top 0.5% of the list in order to be rewarded, but gives an 

indication for the practical utility of a model for target fishing.

Coverage Error—The coverage error is a metric that is also calculated from the 

compound record perspective and determines on average how far down the classifier sorted 

list one would need to look in order to recover all true labels. The best possible value for this 

metric is the average number of labels for each compound record.

RESULTS AND DISCUSSION:

Natural Product Databases

There are many natural product databases or datasets that are published and available online. 

These databases range in size from a few hundred compounds to hundreds of thousands of 

compounds. A review from 2017 by Chen, Kops and Kirchmair gives a good overview of 

both virtual and physical natural product compound libraries.53 Many databases have a 

particular bioactivity focus, such as anticancer or antimalarial activities, and a focus on the 

geographical region from which the natural products were obtained. The smaller databases 

tend to have a narrow focus while the large databases attempt to aggregate and organize all 

known natural products, leading to significant overlap. The size and overlap of the natural 
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product databases is shown in Figure 3. Prior to comparison, SMILES strings were 

standardized for each database and only unique compounds were retained, which accounts 

for any discrepancies between the number of compounds shown here and the published 

database sizes. No single database contains all of the 438,258 unique natural products that 

were collected. The Super Natural II database is the largest and contains 52.7% of the 

collected natural products. The top 5 largest databases, which include Super Natural II, 

Universal Natural Product Database (UNPD), ZINC Natural Products Subset, 

InterBioScreen (IBS) Natural Compounds, and Traditional Chinese Medicine (TCM) 

Database@Taiwan comprise 86.4% of the collected natural products.

Synthetic Cross-Validation

Prior to benchmarking on the collected natural product data, models were trained and 

evaluated with the synthetic dataset using stratified 10-fold cross-validation. Overall, all 

trained models performed extremely well (Figure 4). Without stacking micro-averaged 

AUROC values ranged from 0.94 to 0.99, micro-averaged BEDROC values ranged from 

0.89 to 0.94, and 89% to 92% of compounds had a true target identified in the top 10 

predictions. In general, performance slightly improved when stacked. With stacking micro-

averaged AUROC values ranged from 0.97 to 0.99, micro-averaged BEDROC values ranged 

from 0.89 to 0.97, and 85% to 95% of compounds had a true target identified in the top 10 

predictions. Coverage error showed more distinct differences between different models and 

how stacking impacted performance. Without stacking coverage error ranged from 187 to 29 

labels. Unlike the other described metrics, a lower value is better for coverage error as it 

represents the average number of labels that need to be considered to recover all of the true 

labels. With stacking this generally improved to 55 to 14 labels. The only machine learning 

model that did not benefit from stacking was the multilayer-perceptron (MLP). For each 

metric, the unstacked MLP performs better than the stacked MLP. The performance 

degradation is likely due to overfitting.

While the performance measured for cross-validation is exemplary, it is undoubtedly an 

overly optimistic estimate of model performance for a prospective application. When using a 

random split cross-validation approach there is often redundancies between compounds 

present in the training and test folds. Therefore, predictions may suffer from compound 

series bias when predictions are made on compounds that share a scaffold with those that the 

model was trained on. The prediction of the correct target for a compound that is nearly 

identical to the training compounds is a very easy problem. Methods such as temporal split 

validation or clustering techniques can be used to generate more dissimilar training and 

testing splits to offer more realistic performance estimates.5,54,55 However, doing so requires 

removing activity data points and ultimately reducing the number of targets that can be 

considered. Consideration of a large number of targets is important to the utility of a 

computational target fishing method, because the method can only predict for targets it has 

been trained on. Despite the limitations of random splitting, other splitting techniques were 

not used in order to include as many target protein labels as possible.

Assessment on the natural product benchmark is expected to give a less optimistic and more 

realistic performance estimate. To demonstrate the difference between synthetic and natural 
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product compounds, similarities between cross-validation training and test sets, in addition 

to natural product compounds, were assessed. For each protein target label, pairwise 

Tanimoto similarities were calculated between the training compounds themselves, training 

compounds with test compounds, and training compounds with the natural product 

benchmark compounds (Figures S2-S4). The cumulative density function (CDF) plotted for 

each pairwise similarity distribution is shown in Figure 5. The CDFs for the synthetic 

training and test sets are nearly identical. Overall, the test compounds are very similar to the 

training compounds and thus the good model performance observed is expected. On the 

other hand, the natural products are less similar and performance on this benchmark is 

expected to be a better indicator of realistic performance.

