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SUMMARY

Despite the remarkable microbial diversity found within humans, our ability to link genes to 

phenotypes is based upon a handful of model microorganisms. We report a comparative genomics 

platform for Eggerthella lenta and other Coriobacteriia, a neglected taxon broadly relevant to 

human health and disease. We uncover extensive genetic and metabolic diversity and validate a 
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tool for mapping phenotypes to genes and sequence variants. We also present a tool for the 

quantification of strains from metagenomic sequencing data, enabling the identification of genes 

that predict bacterial fitness. Competitive growth is reproducible under laboratory conditions and 

attributable to intrinsic growth rates and resource utilization. Unique signatures of in vivo 
competition in gnotobiotic mice include an adhesin enriched in poor colonizers. Together, these 

computational and experimental resources represent a strong foundation for the continued 

mechanistic dissection of the Coriobacteriia and a template that can be applied to study other 

genetically intractable taxa.

Graphical Abstract

eToc blurb:

Bisanz et al. focus on an in-depth study of Eggerthella lenta and the Coriobacteriia class: highly 

prevalent members of the human gut microbiota which have been poorly described. Through 

construction of a paired isolate/genome library, they validate tools for comparative genomic 

approaches to uncover effectors of xenobiotic metabolism and fitness.

INTRODUCTION

A goal of the microbiome field is to leverage metagenomic sequencing datasets to generate 

testable hypotheses about the mechanisms through which the human microbiome shapes 

host health and disease. Follow-up experiments rely on the availability of representative 
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isolates, prompting multiple groups to conduct large-scale culturing efforts to isolate and 

catalog human-associated bacterial strains (Lagier et al., 2016; Poyet et al., 2019). By 

necessity these efforts favor breadth of diversity over in-depth analysis of taxonomic groups 

of interest. Given extensive strain-level variation in the human microbiome (Greenblum et 

al., 2015; Zeevi et al., 2019), these culture collections likely underestimate the metabolic and 

phenotypic diversity of many species.

An alternative and complementary approach is the in-depth analysis of multiple strains 

within a clade as extensive gene loss and gain (Vos et al., 2015) contributes to qualitative 

phenotypic differences within bacterial species. The clinical relevance of these strain-level 

differences has been well-documented for enteric pathogens; for example, virulence factors 

produced by enterohemorrhagic Escherichia coli (Bai et al., 2018), and Bacteroides fragilis 
(Chung et al., 2018). However, pathogenicity islands are the tip of the iceberg: the core 

genome (genes shared by all strains within a bacterial species) generally comprises a 

fraction of the genome. Genome instability can also lead to phenotypically-relevant changes 

during the passaging of strains; for example, the loss of the mucin-binding pilin of 

Lactobacillus rhamnosus GG (Sybesma et al., 2013). Yet, functionally relevant strain-level 

variation within the human microbiome remains poorly understood, due in part to the lack of 

large and well-characterized strain collections outside of model species.

Here, we demonstrate the utility of conducting an in-depth analysis of a single class of 

neglected, but clinically relevant human gut bacteria for which genetic tools are lacking: the 

Coriobacteriia. Many of the Coriobacteriia, particularly Eggerthella and Paraeggerthella, are 

considered to be opportunistic pathogens because of their isolation from bacteremia patients 

(Gardiner et al., 2015). Coriobacteriia catalyze a wide range of biotransformations of drugs 

(Haiser et al., 2013; Koppel et al., 2018), dietary phytochemicals (Bess et al., 2020; Matthies 

et al., 2012), and endogenous compounds (Devlin et al., 2015; Harris et al., 2018; Rekdal et 

al., 2019). They are also associated with multiple chronic diseases including multiple 

sclerosis (Cekanaviciute et al., 2017) and rheumatoid arthritis (Chen et al., 2016). The 

numerous outstanding questions about the causal role and mechanisms through which 

Coriobacteriia impact the etiology and treatment of disease prompted us to develop a 

platform for their study.

In this manuscript, we describe the curation of a collection of paired isolates and genomes 

representing the Coriobacteriia with a focus on Eggerthella lenta. We then comprehensively 

analyze genomic and metabolic variation demonstrating how extensive strain-variability can 

be exploited as a tool for mechanistic research by mapping phenotypic variability to genetic 

determinants. We designed a graphical user interface for this purpose (ElenMatchR) and 

validate its usage on antibiotic resistance phenotypes. Next, we sought to examine 

determinants of competitive fitness which necessitated the development of a computational 

tool for quantification of highly related strains in metagenomic sequencing data (StrainR). 

We uncovered extensive strain competition in the mouse GI tract which was associated with 

an undescribed putative host adhesin molecule which may play a role in host tropism. 

Importantly, the computational and experimental framework established here could be 

readily extended to other lineages of interest or used to continue to address the numerous 

unanswered questions about the biology of gut Coriobacteriia.
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RESULTS

Phylogenetic and taxonomic analysis.

Through public repositories and de novo isolation, we collected 95 genomes (n=48 E. lenta) 

including 42 newly sequenced genomes for analysis paired with 46 isolates for experimental 

analysis (Table S1). Newly sequenced genomes are high-quality drafts with a low number of 

contigs (59 [16–134]) and high N50 (135,856 [50,271–627,931]) (median [range]) and low 

rates of duplicated marker genes (Table S1). Our analysis also included 12 metagenome 

assembled genomes (MAGs) with 95.6% [92.0–99.2] estimated completion and 1.5% [0–

4.4] estimated contamination (Nayfach et al., 2019).

As many isolates do not have an assigned species, taxonomy was refined first on the basis of 

16S rRNA alignment and subsequently on whole genome-based phylogeny and average 

nucleotide identity (ANI; Figure 1AB, Figure S1A–C). This analysis confirmed the majority 

of the taxonomic assignments, while also highlighting taxonomic inconsistencies in the 

Coriobacteriia. Eggerthella sp. YY7918 was isolated from human feces; however, our 

analysis clearly places it outside both genera suggesting it may represent both an unnamed 

species and genus within the Eggerthellaceae. The inclusion of this species into common 

databases for taxonomic assignment of sequencing reads may skew accurate identification 

and quantification of the genus Eggerthella in metagenomic datasets (Truong et al., 2015). 

