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Abstract

IMPORTANCE—Pathogenic DNA variants associated with familial hypercholesterolemia, 

hereditary breast and ovarian cancer syndrome, and Lynch syndrome are widely recognized as 

clinically important and actionable when identified, leading some clinicians to recommend 

population-wide genomic screening.

OBJECTIVES—To assess the prevalence and clinical importance of pathogenic or likely 

pathogenic variants associated with each of 3 genomic conditions (familial hypercholesterolemia, 

hereditary breast and ovarian cancer syndrome, and Lynch syndrome) within the context of 

contemporary clinical care.

DESIGN, SETTING, AND PARTICIPANTS—This cohort study used gene-sequencing data 

from 49 738 participants in the UK Biobank who were recruited from 22 sites across the UK 

between March 21, 2006, and October 1, 2010. Inpatient hospital data date back to 1977; cancer 

registry data, to 1957; and death registry data, to 2006. Statistical analysis was performed from 

July 22, 2019, to November 15, 2019.

EXPOSURES—Pathogenic or likely pathogenic DNA variants classified by a clinical laboratory 

geneticist.

MAIN OUTCOMES AND MEASURES—Composite end point specific to each genomic 

condition based on atherosclerotic cardiovascular disease events for familial hypercholesterolemia, 

breast or ovarian cancer for hereditary breast and ovarian cancer syndrome, and colorectal or 

uterine cancer for Lynch syndrome.

RESULTS—Among 49 738 participants (mean [SD] age, 57 [8] years; 27 144 female [55%]), 

441 (0.9%) harbored a pathogenic or likely pathogenic variant associated with any of 3 genomic 

conditions, including 131 (0.3%) for familial hypercholesterolemia, 235 (0.5%) for hereditary 

breast and ovarian cancer syndrome, and 76 (0.2%) for Lynch syndrome. Presence of these 

variants was associated with increased risk of disease: for familial hypercholesterolemia, 28 of 131 

carriers (21.4%) vs 4663 of 49 607 noncarriers (9.4%) developed atherosclerotic cardiovascular 

disease; for hereditary breast and ovarian cancer syndrome, 32 of 116 female carriers (27.6%) vs 

2080 of 27 028 female noncarriers (7.7%) developed associated cancers; and for Lynch syndrome, 

17 of 76 carriers (22.4%) vs 929 of 49 662 noncarriers (1.9%) developed colorectal or uterine 

cancer. The predicted probability of disease at age 75 years despite contemporary clinical care was 

45.3% for carriers of familial hypercholesterolemia, 41.1% for hereditary breast and ovarian 
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cancer syndrome, and 38.3% for Lynch syndrome. Across the 3 conditions, 39.7% (175 of 441) of 

the carriers reported a family history of disease vs 23.2% (34 517 of 148 772) of noncarriers.

CONCLUSIONS AND RELEVANCE—The findings suggest that approximately 1% of the 

middle-aged adult population in the UK Biobank harbored a pathogenic variant associated with 

any of 3 genomic conditions. These variants were associated with an increased risk of disease 

despite contemporary clinical care and were not reliably detected by family history.

Introduction

Identification of individuals at high risk for cardiovascular disease or cancer remains a major 

public health need.1 Because these diseases have a genetic component, one approach is to 

use inherited DNA variation to stratify the population. The United States Centers for Disease 

Control and Prevention has identified 3 tier-1 genomic conditions in which genetic testing to 

identify carriers of a pathogenic variant may be particularly useful: familial 

hypercholesterolemia, hereditary breast and ovarian cancer syndrome, and Lynch syndrome.
2–4

Pathogenic variants in any of 9 genes associated with these 3 genomic conditions perturb 

key driving pathways in disease pathogenesis.5–7 Familial hypercholesterolemia variants 

accelerate development of atherosclerotic cardiovascular disease by preventing clearance of 

atherogenic low-density lipoproteins (LDLs) from the circulation.8 Those associated with 

hereditary breast and ovarian cancer syndrome confer increased risk of breast, ovarian, and 

other malignant tumors by disrupting tumor suppressor genes integral to DNA repair.9 

Lynch syndrome variants are associated with colorectal, uterine, and other cancers through 

perturbation of DNA mismatch repair pathways.10

These genomic conditions remain underdiagnosed and undertreated in current clinical 

practice; if identified, evidence-based screening or therapies to attenuate risk are available. 