Natural Product Benchmark

Following cross-validation, new models were trained using the entirety of the synthetic 

compound dataset and predictive performance was assessed for the natural product 

benchmark. As expected, predictive performance decreased for the natural product 

benchmark, especially for unstacked models (Figure 6). Without stacking micro-averaged 

AUROC values ranged from 0.70 to 0.85, micro-averaged BEDROC values ranged from 

0.43 to 0.59, 55% to 60% of compounds had a true target identified in the top 10 predictions, 

and coverage error ranged from 1286 to 416. In general, model performance greatly 

improved when stacked. With stacking micro-averaged AUROC values ranged from 0.82 to 

0.94, micro-averaged BEDROC values ranged from 0.45 to 0.73, 43% to 63% of compounds 

had a true target identified in the top 10 predictions, and coverage error ranged from 426 to 

190. As observed in cross-validation, MLP stacked models appeared to suffer from 

overfitting resulting in performance degradation. While the micro-averaged AUROC value 

slightly increased for the MLP stacked model, all other metrics showed a performance 

decrease.

Interestingly, the use of a single level 0 classifier, with the exception of MLP, saw 

performance improvements with model stacking. This phenomenon is particularly apparent 

when comparing unstacked and stacked KNN models on the natural product benchmarking 

set. For example, the unstacked KNN model shows the worst micro-averaged AUROC score 

among the unstacked classifiers, but stacking improves the score from 0.70 to 0.94. Such a 

dramatic increase in performance is unexpected, when the power of stacking is cited as 

being a result of combining level 0 classifiers. However, this assumes each model is passing 

singular values to be combined; either 1, 2, or 3 total values for each label depending on the 

number of base classifiers considered. In the models described here, all 1,907 predicted 

probabilities are passed from each level 0 classifier to the level 1 logistic regression 

classifier. Since the logistic regression is trained in a one-vs-rest fashion for this multi-label 

classification problem, each protein target label is predicted using all predicted probabilities; 

either 1,907, 3,814, or 5,721 total values for each label depending on the number of base 

classifiers considered. In the example of KNN, many of these predicted probabilities are 0. 

However, information of the non-zero values can be used to influence the prediction of a 

given protein target label.
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The predicted target protein label information being used to give final predictions can be 

examined through the extraction of model coefficients from each trained logistic regression 

classifier. For example, the logistic regression model for predicting the protein target label 

“Q12884” (Prolyl endopeptidase FAP) has coefficients greater than 1 for the predicted 

probabilities of target labels “P48147”, “P97321”, “P27487”, “Q86TI2”, “Q9UHL4”, and 

“Q6V1X1’”. Inspecting the UniProt records for each reveals that these proteins share a 

common function, which is the cleavage of proline-containing peptide bonds. Since these 

proteins share a similar function and substrate preference it would be unsurprising if a given 

compound was able to bind to more than one of these related proteins. However, direct 

binding data is difficult to obtain and will be unavailable for a large number of compound-

protein target combinations. Therefore, while level 0 model predictions may strongly and 

reasonably predict for one of these related proteins, this prediction would ultimately be 

treated as a false positive due to the unknown binding relationship. Through stacking, the 

level 1 classifier is able to learn from this information and ultimately make better predictions 

for the known protein target labels.

To demonstrate that the logistic regression is using probabilities of functionally related 

proteins to improve predictions, semantic similarities were calculated. Gene ontology (GO) 

is a widely used basis for the measurement of functional similarity.56-59 GO terms from the 

molecular function ontology were able to be obtained for 1,878 of the 1,907 UniProt protein 

target labels through programmatic access to QuickGO via the provided API.60 Semantic 

similarities for each pairwise combination of protein target label GO terms were then 

computed according to the Lin expression of term similarity with the best-match product 

method using the OntologyX package suite in R.61-64 For each predicted label, the 

corresponding UniProt IDs for logistic regression coefficients with values greater than one 

were obtained, which resulted in 1,595 label groups of the possible 1,907. The average 

semantic similarity of a query group of labels was calculated from the pairwise similarity 

matrix. Significance of group similarity for each query group of labels was assessed by a 

permutation test. Subsets containing the same number of labels as the query group of labels 

are sampled from the calculated pairwise similarity matrix. The proportion of these samples 

that have at least as high of an average similarity value as the query group of labels yields an 

unbiased estimate of the p-value for the group.65 From these calculations it is observed that 