Other instances of inappropriate assignment of species are obvious based on examination of 

the distributions of ANI between assigned species (Figure 1C). The type strains of 

Gordonibacter faecihominis and G. urolithinfaciens exhibit 98.9% ANI and 98.4% 16S 

rRNA similarity. Similarly, the type strains of Asaccharobacter celatus and Adlercreutzia 
equolifaciens are consistent with a single species and genus (97.0% ANI, 99.9% 16S rRNA) 

(Nouioui et al., 2018). Newly isolated strains consistent with this clade were assigned to A. 
celatus based on their closest alignment to this type strain at the time of genome sequencing. 

Finally, Gordonibacter sp. 28C has not been assigned a species as it demonstrates only a 

92.0% ANI to the nearest proposed type strain G. massiliensis Marseille-P2775 and thus it 

may be proposed to represent an undescribed species.

Finally, phylogenetic analysis and ANI revealed the presence of a set of genomes which 

were nearly identical to another genome in the dataset (n=8, ANI = 99.996 [99.990 – 

99.999], median [range]). These isolates shared common history such as being isolated from 

the same host or represented resequencing of a publicly available genome. These clonal 

genomes were de-replicated before additional analysis and are identified in Table S1.

Polymorphisms in E. lenta type-strain stocks.

The type strain of E. lenta (DSM 2243 = ATCC 25559 = VPI 0255 = 1899 B) was 

sequenced and closed using a combination of Sanger and pyrosequencing (Saunders et al., 

2009). Given our desire to map phenotypes to subtle genomic variation, we resequenced our 

lab isolate (termed UCSF 2243) and freshly obtained stocks from the DSMZ and ATCC 

collections using high-coverage Illumina sequencing (326 to 1,120-fold coverage; Figure 

1D). Aligned sequence data covered the entire reference genome assembly (CP001726.1); 

however, we identified multiple shared and stock-specific variants (Figure 1E, Table S2). 
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The highest number of unique variants were observed in our lab stock (n=30), followed by 

ATCC (n=9), and DSMZ (n=5). A missense variant (Gly52Asp) in a putative beta-lactamase 

was observed in the ATCC 25559 isolate which was consistent with its subtle but clinically 

relevant increase in penicillin G minimal inhibitory concentration (1 μg/mL) relative to the 

DSMZ and UCSF stocks (0.25–0.5 μg/mL; Table S3), although additional experimental 

validation is warranted. We also observed an 9.2±2.6% (mean±sd) increase in coverage at a 

putative prophage (3.03–3.06 Mbp) in all three stocks, suggesting that it may be replicative 

during in vitro growth. Together, these observations underlie the importance of routine 

resequencing of lab stocks to increase rigor and reproducibility.

Analysis of the E. lenta pan-genome.

To facilitate comparative genomic analysis, we analyzed gene content across dereplicated E. 
lenta genomes (n=42) by clustering all predicted coding sequences into orthologous groups 

(OGs) (Lechner et al., 2011). Rarefaction analysis demonstrates an open (unsaturated) pan-

genome (Figure 2A). The core genome contains 771 OGs while the accessory genome 

contains 8,387 OGs. Every additional genome sequenced adds a median of 107 additional 

genes (range 21–325). Distributions of both OGs and functional annotations (KEGG 

orthologous groups [KOs]) show a high degree of strain variability with a number of genes 

and KOs being observed in a limited subset of strains (Figure 2B). Visualization of genome 

conservation relative to the closed reference E. lenta type strain genome (Figure 2C) 

revealed multiple large genomic islands indicative of horizontal gene transfer including a 

large ~150 Kbp region (HGT1) and a second region (HGT2) previously described due to its 

association with an 8 bp GAGTGGGA motif present recognized by P4 integrases (Song et 

al., 2012).

To characterize the contribution of plasmids to the pan-genome of E. lenta, we searched for 

high coverage contigs within genome assemblies uncovering 13 such instances in 12 

genomes, of which one represented a homologous prophage to that of DSM 2243 (90.0% 

global identity, Figure 1D). The remaining putative plasmids contained direct repeats on 

their termini indicative of being circular which was confirmed by PCR (Figure S2AB). The 

observed plasmids could be grouped into 3 families on the basis of BLASTN similarity 

without significant homology to previously isolated and sequenced plasmids (e-value<10; 

BLASTN against the RefSeq plasmid database; Figure S2C). Notably, these plasmids do not 

contain genes with obvious functions that may impart a selective advantage to these strains 

such as antibiotic resistance or virulence factors. As a step towards genetic engineering in E. 
lenta, we observed that kanamycin resistance is a rare trait in the species (n=3 resistant E. 
lenta, Table S3) and we validated a predicted aminoglycoside phosphotransferase which 

could serve as a selectable marker gene for cloning applications (Figure S2D).

Metabolomic diversity in E. lenta.

We further profiled the metabolic diversity of 30 strains grown in liquid culture using 

untargeted metabolomics (n=25 E. lenta). After quality filtering, we obtained a dataset 

describing 173 metabolite features, including 31 high-confidence identified compounds 

(18% of the high-quality features). We first investigated whether these metabolite profiles 

are a direct function of phylogenetic relatedness between strains, finding profiles partially 
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separated strains according to phylogeny, with a distinct separation of taxa outside the 

Eggerthella and a significant correlation between phylogenetic and metabolic distance 

(Figure 2DE). Examining individual metabolite features, we identified 47 features (27.2% of 

total) that were significantly depleted in most (≥80%) strain cultures compared with media 

controls, including 20 assigned an identification. These 20 identified features were all 

various dipeptides of 8 amino acids, suggesting common utilization of these resources. In 

contrast, we found evidence of strain-specific metabolite production: of the 51 features 

significantly enriched in any culture, 36 were increased in 5 or fewer strains (Figure 2F, 

Figure S3A).

Next, we performed a preliminary analysis to assess whether cross-strain comparisons could 

inform the identification of the large majority of features (82%) not identified by library 

standards, as well as the inference of mechanistic links between genes and metabolites. 