Such interventions include lipid-lowering therapy, which has been associated with up to a 

76% reduced risk for cardiovascular disease among patients with familial 

hypercholesterolemia11,12; prophylactic mastectomy, which has been associated with up to a 

90% reduced risk for breast cancer among patients with hereditary breast and ovarian cancer 

syndrome13; and screening colonoscopies, which have been associated with up to a 62% 

reduced risk for colorectal cancer among patients with Lynch syndrome.14

The traditional approach, which is currently recommended by clinical guidelines, has 

focused on genetic testing for individuals affected by disease and their family members.15–19 

However, this phenotype-first past may give way to a genotype-first future. In this paradigm, 

population-based genomic screening may identify high-risk individuals before disease onset, 

enabling targeted screening or prevention.20,21

Population genomic screening has become increasingly feasible because of rapid decreases 

in the cost of gene sequencing and is already underway or planned in several health care 

systems and national biobanks.22–24 However, several areas of uncertainty remain. First, the 

prevalence of pathogenic variants assessed using systematic gene sequencing and clinical-

grade variant classification in a large population of otherwise unascertained adults has not 
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been fully characterized. Previous studies have either been small (performing clinical-grade 

variant classification of up to 1640 individuals, noting a prevalence ranging from 0.9% to 

1.5%)23,25,26 or restricted to a single disease entity.5–7 Second, contemporary clinical care 

has expanded efforts to prevent or screen for cardiovascular diseases and cancer; the relative 

and absolute risks of disease among pathogenic variant carriers within the context of such 

care warrants further study. Third, whether family history of disease can serve as a reliable 

proxy for pathogenic variant status and the incremental risk of a pathogenic variant among 

individuals stratified by family history has not been fully explored.

We analyzed gene sequencing data from participants of the UK Biobank and used clinical-

grade variant classification to assess the prevalence of pathogenic or likely pathogenic 

variants for the 3 tier-1 genomic conditions. Next, we assessed the association of such 

variants with family history of disease and the clinical importance of such variants within 

the context of contemporary clinical care.

Methods

Study Design, Setting, and Participants

This cohort study used data from the UK Biobank, which enrolled more than 500 000 

individuals between the ages of 40 and 69 years from 22 sites across the UK between March 

21, 2006, and October 1, 2010.27,28 Analysis of data from the UK Biobank data was 

approved by the Mass General Brigham institutional review board in Boston, Massachusetts, 

and was performed under UK Biobank application #7089. All participants provided 

electronic informed consent at their initial visit. This study followed the Strengthening the 

Reporting of Observational Studies in Epidemiology (STROBE) reporting guideline.29

All 49 738 participants with whole exome sequencing data available were included in this 

analysis. Family history of disease in parents and siblings was reported by participants using 

a structured assessment tool at the time of enrollment. The LDL cholesterol concentrations 

and medication lists were assessed at time of enrollment as part of the study protocol, 

enabling estimation of untreated levels as described previously (eTable 1 in the Supplement).
30 At the initial study visit, participants completed questionnaires about health history and 

lifestyle and underwent physical assessment and phlebotomy.28

Exome Sequencing and Variant Classification

Whole exome sequencing, which enables identification of genetic variants affecting the 

protein-coding region of each gene, was performed for UK Biobank participants as 

described previously.31–33 Additional details with respect to sequencing and quality control 

are available in the eMethods in the Supplement. Either of 2 laboratory geneticists (H.M-S. 

