Table 3.
Result of Scenario II for n = 200, p*= 0.05 and m = 10. L-logistic — results from the linear determination rule with logistic loss approximation; L-hinge — results from the linear determination rule with hinge loss approximation; plug-in-rf— results from plug-in personalized rule with random forest fitting; plug-in-lg — results from plug-in personalized rule with logistic fitting; plug-in-cv — selecting between plug-in-rf and plug-in-lg with cross-validation.
Method | β0 | β1 | β2 | β3 | TPF | seTPF | FPF | seFPF | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
α = 0.3 for ‘rule in’ | ||||||||||||
Standard | −0.996 | 0.090 | −0.064 | 1.463 | −0.160 | 1.742 | −0.078 | 2.260 | 0.221 | 0.107 | 0.220 | 0.109 |
plug-in-rf | 0.763 | 0.055 | 0.293 | 0.054 | ||||||||
plug-in-lg | 0.213 | 0.114 | 0.214 | 0.118 | ||||||||
plug-in-cv | 0.763 | 0.055 | 0.293 | 0.054 | ||||||||
L-logistic | −0.996 | 0.090 | 0.336 | 0.131 | 0.347 | 0.121 | −0.002 | 0.167 | 0.715 | 0.088 | 0.312 | 0.063 |
L-hinge | −1.000 | 0.000 | 0.344 | 0.235 | 0.333 | 0.283 | −0.013 | 0.292 | 0.704 | 0.107 | 0.308 | 0.063 |
γ = 0.1 for ‘rule out’ | ||||||||||||
Standard | 1.000 | 0.000 | −0.016 | 0.275 | −0.004 | 0.277 | 0.006 | 0.379 | 0.957 | 0.045 | 0.956 | 0.044 |
plug-in-rf | 0.900 | 0.037 | 0.524 | 0.099 | ||||||||
plug-in-lg | 0.960 | 0.045 | 0.959 | 0.045 | ||||||||
plug-in-cv | 0.900 | 0.037 | 0.524 | 0.099 | ||||||||
L-logistic | −0.456 | 0.890 | 0.325 | 0.333 | 0.325 | 0.340 | −0.011 | 0.232 | 0.857 | 0.049 | 0.614 | 0.198 |
L-hinge | −0.970 | 0.243 | 0.554 | 0.179 | 0.560 | 0.169 | −0.003 | 0.178 | 0.881 | 0.037 | 0.580 | 0.077 |