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Introduction

Monumental advances in computing power in recent decades have 
contributed to the rising popularity of Bayesian methods among ap-
plied researchers. This series of commentaries seeks to raise aware-
ness among nicotine and tobacco researchers of Bayesian methods 
for analyzing experimental data. The current commentary intro-
duces statistical inference via Bayes factors and demonstrates how 
they can be used to present evidence in favor of both alternative and 
null hypotheses.

Conceptualizing Hypothesis Testing via Bayes 
Factors

Bayesian inference is a fully probabilistic framework for drawing 
scientific conclusions that resembles how we naturally think about 
the world. Often, we hold an a priori position on a given issue. On a 
daily basis, we are confronted with facts about that issue. We regu-
larly update our position in light of those facts. Bayesian inference 
follows this exact updating process. Formally stated, given a research 
question, at least one unknown parameter of interest, and some rele-
vant data, Bayesian inference follows three basic steps. The process 
begins by specifying a prior probability distribution on the unknown 
parameter that often reflects accumulated knowledge about the re-
search question. Next, the observed data, summarized using a likeli-
hood function, are conditioned on the prior distribution. Finally, the 
resulting posterior distribution represents an updated state of know-
ledge about the unknown parameter and, by extension, the research 
question. Simulating data many times from the posterior distribution 
will ideally yield representative samples of the unknown parameter 
that we can interpret to answer the research question.

In an experimental context, we are often interested in evaluating 
two competing positions or hypotheses in light of data and making 
a determination about which to accept. In the context of Bayesian 
inference, hypothesis testing can be framed as a special case of model 
comparison where a model refers to a likelihood function and a 
prior distribution. Given two competing hypotheses and some rele-
vant data, Bayesian hypothesis testing begins by specifying separate 

prior distributions to quantitatively describe each hypothesis. The 
combination of the likelihood function for the observed data with 
each of the prior distributions yields hypothesis-specific models. For 
each of the hypothesis-specific models, averaging (ie, integrating) 
the likelihood with respect to the prior distribution across the entire 
parameter space yields the probability of the data under the model 
and, therefore, the corresponding hypothesis. This quantity is more 
commonly referred to as the marginal likelihood and represents the 
average fit of the model to the data. The ratio of the marginal like-
lihoods for both hypothesis-specific models is known as the Bayes 
factor.

The Bayes factor is a central quantity of interest in Bayesian hy-
pothesis testing. A Bayes factor has a range of near 0 to infinity and 
quantifies the extent to which data support one hypothesis over an-
other. Bayes factors can be interpreted continuously so that a Bayes 
factor of 30 indicates that there is 30 times more support in the 
data for a given hypothesis than the alternative. They can also be 
interpreted discretely so that a Bayes factor of 3 or higher supports 
accepting a given hypothesis, 0.33 or lower supports accepting its 
alternative, and values in between are inconclusive.1,2 Intuitively, the 
Bayes factor is the ratio of the odds of observing two competing 
hypotheses after examining relevant data compared to the odds of 
observing those hypotheses before examining the data. Therefore, 
the Bayes factor represents how we should update our knowledge 
about the hypotheses after examining data. We present two empir-
ical examples with simulated data to demonstrate the computation 
and use of Bayes factors to test hypotheses.

Empirical Example 1: Is a Coin Fair or 
Tail-Biased?

Deciding whether a coin is fair or tail-biased is a simple, but useful 
example to illustrate hypothesis testing via Bayes factors. Let the null 
hypothesis be that the coin is fair, and let the alternative hypothesis 
be that the coin is tail-biased. We further intuit that coins, fair or 
not, can exhibit a considerable degree of variation in their head-
tail biases depending on quality control issues during the minting 
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process. Therefore, we use a Beta(5, 5) prior distribution to describe 
the null hypothesis. This distribution places the bulk of the prob-
ability density at or around 0.5 (ie, equal probability of heads or 
tails). Similarly, we use a Beta(3.8, 6.2) prior distribution to describe 
the alternative hypothesis. This skewed distribution places the bulk 
of the density at or around 0.35 (ie, lower probability of heads) and 
places less density on values greater than 0.4. The Beta prior is ap-
propriate to describe hypotheses about a coin (and other binary vari-
ables) because it is continuously defined on the interval between 0 
and 1 that the bias of a coin is also defined on; has hyperparameters 
that can be interpreted as the number of heads and tails; and pro-
vides flexibility in describing hypotheses because it does not have to 
be symmetric.

To test these hypotheses, we conduct a simple experiment by 
flipping the coin 20 times, recording 5 heads and 15 tails. We sum-
marize this data using a Bernoulli(5, 15) likelihood function. After 
computing the marginal likelihoods of the models for both hypoth-
eses, we find that the Bayes factor comparing the alternative hy-
pothesis to the null is 2.65. This indicates that the data supports 
the alternative hypothesis that the coin is tail-biased over the null 
hypothesis that it is fair only by a factor of 2 or so. We further note 
that the Bayes factor falls into the range of inconclusive values. 
Therefore, we conclude that we need more experimental data to de-
termine whether the coin is fair or tail-biased with greater certainty.