and M.L.), who were certified by the American Board of Medical Genetics and Genomics 

and who were blinded to any phenotype information, classified the pathogenicity of 

observed variants in 9 genes known to be associated with any of 3 genomic conditions 

according to current clinical standards.34 Variants for which classification was not 

straightforward because of limitations in available evidence were reviewed by both 

geneticists to arrive at a consensus opinion. These 9 genes included 3 associated with 
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familial hypercholesterolemia (APOB [OMIM:107730], LDLR [606945], and PCSK9 
[607786]), 2 associated with hereditary breast and ovarian cancer syndrome (BRCA1 
[113705], BRCA2 [600185]), and 4 associated with Lynch syndrome (MLH1 [120436], 

MSH2 [609309], MSH6 [600678], and PMS2 [600259]).

Clinical End Points

Primary end points were composites specific to each genomic condition: coronary artery 

disease, ischemic stroke, and peripheral artery disease for familial hypercholesterolemia; 

breast or ovarian cancer for hereditary breast and ovarian cancer syndrome; and colorectal 

and uterine cancer for Lynch syndrome. Case definitions for each primary end point were 

defined in the UK Biobank using a combination of self-reported data confirmed by trained 

health care professionals, hospitalization records, and national procedural, cancer, and death 

registries. End points were assessed based on hospital inpatient data dating back to 1977, 

cancer data dating back to 1957, and death registry data available from time of initial 

enrollment from 2006 onward.35 Additional details with respect to disease ascertainment are 

available in the eMethods in the Supplement.

Statistical Analysis

Statistical analysis was performed from July 22, 2019, to November 15, 2019. Comparison 

of baseline characteristics between carriers of pathogenic or likely pathogenic variants and 

noncarriers was performed with the χ2 test for categorical variables and analysis of variance 

for continuous variables. Missing data were excluded. Hazard ratios for disease comparing 

carriers with noncarriers were calculated using Cox proportional hazards regression models 

with the covariates of enrollment age, sex, and genetic ancestry, as quantified by the first 4 

genetic principal components.36 The age-dependent probability of disease in variant carriers 

and noncarriers was quantified using a Cox proportional hazards regression model adjusted 

for sex and the first 4 genetic principal components, with model standardized to the mean of 

each of the covariates. This model was extended to include family history and, when 

statistically significant, its interaction with carrier status. Statistical analyses were performed 

using R software, version 3.5 (R Project for Statistical Computing). Statistical significance 

was set at P < .05, and 2-sided P values were used.

Results

Sequencing of genetic samples from 49 738 participants (mean [SD] age, 57 [8] years; 27 

144 female [54.6%]) identified 8777 total variants present in the 9 genes known to be 

associated with any of the 3 genomic conditions, including 3543 (40.4%) variants in genes 

associated with familial hypercholesterolemia, 2269 (25.9%) in genes associated with 

hereditary breast and ovarian cancer syndrome, and 2965 (33.8%) in genes associated with 

Lynch syndrome. Initial bioinformatic filtering was performed on this list of variants, 

restricting to those predicted to result in loss of function, rare missense variants (the 

maximum population allele frequency <0.005 in Genome Aggregation Database, a publicly 

available genetic variant frequency database),37–39 or variants that were previously classified 

as pathogenic or likely pathogenic in the ClinVar database (Figure 1).40 This filtering 

resulted in 3599 candidate variants for subsequent classification, performed according to 
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current clinical criteria by clinical laboratory geneticists blinded to any phenotype 

information.34 A total of 232 variants met stringent clinical criteria to be classified as 

pathogenic or likely pathogenic, including 50 associated with familial hypercholesterolemia, 

133 with hereditary breast and ovarian cancer syndrome, and 49 associated with Lynch 

syndrome. Details regarding evidence used to support pathogenicity assertions are provided 

for each variant in eTable 2 in the Supplement.