Looking within 24 E. lenta strains, we found patterns of variable genes that coincided with 

large differential abundances in metabolite features (Figure S3BC). 27 highly differentially 

abundant features were associated with the presence or absence of gene family sets (Table 

S4). While only 4 of these metabolite features had an established identification, 22 were 

linked by this analysis to gene families with functional KEGG annotations, generating 

hypotheses on the metabolic roles of these features. For example, multiple identified 

dipeptide features were absent or substantially reduced in E. lenta 1-3-56 FAA cultures, 

which lacks two KOs involved in amino acid metabolism, indicating altered pathways for 

transport and/or metabolism of dipeptides. Unidentified variable metabolite features were 

associated with genes in several metabolic pathways, including iron and sulfur transport and 

metabolism, and gamma-polyglutamate biosynthesis. Interestingly, only one of the 27 

feature-gene pairs were identified with low confidence by a metabolite-gene integration 

analysis based on homology search of enzyme databases (Erbilgin et al., 2019). Our 

analyses suggest that integrated cross-strain comparisons can be a source of hypotheses to 

guide follow-up studies on the identity and function of metabolites and gene families, 

particularly those that are poorly represented in reference databases, although further 

validation is needed to confirm the specific links reported here.

Natural product biosynthesis.

Examination of the E. lenta pan-genome identified several widespread natural product 

biosynthetic gene clusters (Figure 3AB). A subset of the strains encode the non-ribosomal 

peptide synthetase (NRPS) machinery required to produce a compound belonging to the 2-

hydroxyphenylthiazoline family (Figure 3C), members of which are also present in other 

Actinobacteria (Seipke et al., 2011). Given the environment in which these species were 

found, it is likely that as with the similar metallophore yersiniabactin, this compound may 

not be a simple siderophore but may play a more complex role involving multiple metals and 

responses to oxidative stress as well as metal homeostasis in the host environment (Paauw et 

al., 2009; Robinson et al., 2018). A nanocompartment-forming encapsulin (annotated as a 

bacteriocin) and its rubrerythrin cargo are also likely to be involved in the cellular response 

to iron deficiency or oxidative stress (Figure 3D; Giessen and Silver, 2017). Most strains 

contain gene clusters that encode a set of hypervariable ribosomally produced post-

translationally modified peptides (RiPPs, Figure 3E) that are related to (but distinct from) 
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sactipeptides and ranthipeptides (Hudson et al., 2019). The core biosynthetic enzyme in 

these RiPP pathways is a radical SAM enzyme which constitutes a previously unidentified 

family (Figure 3F) and is predicted to mediate sulfur-carbon bond formation in at least 7 

significantly different precursor peptides (Figure 3G), while a combined protease/exporter 

cleaves the leader peptide to release the mature RiPP (Håvarstein et al., 1995). Finally, the 

components necessary to produce the carotenoid lycopene and its precursors via the 

deoxyxylulose 5-phosphate/methylerythritol 4-phosphate (MEP/DOXP) pathway (Paniagua-

Michel et al., 2012) are encoded in all of the genomes which we investigated (Figure 3H).

Gene-phenotype matching via comparative genomics.

A major motivation for assembling this collection of strains and genomes was to facilitate 

the discovery of genetic determinants of the metabolism of pharmaceutical, dietary, and 

endogenous compounds. Drawing on the logic of tools using random forest classifiers for 

correlating genes with phenotypes (Bayjanov et al., 2012), we developed ElenMatchR, a 

purpose built tool with built-in databases for the discovery of effector genes in our strain 

collection (Figure S4A). Briefly, user-provided phenotypes are used as the input to a 

classifier with binary gene presence or k-mer content as predictors. Features are then 

extracted from the model and ranked on variable importance with a number of helpful 

graphical outputs to aid the user in interpreting the data.

As an initial validation case, we sought to further examine antibiotic resistance in E. lenta. 

Tetracycline resistance displayed a bimodal distribution of minimum inhibitory 

concentrations (MIC) in both broth microdilution (Figure 4A) and E-test assays (Figure 4B) 

suggesting the presence of a resistance mechanism (n=14 resistant and sensitive). Using 

ElenMatchR with a clustering threshold of 30% amino acid identity and 50% coverage, we 

uncovered a single gene cluster (OG2477) with elevated importance (Figure 4C) which is 

only observed in resistant strains (Figure 4D). This gene, annotated as tetW in E. lenta DSM 

11767, is predicted to be a ribosomal protection protein. We validated that this gene imparts 

tetracycline resistance through heterologous expression in E. coli (Figure 4EF).

This test case also demonstrates the utility of Random Forests given their ability to detect the 

combined predictive power of interacting features (Breiman, 2001). The tetracycline 

resistance protein is present as two homologs (tetO and tetW) with 67.3% amino acid 

identity to each other. These two homologs occur in a mutually exclusive pattern within 

resistant strains (Figure S4B). When running at more stringent clustering thresholds, these 

proteins are separated into two orthologous gene clusters; however, both homologs are 

present in the default outputs as predictive features (Figure S4B).

As additional demonstration cases, we have packaged ElenMatchR with phenotypic data for 

three clinically relevant biotransformations: digoxin, pinoresinol reduction, and dopamine 

dehydroxylation. In the case of digoxin metabolism, we were able to map metabolism to a 

single locus of genes termed the cgr-associated gene cluster (Figure S5A–C). Combining 

these observations with transcriptomic data led to a single gene termed cardiac glycoside 

reductase 2 (cgr2) which was expressed in Rhodococcus erythropolis, confirming activity 

(Koppel et al., 2018). We mapped pinoresinol metabolism to a two-gene locus containing 

benzyl-ether reductase (ber) and its putative transcriptional regulator (Figure S5D–F). The 
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ber gene was cloned into E. coli and confirmed to be active (Bess et al., 2020). The 

metabolism of dopamine proved to be more complicated as no single gene was predictive of 

metabolic activity. Through transcriptomic analysis, we uncovered dopamine dehydroxylase 

(dadh) and determined activity is conferred by a missense SNP variant (Rekdal et al., 2019). 