80% of the label groups had scores with associated p-values <0.05 (Figure S5). Therefore, 

80% of the label groups had a similarity score higher that at least 95% of the permutated 

groups. Overall, the semantic similarity calculation indicates that most of protein target 

labels predicted by logistic regression were obtained by combination of the probabilities 

from functionally related proteins. This relationship was not given explicitly as an input 

feature during model training, but was inferred from the similarity between the training 

ligands for which each of the proteins were known to bind. This relationship learned by the 

logistic regression accounts for the highly competitive performance of the KNN classifier 

with the more sophisticated RF and MLP classifiers. For the synthetic set cross-validation, 

KNN performs very well due to the extremely high similarity between training and test 

compounds. However, the unstacked KNN classifier performance suffers when benchmarked 

on the natural product dataset that is less similar to its training data. Since KNN is a “lazy 

learner” and simply measures distances between a query data point and stored training data, 
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it is expected to perform worse when evaluating dissimilar compounds.66 By applying the 

logistic regression to the KNN classifier predictions, the predicted probabilities for any 

incorrectly predicted labels may be leveraged to increase the confidence in the known target 

label. Therefore, the stacking KNN with logistic regression was important for improving its 

performance on natural products.

Impact of Training Dataset Size on Cross-Validation Performance

It is expected that the number of training records for each protein target label influences 

classifier performance. To assess this in a systematic way, protein class labels with a large 

number of compound records were collected and assessed through 10-fold cross-validation. 

The top 5 largest sets were selected, which included the D2 dopamine receptor (UniProtID: 

P14416), beta-secretase 1 (UniProtID: P56817), melanin-concentrating hormone receptor 1 

(UniProtID: Q99705), cannabinoid receptor 2 (UniProtID: P34972), and vascular 

endothelial growth factor receptor 2 (UniProtID: P35968). A total of 2,500 compound 

records were randomly sampled for each protein target label and further randomly 

subsampled into sets of 2,000, 1,500, 1,000, 500, 100, and 10 compound records. The 

stratified 10-fold cross-validation procedure was then performed on each of these seven sets 

(Figure 7). Performance was assessed for the seven subsets using the same metrics as the 

original cross-validation and natural product benchmark, with the exception of true targets 

predicted in the top 10 results. This metric was modified to instead assess the fraction of 

compounds with a true target predicted as the top result.

The number of training records for each protein target label indeed had an impact on 

classifier performance. As the number of training compound records increases, a 

corresponding increase is observed in performance. However, this effect begins to plateau at 

500 compound records with a micro-averaged AUROC score of 0.999, a micro-averaged 

BEDROC score of 0.998, 97% of compounds had a true target identified as the top result, 

and a coverage error of 1.04 for the KNN_RF classifier. Additionally, “Not Stacked” and 

“Stacked” classifier performance converged at this point due to both achieving essentially 

perfect classification for the subset. The trends observed for the KNN_RF classifier were 

also observed for the other classifier combinations (Figures S6-S11).

Impact of Protein Target Diversity on Cross-Validation Performance

Another factor that is expected to influence performance is the diversity of protein targets in 

the dataset. Related protein targets are more likely to bind to similar small molecule 

compounds than diverse protein targets. As previously mentioned, any compound-protein 

target associations that were unknown were treated as negative data. This assumption has a 

negative impact on performance when a compound is assigned a negative label for a protein 

target that it may likely bind to, but has never been tested against. A classifier may 

reasonably predict this protein target strongly and be penalized for doing so in the 

performance evaluation as it is ultimately treated as a false positive prediction.

To illustrate this effect, a diverse set of protein target labels were selected from the synthetic 

dataset used in full model training based on their L2 protein class as defined in ChEMBL 23. 

A single UniProtID was selected for each L2 protein class with priority given to the protein 
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target labels with the largest number of compound records. This resulted in a dataset 

containing 2,825 compound-target records for 31 diverse protein targets. Another set was 

obtained for comparison that contained only kinases. A total of 31 UniProtIDs were selected 

that belonged to the kinase L2 protein class. During UniProtID selection, labels that 

contained a similar number of compounds records to those selected for the diverse protein 

target sets were selected. This resulted in a dataset containing 2,824 compound-target 

records for 31 kinase protein targets.