A total of 441 individuals harbored any of these 232 pathogenic or likely pathogenic 

variants, corresponding to a prevalence of 0.89% (95% CI, 0.80%–0.98%). These 

individuals included 131 (0.26%; 95% CI, 0.22%–0.31%) with a variant associated with 

familial hypercholesterolemia, 235 participants (0.47%; 95% CI, 0.41%–0.54%) with a 

variant associated with hereditary breast and ovarian cancer syndrome, and 76 participants 

(0.15%; 95% CI, 0.12%–0.19%) with a variant associated with Lynch syndrome (eFigure 1 

in the Supplement). Baseline characteristics of carriers and noncarriers of pathogenic or 

likely pathogenic variants are provided in eTables 3–5 in the Supplement.

Familial hypercholesterolemia is unique among the 3 genomic conditions because of 

availability of a circulating biomarker (LDL cholesterol) that might serve as an additional 

proxy for pathogenic variant carrier status. Both observed LDL cholesterol levels at time of 

enrollment and estimated untreated LDL cholesterol levels were significantly higher among 

carriers compared with noncarriers: 24 mg/dL higher (95% CI, 15–33 mg/dL; P < .001) for 

observed values and 53 mg/dL higher (95% CI, 44–62 mg/dL; P < .001) for estimated 

untreated values (to convert LDL cholesterol to millimoles per liter, multiply by 0.0259). 

However, the broad overlap in LDL cholesterol values between carriers and noncarriers 

underscores the limitations in the ability to identify variant carriers without access to genetic 

data (eFigure 2 in the Supplement).

Individuals who harbored a pathogenic or likely pathogenic variant experienced substantially 

increased risk of associated diseases. For familial hypercholesterolemia, 28 of 131 carriers 

(21.4%) vs 4663 of 49 607 noncarriers (9.4%) developed atherosclerotic cardiovascular 

disease, corresponding to a 3.03-fold (95% CI, 2.09–4.40) increased risk. For hereditary 

breast and ovarian cancer syndrome, 32 of 116 female carriers (27.6%) vs 2080 of 27 028 

female noncarriers (7.7%) developed associated cancers, corresponding to a 4.11-fold (95% 

CI, 2.90–5.83) increased risk. For Lynch syndrome, 17 of 76 carriers (22.4%) vs 929 of 49 

662 noncarriers (1.9%) developed colorectal or uterine cancer, corresponding to a 12.77-fold 

increased risk (95% CI, 7.90–20.64). Results stratified by gene end points are given in 

Figure 2 and by individual disease end points in eTables 6–9 in the Supplement. Risk 

estimates were similar across the 3 genes associated with familial hypercholesterolemia and 

2 genes associated with hereditary breast and ovarian cancer syndrome. For Lynch 

syndrome, consistent with previous studies,41–44 risk was greatest among those with variants 

in the MLH1 gene (eTable 9 in the Supplement).

Cox proportional hazards regression modeling of cumulative age-specific probabilities of 

disease reinforced the clinical importance of these increased relative risk estimates. The 

estimated probability of developing atherosclerotic cardiovascular disease by age 75 years 

was 34.2% (95% CI, 24.0%–44.5%) in female familial hypercholesterolemia variant carriers 
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vs 12.8% (95% CI, 12.1%–13.4%) in female noncarriers and 60.9% (95% CI, 47.3%–

74.6%) in male carriers vs 26.4% (95% CI, 25.4%–27.4%) in male noncarriers. The 

estimated risk of developing breast or ovarian cancer syndrome by age 75 years in female 

hereditary breast and ovarian cancer variant carriers was 41.1% (95% CI, 30.2%–52.0%) in 

female carriers vs 12.2% (95% CI, 11.5%–12.8%) in female noncarriers, whereas the risk of 

developing male breast cancer by age 75 years was 0.5% (95% CI, 0.2%–0.8%) in male 

carriers and 0.1% (0.1%–0.2%) in male noncarriers. The estimated risk of developing 

colorectal or uterine cancer by age 75 years was 40.8% (95% CI, 25.9%–55.7%) in female 

Lynch syndrome variant carriers vs 4.1% (95% CI, 3.7%–4.5%) in female noncarriers, 

whereas the risk of developing colorectal cancer by age 75 years was 35.5% (95% CI, 

21.7%–49.3%) in male carriers and 3.4% (95% CI, 3.1%–3.8%) in male noncarriers. Risk 

estimates appeared similar among male vs female participants, with no evidence of 

statistical interaction of carrier status by sex for any of the conditions (Figure 3) (eFigure 3 

in the Supplement).