This led to the refinement of ElenMatchR to also detect SNPs by applying 31-mers as the 

predictors instead of gene content. This method reveals a set of overlapping k-mers 

associated with perfect predictive accuracy covering the explanatory SNP (Figure S5G–I). 

Taken together, these results provide strong support for the utility of ElenMatchR for rapidly 

identifying causal genes responsible for antibiotic resistance and small molecule 

biotransformations of interest.

Culture-independent quantification of E. lenta.

Given the difficulty in selectively isolating and enumerating E. lenta in culture, we leveraged 

our pan-genome analysis to design an assay for quantitative analysis of E. lenta in mixed 

communities. We identified a single copy gene, termed elenmrk1 (Genbank: 

WP_009608299.1), a putative luxR-family transcriptional regulator which is highly 

conserved (>98.5% nucleotide identity) in all E. lenta strains, but undetectable in the other 

analyzed Eggerthella and Coriobacteriia genomes. We then designed a double-dye qPCR 

assay to facilitate multiplexed quantification with a second assay targeted to specific E. lenta 
effector genes including cardiac glycoside reductase (cgr). Benchmarked against 

metagenomic data, dilution series, and mono- and mock community-colonized gnotobiotic 

mice, we were able to detect E. lenta at as little as 1,400 genome copies/g with detection 

robust to the presence of other highly abundant organisms (Figure 5AB, Table S5). We also 

confirmed E. lenta’s ability to colonize across the murine small and large intestines (Figure 

5C). Finally, we used this assay to examine E. lenta prevalence and abundance in human 

populations, increasing the prevalence estimate from 41.5% based on metagenomic 

sequencing to 81.6% and have previously reported this finding but report its development 

here (Koppel et al., 2018).

Mapping genetic determinants of bacterial fitness.

While inter-species competition in the gut microbiota has been extensively studied (Patnode 

et al., 2019; Theriot and Young, 2015; Verster and Borenstein, 2018), the mechanisms that 

govern strain-level (intra-species) competition remain poorly understood. Part of the reason 

for this knowledge gap is the technical challenge in quantifying competitive growth at the 

strain-level. Culture-based enumeration would require individual sequencing of colonies to 

determine strain identity and thus provide a shallow sampling of diversity. Quantitative PCR 

(qPCR) is a viable candidate; however, the assay development and reaction number make 

this experiment cost and time-prohibitive. Finally, shotgun sequencing is high-throughput 

and relatively affordable, but computational methods for accurately quantifying closely 

related strains are not widely available requiring the development of an applicable tool.

To test our ability to quantitatively distinguish E. lenta strains using shotgun sequencing 

data, we simulated a 22-strain mixed population with equal abundances (Figure S6). We 

were able to map 8.1% ± 3.7e−5% of reads conclusively to their strain of origin (n=3 

replicate simulations; mean ± sd); however, the composition of these pools was highly 
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skewed as a function of the divergence from other strains in the pool (Figure S6A–C). We 

reasoned that we could correct for the number of potential mapping sites by quantifying 

uniqueness in terms of read-sized k-mers which we found was correlated with mapping rate 

and thus the apparent relative abundance (Figure S6A–C). Given the low rate of 

quantitatively informative reads, we sought to maximize their use: as opposed to quantifying 

only unique gene islands or core gene SNPs, we devised a method of normalization (FKM; 

fragments per thousand unique k-mers per million reads mapped) to adjust for this bias. In 

preliminary testing, we observed a bias leading to inflated abundances in plasmid-carrying 

strains (Figure S2). To prevent the undue influence of multicopy elements, varied quality in 

assemblies, and inherent noise in coverage over the genome, we segmented each genome 

into smaller 50kb bins in silico and treated each of these as an independent unit of 

measurement. This allowed for multiple point estimates of any given strain’s abundance 

wherein the median value is highly stable and taken forward as the strain’s abundance for 

that sample (Figure S6D).

We developed a tool for normalization that consists of two steps: PreProcessR which 

processes the input genomes and generates the indices for k-mer normalization, and StrainR 

which calculates abundances and can be run in parallel on individual samples (Figure S6E). 

Using StrainR normalization we observed that the skew of the input pool decreased from 28-

fold to 1.8-fold between the highest and lowest abundance strains in an even in silico pool 

(Figure S6CD). Furthermore, StrainR was capable of accurately recapitulating community 

abundances across a range of sequencing depths and compositions, including detecting the 

deletion of strains from the pool (Figure S6F).

Having validated our methods for strain quantification from metagenomes, we next sought 

to establish an experimental system for screening competitive fitness. We constructed a 

synthetic population of 22 E. lenta strains pooled at equal colony forming units (CFUs). The 

resulting 22-strain mix was cultured in brain heart infusion (BHI) media supplemented with 

1% arginine. The same pool was also used to colonize germ-free Swiss-Webster mice to 

compare and contrast the outcomes of strain-level competition under laboratory conditions 

and within the mammalian gastrointestinal tract (Figure 6A). As a positive control, half of 

our cultures and mice were exposed to tetracycline providing a strong selective pressure for 

TetR strains with a known genetic determinant (Figure 4).

The total abundance of E. lenta was unaffected by the inclusion of tetracycline both in vitro 
and in vivo (Figure S7A), suggesting that any antibiotic-induced differences occur in the 

relative proportions of strains in the population. After StrainR normalization, we observed 

all 22 strains present in our input pool with a 3.2-fold maximum difference in strain 

abundances (Figure 6B, Table S6). Highly reproducible community shifts were observed 

across replicates (Figure 6CD) with a selection for drug-resistant strains in the presence of 

tetracycline indicating its utility as a positive control. In the vehicle control, a wide spectrum 

of abundances was observed but without a complete loss of any of the strains (Figure 6D). 

Despite the marked effect of tetracycline, there was still a significant correlation between the 

two treatment groups for TetS strains (rho=0.88, P=0.007) when considered separately 

(Figure 6E). We also detected a significant correlation between growth rate in isolation and 

competitive growth in the vehicle control (Figure 6F, Figure S7B–D).
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To map the genetic determinants of intra-species competition, we adapted ElenMatchR to 

accept a continuous outcome variable and applied a Random Forest regression model. As 

expected, this method identified tetW/tetO as the major determinant of competitive 

advantage in the presence of tetracycline at both time points (Figure 6G and Table S7). In 

the absence of tetracycline, multiple genetic signatures of competitive advantage and 

disadvantage were observed; however, there is no single strong predictor suggesting that 

multiple mechanisms are involved in the competitive growth phenotype (Figure 6H).