Classifier performance was assessed by stratified 10-fold cross-validation for the two 

datasets using the same metrics as described for the assessment of training compound set 

size. The expected performance degradation when considering related targets is observed 

(Figure 8). Without stacking micro-averaged AUROC decreased by 0.10, micro-averaged 

BEDROC decreased by 0.26, 32% less compounds had a true target identified as the top 

prediction, and coverage error increased by 3.1 for the kinase set compared to the diverse 

target set. Stacking slightly improved the relative performance for micro-averaged AUROC 

and coverage error, and had almost no effect on micro-averaged BEDROC and the number 

of compounds with a true target predicted as the top result. With stacking micro-averaged 

AUROC decreased by 0.07, micro-averaged BEDROC decreased by 0.27, 33% less 

compounds had a true target identified as the top prediction, and coverage error increased by 

2.4 for the kinase set compared to the diverse target set. This trend observed for the 

KNN_RF stacked classifier was also observed for the other classifier combinations (Figure 

S12). Overall, the consideration of similar targets reduces performance since the classifier 

more frequently predicts that a compound binds to a target for which no interaction had yet 

been reported.

Impact of Intra-label Training-Test Compound Similarity on Predicted Probability Scores

Despite the use of machine learning and model stacking, this classification model is 

inherently dependent on ligand similarity. The underlying assumption for all ligand-based 

computational fishing methods is that proteins bind similar compounds. Therefore, if a query 

compound is dramatically dissimilar from compounds used in training the classification 

model for a protein target label, then low probability scores for that label are expected. 

Conversely, higher probability scores are expected as similarity between a query compound 

and the training compounds increases. However, a high degree of similarity to the training 

compounds is not always the case, as shown above for the natural product set, which has 

ramifications for the magnitude of the predicted probability scores.

To demonstrate the impact of training compound set similarity to the query compound 

predicted label probabilities, pairwise similarities were calculated and then compared to 

predicted label probability values. For each compound in the natural product benchmark set, 

pairwise similarities were calculated between the natural product and the training 

compounds belonging to the natural product’s known target label classes. This yielded a 

similarity distribution for each known natural product-protein target activity pair. 

Additionally, the predicted probabilities output by the stacked classification model for each 

known natural product-protein target activity pair were collected. The similarity distributions 

for each activity pair were aggregated and binned according the probability predicted for the 
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known labels. The aggregated similarity distributions for each probability range are 

compared and shown in Figure 9 for the KNN_RF stacked classifier. For each predicted 

probability range bin, (0.0, 0.25], (0.25, 0.5], (0.5, 0.75], and (0.75, 1.0] the interquartile 

ranges span from 0.08 to 0.15, 0.10 to 0.26, 0.09 to 0.27, and 0.09 to 0.34 respectively. The 

lower quartile values are all very close and more distinct differences are observed between 

the upper quartiles especially for the lowest and highest probabilities ranges. In general, 

each probability range has a large proportion of low similarity values and the letter-value 

plots67 for each range look very similar below the median value. The major differences 

between distributions are observed above the median value. Comparison of the same 

portions of each distribution above the median, the boxes with the same width, shows an 

increase in average Tanimoto similarity as probability scores increase. This trend is also 

observed for the synthetic compound cross-validation (Figure S13) and is also more strongly 

observed for the non-stacked base classifiers (Figures S14-17)

The number of predicted probabilities are not equally distributed among the four described 

ranges. There is a much larger number of probabilities predicted in the (0.0, 0.25] range, 

especially for the natural product set. Of the probabilities predicted by the KNN_RF stacked 

classifier for the natural product set, 93.8% of predicted probabilities are in the (0.0, 0.25] 

range, 2.8% in the (0.25, 0.5] range, 1.9% in the (0.5, 0.75] range, and 1.4 % in the (0.75, 

1.0] range. For a synthetic compound cross-validation fold, 50.5% of the predicted 

probabilities are in the (0.0, 25] range, 9.0% are in the (0.25, 0.5] range, 9.1% are in the (0.5, 

0.75] range, and 31.6% are in the (0.75, 1.0] range. Consistent with the knowledge that the 

synthetic compound cross-validation sets have higher intra-target similarity between training 

and test sets than for the natural products, the proportion of compounds receiving high 

probability predictions is far greater for the synthetic compounds than for the natural product 

set.