A family history of associated diseases as assessed in the UK Biobank by surveys completed 

at the time of enrollment would have failed to identify most of the individuals harboring a 

pathogenic or likely pathogenic variant. A first-degree relative with disease was reported by 

66.4% (87 of 131) of those carrying a familial hypercholesterolemia variant, 25.5% (60 of 

235) of those carrying a hereditary breast and ovarian cancer syndrome variant, and 36.8% 

(28 of 76) of those carrying a Lynch syndrome variant. Taken together across the 3 genomic 

conditions, a family history was reported in 175 of 441 carriers (39.7%) vs 34 517 of 148 

772 noncarriers (23.3%) (Figure 4).

Both family history of disease and pathogenic variant carrier status were independently 

associated with risk for each of the 3 genomic conditions studied (Figure 5). Within Cox 

proportional hazards regression models, the relative risk associated with a pathogenic variant 

was similar for those with and without a family history of disease. For Lynch syndrome, the 

association of family history with risk of disease was greater among those who reported a 

family history (eFigure 4 in the Supplement). For example, a woman’s risk for developing 

colorectal cancer or uterine cancer by age 75 years was estimated to be 3.9% (95% CI, 

3.5%–4.3%) in a noncarrier without family history and 5.7% (95% CI, 4.7%–6.6%) in a 

noncarrier with family history and 18.7% (95% CI, 3.9%–33.4%) in a Lynch syndrome 

variant carrier without family history and 77.3% (95% CI, 58.0%–96.6%) in a variant carrier 

with family history (eFigure 4 in the Supplement).

The risk estimates presented reflect disease rates despite contemporary clinical practice. 

Many individuals identified with pathogenic or likely pathogenic variants did not receive 

recommended measures for screening and prevention of cardiovascular disease and cancer.
15–17,19,45,46 For example, at the time of enrollment, only 75 of 131 individuals (57.3%) with 

familial hypercholesterolemia variants reported use of LDL cholesterol-lowering 

medications, only 12 of 25 female hereditary breast and ovarian cancer syndrome variant 

carriers younger than 50 years (48.0%) reported having ever undergone mammography 

screening, and only 4 of 15 of those with Lynch syndrome variants younger than 50 years 

(26.7%) reported undergoing screening for bowel cancer.
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Discussion

In this study, we observed a rare pathogenic or likely pathogenic variant associated with any 

of 3 genomic conditions (familial hypercholesterolemia, hereditary breast and ovarian cancer 

syndrome, and Lynch syndrome) in 441 of 49 738 UK Biobank participants (0.9%). These 

individuals were at 3.03- to 12.77-fold relative risk for developing associated diseases 

despite contemporary clinical care, and their conditions were not reliably detected using 

self-reported family history.

These results build on previous efforts to understand the prevalence and clinical importance 

of monogenic risk variants in several key ways. First, blinded classification of genetic 

variants identified using systematic gene sequencing was performed by clinical laboratory 

geneticists. Second, estimates of increased risk were provided within the context of clinical 

care, including lipid-lowering therapy, mammography, and endoscopic screening in many 

participants. Third, all participants provided information about family history of disease in 

first-degree relatives using a structured survey assessment tool. Fourth, we analyzed a large 

cohort of individuals from a national biobank.