Of the top 20 predictors of competitive growth (Table S7), 7 are putative transcriptional 

regulators. Two of these regulators are the strongest predictors of a competitive growth 

advantage (gene clusters 2798 and 2901). Gene cluster 2798 in particular flanks carbamate 

kinase which catalyzes the final enzymatic step of the L-Arginine degradation V pathway, 

which fits with the observation that arginine is an essential substrate for the growth of E. 
lenta (Sperry and Wilkins, 1976). We also identified a component of a chromosomal toxin-

antitoxin system which negatively predicted competitive fitness (2748). When found on the 

chromosome, these systems have been suggested to slow growth and/or initiate cell death in 

an altruistic manner which may be taken advantage of by toxin-antitoxin system-deficient 

strains (Yamaguchi and Inouye, 2011).

The outcomes of in vivo competition differed with the near-complete dominance of two TetR 

strains (22C and 1-3-56FAA) irrespective of the presence of tetracycline (Figure 7AB). 

Despite these condition-dependent differences in fitness, we were still able to detect a 

significant correlation between in vitro (24 h) and in vivo (4 days) (rho=0.63, P=0.002, 

Figure 7C). While the rank order outcomes may be correlated, their magnitude and 

distribution vary considerably emphasizing the unique selective pressures found within the 

gastrointestinal tract. Mapping of colonization outcomes at the endpoint samples using 

ElenMatchR revealed that 19/20 predictors were non-overlapping (Table S7, Figure 7D). 

The sole exception was the arginine metabolism-associated transcriptional regulator (2798, 

Table S7), emphasizing the critical role of arginine for E. lenta growth. The strongest 

predictor of competitive growth during in vivo colonization was a putative surface adhesin 

enriched in poor colonizers (Figure 7E). This membrane protein has homology to the 

repeated collagen-binding protein b-type domains of Staphylococcus aureus (Deivanayagam 

et al., 2000) and the prealbumin-like fold domain of the epithelial-binding SpaA-encoded 

pilus of Corynebacterium diphtheriae (Kang et al., 2009) (Figure 7F). We also detected a 

significant correlation (Blomberg et al., 2003) between phylogeny and colonization 

efficiency (K=0.93, P=0.013), and between phylogeny and the putative adhesin (K=1.05, 

P=0.004). These results suggest that more recently diverged strains are less fit in vivo 
(Figure 7G) and highlight the importance of considering physical interactions between E. 
lenta and host tissues mediating bacterial colonization and long-term fitness.

DISCUSSION

Our investigation of the Coriobacteriia demonstrates the utility, generalizability, and 

recyclability of comparative genomics for conducting mechanistic studies on intractable 

taxa. Additionally, the identified and validated resistance markers combined with the 

plasmids and bacteriophage we have identified provide a first step towards the development 
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of tools for genetic engineering of E. lenta. Our sensitive assay for the detection and 

quantification of E. lenta and a key gene of interest (cgr2) will provide a useful tool in the 

context of human cohort and pharmacokinetic studies. More broadly, the additional genomes 

generated in this analysis will aid future metagenomic studies by providing a more 

comprehensive representation of the E. lenta pangenome and the taxonomy of the 

Coriobacteriia. The importance of strain-resolved studies is also reinforced by our finding of 

extensive within-species variability in E. lenta metabolite production. This observation is 

consistent with previous work showing that metabolic divergence of gut microbes is 

associated with phylogeny on a large scale but not at close range (Bauer et al., 2016; Plata et 

al., 2015).

To date, there are limited large-scale experimental studies on bacterial intraspecies 

(intraspecific) competition in members of the human gut microbiome. Much of this work has 

focused on the role of Type VI secretion systems among gram-negative microbes (Hecht et 

al., 2016), but additional mechanisms that drive this phenomenon need further study. 

Previous work has demonstrated both lottery-like and non-random assembly at the species 

level in public datasets (Verster and Borenstein, 2018); however, experimental systems to 

understand the dynamics of colonization and competition within species are needed given 

the increasing shift towards strain-resolved microbiome studies (Ferretti et al., 2018; Garud 

et al., 2019; Goltsman et al., 2018; Lee et al., 2013).

Our observations that the outcomes of competition in vitro are correlated with growth rate 

rather than a potential mechanism of competitive interference and/or antagonism are of note 

given conventional ecological theory suggesting that interference is often highest among 

related organisms sharing an overlapping niche (Connell, 1983). Given that these 

experiments were performed in rich media and the cultures were kept in a near-continuous 

state of exponential growth, perhaps these mechanisms never manifested. Alternatively, our 

in vivo model may provide a more plausible biological system wherein clear exclusion took 

place. This experiment also supports the importance of host interactions in shaping bacterial 

fitness, due to the decreased growth of strains containing a putative host adhesin. This result 

is surprising given that host adhesion is typically considered to promote colonization 

(Kankainen et al., 2009); however, our results may suggest that adhesion could be 

detrimental because of immune interactions, reduced growth, enhanced clearance, or other 

mechanisms. The appearance of this trait later in the evolutionary history of E. lenta may 

indicate a more specialized role in the tropism of E. lenta for the human and perhaps a 

function in persistence rather than colonization. Experiments exploring longer-term 

colonization, higher density sampling, and intraspecies competition in the context of a more 

complete microbiota will help establish the significance of this finding. A key caveat of 

these results is that the analysis of our competition experiment does not address 

recombination between strains and treats each strain as a static unit. However, our method of 

quantification would not be affected by this phenomenon given its use of multiple genome 

segments for quantification. Re-analysis of communities with long-read approaches would 

help to detect these events (Douglas and Langille, 2019); however, the non-stochastic 

outcomes across multiple isolated communities would suggest these low-frequency 

occurrences are likely not a major driving force of outcomes. A second caveat is that the 

determinants of fitness in the human and mouse GI tracts may differ; however, this in and of 
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itself creates opportunities to better understand the nature of host-microbe interactions for 

this understudied taxon.