The observation that query compounds dissimilar from the training data yield low predicted 

probability scores for correct predictions has implications for model usage and 

interpretation. As demonstrated, the stacked classifiers had good predictive power on the 

natural product benchmark. Therefore, correct targets are generally ranked before incorrect 

targets despite the low probability scores given to correct targets. While top ranking 

predictions should not be taken as an absolute truth, users are also encouraged to not 

immediately dismiss top ranked hits based purely on a low score. No matter the score 

received, top ranked hits should be critically evaluated in the context of the available 

experimental data regarding the compounds bioactivity.

Deployment of Stacked Model as a Web Application—The trained model was 

deployed via an application programing interface (API) using Flask 0.12.2. The use of an 

API allows target predictions for molecules of interest to be made with an application run in 

a web browser. An example query for the natural product pukateine is shown in Figure 10. 

Pukateine is an aporphine alkaloid from the bark of the pukatea tree, Laurelia novae-
zelandiae. Alkaloids extracted from the pukatea tree are thought to be the constituents 

responsible for the analgesic properties traditionally associated with the tree.68 Pukateine is 

reported to bind to dopamine D1 and D2 receptors. 69 When pukateine is input into the 

STarFish web application, dopamine D1 (UniProtID: P18901) and D2 (UniProtID: P61169) 
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receptors are the top two predicted targets. The next two predicted targets are the 5-

hydroxytryptamine receptor 2A (5-HT2A) for rat (UniProtID: P14842) and human 

(UniProtID: P28223). No binding data for pukateine has been reported for this receptor, 

however, other aporphine alkaloids have been reported to have 5-HT2A activity.70,71 

Therefore, in addition to predicting two correct protein targets, STarFish, has also predicted 

another likely target.

While the KNN_RF stacked model demonstrated the best performance during cross-

validation and on the natural product benchmark, the KNN stacked model was selected for 

use in the STarFish web application. Predictions using the RF models are significantly more 

computationally expensive, and the use of the KNN stacked model is computationally 

efficient with only a slight loss in relative performance. The use of a computationally 

efficient model allows for end users to easily run the STarFish web application on their own 

computers with minimal hardware requirements. However, experienced users are able to 

modify the API to include other model combinations if desired.

CONCLUSIONS:

To address how well a computational target fishing model can predict protein targets for 

natural products, a computational target fishing model, STarFish, was constructed using a 

model stacking approach and evaluated on a collected natural product benchmarking set. 

The collected natural product benchmark set consisted of 5,589 compound-target pairs for 

1,943 unique compounds and 1,023 unique targets. All models were trained using potent 

synthetic compounds collected from ChEMBL and accounted for 1,907 protein targets. 

Model stacking combinations using k-nearest neighbors, random forest, and a multi-layer 

perceptron as level 0 classifiers and a logistic regression as a level 1 meta-classifier were 

examined. In general, model stacking approaches outperformed unstacked approaches, 

especially for the natural product benchmark. The stacked model comprised of KNN and RF 

as the level 0 classifiers showed the best performance with an AUROC score of 0.94 and a 

BEDROC score of 0.73. The stacked model comprised of KNN as the only level 0 classifier 

had similar performance with an AUROC score of 0.94 and a BEDROC score of 0.71, but 

with significantly less computational expense. By default, STarFish uses the stacked KNN 

model to allow for use even with limited computing resources and has been deployed as an 

API, which can downloaded and run in a web browser.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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BEDROC Boltzmann-enhanced discrimination of receiver operating 
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CDF cumulative density function
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KNN k-nearest neighbors

MLP multi-layer perceptron

RF random forest
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Figure 1. 
Sankey diagram of the protein classes present in the ChEMBL23 activity data used in model 

training. The proportion of protein targets belonging to L1 and L2 protein classes as defined 

by ChEMBL is represented by line thickness.
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Figure 2. 
Diagram of the model stacking approach used to predict protein target labels from chemical 

fingerprints. Chemical fingerprints are used as input features for the level 0 classifiers: k-

nearest neighbors, random forest, and multi-layer perceptron. The predicted probabilities of 

each protein label from each level 0 classifier are concatenated and used as input features for 

the level 1 classifier: logistic regression. Final predicted label probabilities are output by the 

logistic regression.
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Figure 3. 
Size and overlap of collected natural product databases. The bar graph on the top shows the 

number of unique compounds in each database. The heat map shows the fraction of 

compounds from a database on the y-axis present in a database on the x-axis. Standardized 

unique SMILES strings for the compounds in each database were used for calculating size 

and overlap.
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Figure 4. 
Model performance for stratified 10-fold cross-validation on the synthetic compound 

dataset. For a single model, “Not Stacked” indicates that the probability predictions of the 

listed model were used directly. If more than one model is listed, the mean probabilities for 

each label were used. “Stacked” indicates that the probability predictions of the listed 

models were passed to the logistic regression to obtain the final predicted probabilities. 