Although explicit demonstration that population genomic screening improves outcomes in a 

randomized clinical trial may not be feasible, identification of pathogenic variant carriers 

before disease onset may provide a clinically actionable opportunity for targeted screening, 

early therapy, and cascade testing of first-degree relatives.47 Previous studies have suggested 

that population-wide genomic screening of young adults may be cost-effective, particularly 

if the costs of genetic testing continue to decrease, although this topic warrants additional 

consideration.48 Moreover, although studies to date have not suggested psychologic harm 

associated with genetic risk disclosure, additional study is needed, particularly across a 

diverse set of diseases and individuals.49,50

Individuals with high-risk DNA variants may be difficult to reliably identify without direct 

gene sequencing, even for a condition like familial hypercholesterolemia, which has a 

measurable circulating biomarker with higher levels in carriers. In this study, family history 

of disease was reported in only 39.7% of those who harbored a pathogenic or likely 

pathogenic variant across all 3 genomic conditions, and even when present, clinicians often 

can not distinguish risk associated with shared DNA vs shared environment. Taken together, 

these results indicate an important opportunity to increase recognition and guideline-

supported care of these individuals.

Representative key challenges to widespread implementation of population-based genomic 

screening into clinical practice exist. First, even for genes with known disease associations 

such as those included in this study, rigorous classification of the individual variants using 

current clinical guidelines is necessary.34 This requires manual curation of evidence, which 

relies heavily on a given variant co-segregating with disease within a family-based study, 

absence of presence at an appreciable frequency in diverse population databases of genomic 

variation, and rare allele frequency in global populations. Within our study, only 232 of 8777 

observed genetic variants (2.6%) were ultimately classified as pathogenic or likely 

pathogenic in blinded review by clinical laboratory geneticists.

Patel et al. Page 8

JAMA Netw Open. Author manuscript; available in PMC 2020 June 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Second, few health systems have the necessary personnel and infrastructure to implement 

genomic medicine. Most current electronic health records do not allow for structured 

integration of genetic testing results into a patient’s medical record, which can lead to 

inefficiencies and duplicative testing. Moreover, few clinicians have a nuanced 

understanding of various forms of genetic testing. An instructive recent example involves 

testing for 3 known pathogenic hereditary breast and ovarian cancer variants by 23andMe 

(23andMe Inc), a direct-to-consumer genetic testing company. Although each of these 3 

variants is associated with disease, this test failed to identify more than 90% of pathogenic 

variants.51 Anecdotal evidence suggests that some individuals or clinicians may be falsely 

reassured by a negative (but not comprehensive) test result.52

Third, carriers of monogenic risk variants may infer that they are predestined to develop 

disease. However, despite a several-fold increased risk associated with such variants, we 

estimated that 54.7% of familial hypercholesterolemia variant carriers, 59.0% of hereditary 

breast and ovarian cancer variant carriers, and 61.7% of Lynch syndrome variant carriers 

remain unaffected at age 75 years. This observation was consistent with recent results in a 

US health care system, in which more than 75% of female hereditary breast and ovarian 

cancer variant carriers remained free of disease well into middle age but was different from 

other mendelian diseases in which high-risk variants were associated with disease in a nearly 

1:1 fashion.6 This overlap of disease-associated phenotypes was additionally noted when 

examining the distributions of LDL cholesterol levels in carriers vs noncarriers of familial 

hypercholesterolemia variants; consistent with multiple previous studies,5,53,54 we found a 

substantial right shift but overlapping distributions. Additional efforts are needed to integrate 

genetic and nongenetic factors into integrated risk estimation tools that better facilitate 

shared decision-making for patients and their health care teams. Moreover, these 

observations suggest a potential need to alter the current framework for clinical risk 

disclosure in which risk is described in a probabilistic manner rather than as pathogenic vs 

not pathogenic.55

Limitations

This study has limitations. First, UK Biobank participants were recruited at age 40 to 69 

years, raising the possibility of survivorship or selection bias that limits generalizability to 

younger patients. Second, disease end points were ascertained through participant self-

report, diagnosis codes from inpatient admissions, and national procedure, cancer, and death 

registries rather than manual review of records by a clinician. Third, participants in research 

studies tend to be healthier than the general population; recalibration of disease risk models 