Together, these results highlight that moving beyond shallow coverage of diversity in gut 

microbiota isolates will improve our collective understanding of the role of the microbiome 

in health and disease. Our data emphasize that single type strains and their genomes do not 

accurately represent the genotypic and phenotypic diversity within a given clade. In some 

cases, even single nucleotide polymorphisms can have phenotypic consequences, 

necessitating genome-wide nucleotide. Mechanistic studies into the basic biology of the 

Coriobacteriia coupled to translational studies in preclinical models and human cohorts are 

critical to gaining a greater understanding of the role of these intestinal symbionts in human 

health and disease. The tools and resources described in this manuscript have been 

developed for the greater scientific community including our open source ElenMatchR and 

StrainR approaches. Newly isolated strains have been deposited to the German Collection of 

Microorganisms and Cell Cultures (DSMZ) facilitating additional phenotype-genotype 

matching experiments by interested groups. Furthermore, the use of naturally occurring 

genetic and phenotypic variation within as-yet genetically intractable species to uncover 

effector genes is generalizable and will prove valuable in the study of other poorly 

characterized members of the human microbiome.

STAR METHODS

LEAD CONTACT AND MATERIALS AVAILABILITY

Lead Contact—Further information and requests for resources and reagents should be 

directed to the Lead Contact Peter Turnbaugh (Peter.Turnbaugh@ucsf.edu).

Materials Availability—Bacterial Strains generated as part of this study are available from 

the German collection of Microorganisms and Cell Cultures (DSMZ) and will be made 

available directly from the authors upon reasonable request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human Studies—Human samples were collected and analyzed as part of a diet-

intervention study whose analysis is described elsewhere (clinicaltrials.gov registration: 

NCT01105143). Human experiments were approved by the ethics committee of the Charité-

Universitätsmedizin Berlin.

Mouse Husbandry and Experiments—All mouse experiments were approved by the 

University of California San Francisco Institutional Animal Care and Use Committee. For 

the quantification of E. lenta in gnotobiotic mice, germ-free Swiss Webster mice were 

obtained from the UCSF Gnotobiotics core facility (gnotobiotics.ucsf.edu) and housed in 

gnotobiotic isolators (Class Biologically Clean). For the mono-colonization experiment, 

each of 10 male Swiss Webster 10–15 week old mice were orally gavaged with an inoculum 

of 1E8 CFUs of E. lenta DSM 2243 (prepared in an anaerobic environment and suspended in 

200 μL PBS, which contained 0.05% L-cysteine-HCl). Mice were allowed to feed ad libitum 

on one of two isocaloric, isonitrogenous semi-purified diets composed of 10% sesame seeds 
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(Teklad custom research diet). One diet was supplemented with 0.5% L-arginine 

(TD.150470) and provided to 5 mice; the other diet contained no supplemented L-arginine 

(TD.150471) and was provided to the other 5 mice. At 14 days following colonization, mice 

were euthanized, and the contents from each segment of the GI tract were collected. 

Arginine levels were not found to impact colonization (P>0.05, linear mixed effects model). 

Mice in all subsequent experiments were fed LabDiet 5021 ad libitum. For the 10-member 

mock community, 1E8 CFUs of each member (Table S5) was combined and 1E8 CFUs (in 

200 μL saline + 0.5% cysteine) was administered to 7 germ-free 10 week old Swiss Webster 

mice (3 males and 4 females). After 18 days, mice were sacrificed and contents collected 

from each segment of the GI tract. For the competition experiments, the pooled strains were 

administered via oral gavage to 10 11-week old female Swiss Webster germ-free mice 

housed individually in duplex cages which were sacrificed after 8 days.

METHOD DETAILS

Strain Isolation and Culture.—Strains were isolated in multiple medias. Briefly, this 

includes Eubacterial minimal media supplemented with 1% w/v arginine, 50 μg/mL 

hygromycin, and 25 μg/mL nalidixic acid; brain heart infusion agar (BHI) supplemented 

with 1% arginine; fastidious anaerobe agar (FAA); and nutrient agar. All strains were 

isolated under anaerobic conditions at 37°C. Routine culturing was carried out under 

anaerobic conditions (Coy Lab Products) using the appropriate media listed in Table S1. 

Media used for routine experimentation were BHI+ (BHI with 1% arginine), BHI++ (BHI 

with 1% arginine, 0.05% L-cysteine-HCl, 1 μg/mL vitamin K, 5 μg/mL hemin, and 0.0001% 

w/v resazurin), or TSA blood + (tryptic soy agar with 0.5% arginine and 5% sheep blood).

Library preparation and sequencing.—Genomic DNA was prepared from anaerobic 

24 h liquid cultures using the media described above before extraction using the Powersoil 

DNA extraction kit (MoBio), PureLink genomic DNA minikit (ThermoFisher) or DNeasy 

UltraClean Microbial kit (Qiagen). Libraries were prepared with either an Apollo 324 

instrument, the Nextera XT kit (Illumina), or TruSeq PCR-free kit (Illumina). Libraries were 

sequenced according to the platform and chemistry listed in Table S1.

Genome assembly and annotation.—Demultiplexed sequences were first stripped of 

PhiX using bbduk version 37.97 before quality filtering using fastp version 0.20.0 (Chen et 

al., 2018) with the following parameters: --detect_adapter_for_pe --trim_poly_g --cut_front 

--cut_tail --cut_windowsize 5 --cut_mean_quality 20 --length_required 70. Resulting reads 

were overlapped using vsearch 2.13.4 (Rognes et al., 2016) with both paired and overlapped 

reads being used for assembly with SPAdes 3.13.1 (Bankevich et al., 2012). Coverage was 

estimated using bbmap version 37.97. Prokka version 1.13.3 was used to annotate genomes 

with the following parameters --kingdom Bacteria --gram pos --mincontiglen 200. Genome 

completeness and contamination was determined using CheckM (Parks et al., 2015). 

