Skip to main content
. Author manuscript; available in PMC: 2020 Sep 12.
Published in final edited form as: Biometrics. 2019 Dec 25;76(3):853–862. doi: 10.1111/biom.13199

Table 3.

Result of Scenario II for n = 200, p*= 0.05 and m = 10. L-logistic — results from the linear determination rule with logistic loss approximation; L-hinge — results from the linear determination rule with hinge loss approximation; plug-in-rf— results from plug-in personalized rule with random forest fitting; plug-in-lg — results from plug-in personalized rule with logistic fitting; plug-in-cv — selecting between plug-in-rf and plug-in-lg with cross-validation.

Method β0 seβ0 β1 seβ1 β2 seβ2 β3 seβ3 TPF seTPF FPF seFPF
α = 0.3 for ‘rule in’
Standard −0.996 0.090 −0.064 1.463 −0.160 1.742 −0.078 2.260 0.221 0.107 0.220 0.109
plug-in-rf 0.763 0.055 0.293 0.054
plug-in-lg 0.213 0.114 0.214 0.118
plug-in-cv 0.763 0.055 0.293 0.054
L-logistic −0.996 0.090 0.336 0.131 0.347 0.121 −0.002 0.167 0.715 0.088 0.312 0.063
L-hinge −1.000 0.000 0.344 0.235 0.333 0.283 −0.013 0.292 0.704 0.107 0.308 0.063
γ = 0.1 for ‘rule out’
Standard 1.000 0.000 −0.016 0.275 −0.004 0.277 0.006 0.379 0.957 0.045 0.956 0.044
plug-in-rf 0.900 0.037 0.524 0.099
plug-in-lg 0.960 0.045 0.959 0.045
plug-in-cv 0.900 0.037 0.524 0.099
L-logistic −0.456 0.890 0.325 0.333 0.325 0.340 −0.011 0.232 0.857 0.049 0.614 0.198
L-hinge −0.970 0.243 0.554 0.179 0.560 0.169 −0.003 0.178 0.881 0.037 0.580 0.077