for a given target population may be needed before clinical deployment.27,28,31 Fourth, we 

aggregated all pathogenic and likely pathogenic variants for each monogenic condition 

together, but even among this group, heterogeneity in risk for each specific variant may be 

present.34 Fifth, we analyzed whole-exome sequencing to identify pathogenic variants, but 

some classes of genetic variation, including cryptic splice sites, copy number variants, or 

structural variants, were not reliably detected using this technology.32,33 Previous work 

suggests that such variants account for a relatively small proportion of pathogenic variants, 

but this topic warrants additional study, particularly as algorithms to detect such variants 

continue to improve and whole genome sequencing data become available.56
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Conclusions

The findings suggest that 0.9% of the middle-aged adult population in the UK Biobank 

harbored a pathogenic variant associated with familial hypercholesterolemia, hereditary 

breast or ovarian cancer syndrome, or Lynch syndrome. These individuals were at increased 

risk of disease, even within the context of routine clinical care, and carrier status was not 

reliably detected based on family history. Population genomic screening efforts may enable 

identification of these high-risk individuals before disease onset so that established risk 

mitigation strategies to overcome inherited disease susceptibility can be implemented.
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Key Points

Question

What is the prevalence and clinical importance of pathogenic DNA variants in genes 

associated with familial hypercholesterolemia, hereditary breast and ovarian cancer 

syndrome, and Lynch syndrome in a national biobank?

Findings

In this cohort study of 49 738 participants in the UK Biobank, a pathogenic or likely 

pathogenic variant associated with the 3 genomic conditions was identified in 0.9% of 

participants. These individuals had an increased risk of disease identified by gene 

sequencing that was not found through self-reported family history.

Meaning

The findings suggest that some participants in the UK Biobank harbored a pathogenic 

variant associated with familial hypercholesterolemia, hereditary breast and ovarian 

cancer syndrome, or Lynch syndrome and may have an increased risk of disease even 

within the context of routine clinical care; genomic screening efforts may enhance 

detection and treatment for these individuals.
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Figure 1. 
Filtration and Classification of Variants Identified by Whole-Exome Sequencing

Variants excluded (allele frequency [H11350]0.005) in the Genome Aggregation Database.37 

Predicted loss-of-function variants do not necessarily meet all current standards to be 

classified as pathogenic or likely pathogenic.
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Figure 2. 
Prevalence and Clinical Importance of Pathogenic or Likely Pathogenic Variants for 3 

Genomic Conditions

Risk calculated using Cox proportional hazards regression models with covariates of 

enrollment age, sex, and genetic ancestry as quantified by the first 4 genetic principal 

components for women, men, and total populations.
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Figure 3. 
Predicted Risk of Disease by Ages 55, 65, and 75 Years by Pathogenic or Likely Pathogenic 

Variant Carrier Status

Risk of disease estimated using a Cox proportional hazards regression model standardized to 

the mean of the first 4 genetic principal components and sex and stratified by variant carrier 

status. All P < .001.
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Figure 4. 
Family History of Disease in a First-Degree Relative by Presence of a Pathogenic or Likely 

Pathogenic Variant

First-degree relative with coronary artery disease for familial hypercholesterolemia, breast 

cancer for hereditary breast and ovarian cancer syndrome, and colorectal cancer for Lynch 

syndrome. All P < .001 designate statistical significance of differences in means of family 

history of disease based on variant carrier status.
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Figure 5. 
Age-Dependent Probability of Disease by Pathogenic or Likely Pathogenic Variant Carrier 

Status and Family History

Results estimated using a Cox proportional hazards regression model standardized to the 

mean of the first 4 genetic principal components and stratified by sex, variant carrier status, 

and family history for familial hypercholesterolemia (coronary artery disease, stroke, or 

peripheral artery disease), hereditary breast and ovarian cancer, and Lynch syndrome 

(colorectal and uterine cancer). The interaction of family history with carrier status was 

included in the models for Lynch syndrome variants, in which the interaction term was 

statistically significant.
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