Assembly statistics were generated using Quast version 5.0.2 with --min-contig 200 

(Gurevich et al., 2013). The 16S rRNA phylogenetic tree was determined by extracting the 

longest predicted 16S rRNA from genome assemblies with Bifidobacterium animalis subsp. 

lactis DSM 10140 as an outgroup (accession GCA_000022965.1). The tree was generated 

using FastTree (Price et al., 2009) from alignments created using DECIPHER (Wright et al., 
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2016). Phylogenetic trees were created from 400 universal conserved proteins (PhyloPhlAn 

(Segata et al., 2013)) and a subset of 195 core Eggerthella genes determined using Roary 

(Page et al., 2015) with Fast Tree. Whole genome average nucleotide identity was calculated 

by the Pyani package (widdowquinn.github.io/pyani/). When necessary, coding sequences 

were manually annotated using InterProScan5 (Jones et al., 2014).

Comparative genomic analysis.—Clustering of gene orthologs were carried out using 

ProteinOrtho6 (Lechner et al., 2011) across variable coverage and identity settings using 

Diamond for alignment (Buchfink et al., 2015). Determination of core and accessory gene 

counts were conducted using the output of ProteinOrtho6 at 60% identity and 80% coverage 

cutoffs using 42 samplings of strain combinations at each step of genomes analyzed. 

Pangenome calculations were benchmarked against Roary (Page et al., 2015) and LS BSR 

(Sahl et al., 2014) with default parameters providing consistent results (spearman 

correlations of binary distance based on gene content rho>0.941, P<2.2e-16). KEGG 

orthologies were determined using GhostKoala (Kanehisa et al., 2016). The circular BLAST 

comparison was generated by splitting the E. lenta DSM 2243 type strain genome into 

successive 1000 bp ranges and aligning these against all strains (BLAST). These were then 

plotted in a circular representation colored by nucleotide identity. Genetic variation between 

DSM 2243 isolates was determined by using the tool Snippy (github.com/tseemann/snippyv) 

after downsampling to an even 7.2 million reads and was verified using manual inspection of 

read pileups and breseq (Barrick et al., 2014). >99.83% of reads mapped to the reference 

assembly (CP001726.1) and assembly of the unmapped portion yielded single contigs with 

100% coverage and 99.92% identity to PhiX174.

Identification of biosynthetic gene clusters.—AntiSMASH 5.0 was used to initially 

identify gene clusters in the E. lenta genomes (Blin et al., 2019). Where gene clusters were 

split across multiple contigs, tBLASTn was used to identify any contigs not identified by 

antiSMASH. PRISM (Skinnider et al., 2017), InterProScan (Jones et al., 2014), HMMScan 

(Potter et al., 2018), PKS/NRPS (Bachmann and Ravel, 2009), and RODEO (Tietz et al., 

2017) were used to further investigate or confirm the identification of specific genes and 

their encoded domains. Manual annotation was used to confirm RiPP precursor peptide 

identification. To investigate the relationship between the RiPP-modifying radical SAM and 

potentially related enzymes, the top 500 IMG (Chen et al., 2019) BLAST results for 

representative enzymes (the E. lenta enzyme, TrnC, HuaB, SkfB, AlbA, SboB, ThnB, CteB, 

PapB, TTE1186, QhpD, and NxxcB) were pooled and submitted to the EFI-EST web tool 

(Zallot et al., 2019) in order to construct a sequence similarity network. The final network 

used a 95% identity cutoff for representative node condensation and a 1e-60 alignment score 

cutoff for clustering. Nodes were colored according to identifiable membership in a specific 

RiPP biosynthetic enzyme family.

ElenMatchR.—A user provided xlsx file is uploaded containing assigned categorical 

phenotypes. If running on genes, user defined thresholds for clustering identity and coverage 

are used to recall a table of gene content which is subsequently binarized and features which 

occur in all or no strains are removed. If running on k-mers, a sparse matrix of k-mer 

occurrence which has been dereplicated into co-occurring clusters is loaded and subset as 
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above. The feature table is then fed to the randomForest function (Random Forest 4.16–4, R) 

which is repeated by a user defined parameter. Importance values (mean decrease GINI) are 

subsequently extracted and summary statistics reported. Features are subsequently ranked by 

their average importance for display. Visual outputs are generated using ggplot2 (Wickham, 

2016) using user defined parameters for number of features and reference genomes, and a 

fasta file is generated for top features containing either each coding sequence or individual 

k-mer within a given dereplicated k-mer cluster. For demonstration cases, clonal-isolates 

have been dereplicated, i.e. represented as a single strain. Source code and databases are 

available at github.com/turnbaughlab/ElenMatchR. ElenMatchR was benchmarked against 

LS BSR (compare_bsr.py) and Scoary (Brynildsrud et al., 2016), outperforming both tools 

in the identification of TetO/TetW homologs.

Metabolomic analysis.—Strains were inoculated into 5 mL ISP-2 media (4 g/L yeast 

extract, 10 g/L meat extract, 4 g/L dextrose, pH=7.1) supplemented with 1% arginine and 

grown 48 h. The cultures were then subcultured at 1% v/v in triplicate and allowed to grow 

for 72 h. Cells were removed via centrifugation at 5000 g for 20 min at 4°C and solid phase 

extracted with a Waters Oasis HLB 96-well plate (WAT058951). The untargeted 

metabolomics analysis using high-performance LC-MS/MS (HPLC-MS) was carried out as 

described previously (McDonald et al., 2018). The chromatography was performed on a 

Dionex UltiMate 3000 Thermo Fisher Scientific high-performance liquid chromatography 

system (Thermo Fisher Scientific, Waltham, MA) coupled to a Bruker Impact HD 

quadrupole time of flight (qTOF) mass spectrometer. The chromatographic separation was 

carried out on a reverse phase (RP) Kinetex C18 1.7-μm, 100-Å ultrahigh-performance 

liquid chromatography (UHPLC) column (50 mm by 2.1 mm) (Phenomenex, Torrance, CA), 

held at 40°C during analysis. A total of 5 μl of each sample was injected. Mobile phase A 

was water, and mobile phase B was acetonitrile, both with added 0.1% (vol/vol) formic acid. 