Empirical Example 2: Do Health Warnings for 
E-cigarettes Increase Worry About Health?

A more pertinent illustrative example of hypothesis testing via Bayes 
factors is deciding whether health warnings for e-cigarettes increase 
worry about one’s health. Let the null hypothesis be that health 
warnings have exactly no effect on worry. Let the first alternative 
hypothesis be one-sided that health warnings increase worry, and let 
the second alternative hypothesis also be one-sided that health warn-
ings decrease worry. Bayes factors with the Jeffreys-Zellner-Siow 

(JZS) default prior can be used to evaluate these hypotheses.3 In 
comparison to other priors, default priors have mathematical prop-
erties that simplify the computation of Bayes factors. The JZS de-
fault prior describes hypotheses in terms of possible effect sizes (ie, 
Cohen’s d). As such, under the null hypothesis that health warnings 
have exactly no effect on worry, the prior distribution places the en-
tire density on an effect size of 0 (Figure 1). Given that effect sizes in 
behavioral research in tobacco control are usually small,4–6 the prior 
distributions for the alternative hypotheses use a scale parameter of 
1/2 to distribute the density mostly over small positive or negative 
effect sizes.

To test these hypotheses, we conduct a simple online experiment 
with 200 adults who vape every day or some days. The experi-
ment randomizes participants to receive a stimulus depicting 1 of 
5 e-cigarette devices (eg, vape pen) with or without a corresponding 
health warning. After viewing the stimulus for 10 seconds, partici-
pants complete a survey that includes an item on worry, “How wor-
ried are you about your health because of your e-cigarette use?”,7 with 
a response scale of 1 (“not at all”) to 5 (“extremely”). Participants 
who receive a health warning elicit mean worry of 2.38 (SD = 0.87), 
and those who do not elicit mean worry of 2.33 (SD = 0.84). The 
Bayes factors comparing the first and second alternative hypotheses 
to the null hypothesis are 0.16 and 0.30, respectively. These Bayes 
factors indicate that there is more support in the data for the null 
hypothesis than the alternative hypotheses. Taking the reciprocal of 
these Bayes factors indicates that there is approximately 3 to 6 times 
more support in the data for the null hypothesis that health warnings 
have no effect than either alternative. Therefore, we conclude that 
health warnings for e-cigarettes do not appear to affect worry based 
on the experimental data.

Conclusions

The hallmark of Bayesian model comparison (and other Bayesian 
approaches) is the incorporation of uncertainty at all stages of 

Figure 1.  Prior distributions quantitatively describing competing hypotheses about the effect of e-cigarette health warnings on worry about one’s own health 
due to tobacco product use.
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inference, particularly through the use of properly specified prior dis-
tributions. As a result, Bayesian model comparison has three prac-
tical advantages over conventional methods. First, Bayesian model 
comparison is not limited to tests of point null hypotheses.8,9 In fact, 
the first empirical example essentially conceptualized the possibility 
of the coin being fair as an interval null hypothesis by permitting 
some unfair head-coin biases. Indeed, a great deal has already been 
written on how the use of point null hypotheses can lead to over-
statements about the evidence for alternative hypotheses.10 Second, 
Bayesian model comparison is flexible enough to permit tests of any 
meaningful hypotheses.11 As a result, the second empirical example 
demonstrated tests of two one-sided hypotheses against the same 
null hypothesis. Third, Bayesian model comparison uses the mar-
ginal likelihood, which is a measure of the average fit of a model 
across the parameter space.12 Doing so leads to more accurate char-
acterizations of the evidence for competing hypotheses because they 
account for uncertainty in parameter values even after observing 
the data instead of only focusing on the most likely values of those 
parameters.

Bayes factors specifically have three advantages over other infer-
ential statistics. First, Bayes factors can provide direct evidence for 
the common null hypothesis of no difference.13 Second, they can re-
veal when experimental data is insensitive to the null and alternative 
hypotheses, clearly suggesting that the researcher should withhold 
judgment.13 Third, they can be interpreted continuously and thus 
provide an indication of the strength of the evidence for the null or 
alternative hypothesis. While Bayesian model comparison via Bayes 
factors leads to robust tests of competing hypotheses, this advan-
tage is only realized when all hypotheses are quantitatively described 
using carefully chosen priors that are calibrated in light of accumu-
lated knowledge. Furthermore, two analysts may choose different 
priors to describe the same hypothesis. This subjectivity in the choice 
of prior has promoted the development of a large class of Bayes 
factors for common analyses (eg, difference of means as illustrated 
in the second empirical example) that use default priors.14–16 Thus, 
the analyst only needs to choose values for important parameters, as 
in the second empirical example, without having to select the func-
tional form of the prior (eg, a Beta prior) as in the first empirical 
example. Published Bayesian analyses will often list priors and jus-
tify why they were chosen for full transparency (see Baig et al.17 for 
one succinct example). The next commentary will focus on inform-
ative hypotheses, prior specification when computing corresponding 
Bayes factors, and some Bayesian solutions for multiple testing. For 
the curious reader, the JASP package provides access to Bayes factors 
that use default priors for common analyses through a point-and-
click interface similar to SPSS.18
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