Model performance as measured by (A) micro-averaged Area Under the Receiver Operating 

Characteristic (AUROC) curve, (B) micro-averaged Boltzmann-Enhanced Discrimination of 

Receiver Operating Characteristic (BEDROC), (C) the fraction of compounds which have at 

least one true target among the top 10 predictions, and (D) coverage error are shown.
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Figure 5. 
Cumulative density function (CDF) for intra-target compound similarities. All pairwise 

compound similarities were calculated between the training compounds and a given set for 

each protein target label. “Training” and “Test” sets are from a single cross-validation fold 

and “Natural Product” is the natural product benchmark set.
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Figure 6. 
Model performance for benchmarking on the natural product dataset. “For a single model, 

“Not Stacked” indicates that the probability predictions of the listed model were used 

directly. If more than one model is listed, the mean probabilities for each label were used. 

“Stacked” indicates that the probability predictions of the listed models were passed to the 

logistic regression to obtain the final predicted probabilities. Model performance as 

measured by (A) micro-averaged Area Under the Receiver Operating Characteristic 

(AUROC) curve, (B) micro-averaged Boltzmann-Enhanced Discrimination of Receiver 

Operating Characteristic (BEDROC), (C) the fraction of compounds which have at least one 

true target among the top 10 predictions, and (D) coverage error are shown.
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Figure 7. 
Model performance for stratified 10-fold cross-validation on datasets containing various 

numbers of compound training records for each protein target label for the KNN_RF 

classifier. For a single model, “Not Stacked” indicates that the probability predictions of the 

listed model were used directly. If more than one model is listed, the mean probabilities for 

each label were used. “Stacked” indicates that the probability predictions of the listed 

models were passed to the logistic regression to obtain the final predicted probabilities. 

Model performance as measured by (A) micro-averaged Area Under the Receiver Operating 

Characteristic (AUROC) curve, (B) micro-averaged Boltzmann-Enhanced Discrimination of 

Receiver Operating Characteristic (BEDROC), (C) the fraction of compounds which yielded 

a true target as the top prediction, and (D) coverage error are shown.
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Figure 8. 
Model performance for stratified 10-fold cross-validation on the diverse target and kinase 

datasets for the KNN_RF classifier. For a single model, “Not Stacked” indicates that the 

probability predictions of the listed model were used directly. If more than one model is 

listed, the mean probabilities for each label were used. “Stacked” indicates that the 

probability predictions of the listed models were passed to the logistic regression to obtain 

the final predicted probabilities. Model performance as measured by (A) micro-averaged 

Area Under the Receiver Operating Characteristic (AUROC) curve, (B) micro-averaged 

Boltzmann-Enhanced Discrimination of Receiver Operating Characteristic (BEDROC), (C) 
the fraction of compounds which yielded a true target as the top prediction, and (D) 
coverage error are shown.
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Figure 9. 
Letter-value plot showing the aggregated pairwise similarity distributions for benchmark 

natural product compounds and synthetic training compounds for known positive protein 

target labels. Similarity distributions were aggregated based on the predicted probability 

from the KNN_RF stacked classifier for the known protein targets of each natural product. 

The solid black line represents the median and the white dashed line the mean. Letter-value 

plots are similar to box plots, but provide more information about the tails of a distribution. 

Each box represents a portion of a distribution according to its width shown. The widest box 

is identical to the interquartile range in a box plot and represents 50% of the data. The next 

widest boxes, as more than one box now has identical width, comprise 25% of the data. 

Those boxes are present directly above and below the interquartile range. For each 

successive box width reduction, the amount of data represented is halved.
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Figure 10. 
Example query using the STarFish web application. (A) Query SMILES obtained by 

sketching a compound or directly pasting a SMILES string into the text box. (B) The query 

molecule and a list of predicted protein targets along with the probability score for each.
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