The solvent gradient table was set as follows: initial mobile phase composition was 5% B for 

1 min, increased to 40% B over 1 min and then to 100% B over 6 min, held at 100% B for 1 

min, and decreased back to 5% B in 0.1 min, followed by a washout cycle and equilibration 

for a total analysis time of 13 min. The scanned m/z range was 80 to 2,000, the capillary 

voltage was 4,500 V, the nebulizer gas pressure was 2 × 105 Pa, the drying gas flow rate was 

9 liters/min, and the temperature was 200°C. Each full MS scan was followed by tandem 

MS (MS/MS) using collision-induced dissociation (CID) fragmentation of the seven most 

abundant ions in the spectrum. For MS/MS, the collision cell collision energy was set at 3 

eV and the collision energy was stepped 50%, 75%, 150%, and 200% to obtain optimal 

fragmentation for differentially sized ions. The scan rate was 3 Hz. An HP-921 lock mass 

compound was infused during the analysis to carry out postprocessing mass correction. All 

of the raw data are publicly available at the UCSD Center for Computational Mass 

Spectrometry (massive.ucsd.edu dataset ID MSV000083734). The collected data were 

processed as previously described (Dührkop et al., 2019). The feature tables were obtained 

using MZmine2 (Pluskal et al., 2010). The collected HPLC-MS raw data were converted 

from Bruker’s .d to .mzXML format. The data were then batch-processed with the following 

settings for each step: mass detection (noise level 1000), chromatogram builder (minimum 

time span 0.01 min, minimum peak height 3000, m/z tolerance 0.1 m/z or 20 ppm), 

chromatogram deconvolution - baseline cutoff (minimum peak height 3000, peak duration 
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range 0.01–3.00 min, baseline level 300), deisotopisation - isotopic peak grouper (m/z 
tolerance 0.1 m/z or 20 ppm, RT tolerance 0.1 min, maximum charge 4), peak alignment - 

join aligner (m/z tolerance 0.1 m/z or 20 ppm, weight for m/z 75, weight for RT 25, RT 

tolerance 0.1 min), peak filtering - peak list raw filter (minimum peak in a row 3, minimum 

peak in an isotope pattern 2).

Initial pre-processing produced a dataset of 860 mass spectrometry features. Missing values 

in the feature table were imputed to 75% of the minimum measured peak area. One replicate 

sample from E. lenta W1BHI6 had a high share of missing and low feature abundances and 

clustered with the quality control samples and was therefore removed from the dataset. 

Features with more than 75% missing values were also removed, as were features that were 

inconsistently detected across 3 or more replicate sets. We noticed the feature abundance 

table displayed strong correlations with both sample run order and column placement in the 

initial plate, so the parametric ComBat method implemented in the R package sva (Leek et 

al., 2019) was used to normalize for both of these factors simultaneously. Although our 

samples were not fully randomized across these variables, applying this correction 

substantially increased the correlation between metabolomic and phylogenetic distance and 

the profile similarity between the type strain isolates DSM 2243D, UCSF 2243, and ATCC 

25559, which supported the value of the correction. These isolates were then treated as 

separate strains in downstream analysis in order to maintain equal numbers of replicates for 

each strain and to evaluate potential metabolic differences between the three isolates. 

Finally, to focus on the most informative features, downstream analysis was restricted to 

features with high (>0.4) repeatability (i.e. high variance across replicate groups relative to 

within-group variance), following (Wehrens et al., 2016). The resulting dataset consisted of 

173 features across 89 strain samples and 6 media controls, of which 31 features were 

identified based on spectral match. To obtain additional putative metabolite identifications, 

the CEU Mass Mediator v3.0 (Gil-de-la-Fuente et al., 2019) was used to perform a feature 

search based on m/z and retention time, with an error tolerance of 5ppm and standard 

positive ionization adducts. The resulting potential identifications were evaluated using 

MAGI (Erbilgin et al., 2019). All potential metabolites from the feature search were 

provided to the program along with annotated gene sequences for all strains.

Differentially abundant features in strain cultures compared to media controls were 

identified based on t-tests comparing normalized feature abundances in samples versus 

controls, using a Benjamini-Hochberg false discovery rate correction and a corrected p-value 

cutoff of 0.05. Euclidean distances between strain metabolite profiles were calculated 

between the log2 median fold change of the abundances compared with media controls as 

these quantities are approximately normally distributed for each metabolite feature. 

Phylogenetic distances were obtained from the phylogeny constructed with PhyloPhlan (see 

above), using the cophenetic.phylo function in the R package ape (Paradis and Schliep, 

2018). To confirm that data type and distance metric did not significantly affect our 

conclusions, we also calculated the Manhattan distance between strains on the basis of 

categorical profiles of whether each metabolite is enriched, depleted, or neither (1, −1, or 0) 

by each strain which produced similar significant correlations (Mantel Spearman 

correlation). To identify putative gene-metabolite links, we searched for metabolite shifts 

that corresponded precisely with the presence or absence of a variable gene in the E. lenta 
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pan-genome. Specifically, we evaluated every unique co-occurrence pattern of variable 

genes within E. lenta as identified by ProteinOrtho with 30% identity and 80% coverage 

thresholds (see above). We removed variable gene clusters with a KO annotation identical to 

a complementary gene cluster annotated with the same KO, inferring that these likely 

represent somewhat more diverged but non-variable gene families. We then assessed 

whether any metabolite features were strongly differentially abundant and separable between 

strains with and without the gene(s) in question, identifying promising links as those with a 

Benjamini-Hochberg-adjusted p-value less than 0.01, and for which at least 30% of samples 

from strains with the gene set and 30% from strains without the gene set could be perfectly 

separated by the abundance of the metabolite feature. We filtered the identified gene-feature 

links to the gene set with the highest separability of abundances for each feature (smallest 

number of overlapping samples). We compared the resulting pairs with the set of gene-

feature links with a non-zero homology score in the MAGI analysis described above. Gene 

clusters were categorized as having an annotation of enzymatic function if annotated with a 

KEGG Ortholog linked to an Enzyme Commission number.

The annotations and visualizations of chemical distributions were explored on GNPS using 

molecular networking (Wang et al., 2016) as follows. MS/MS spectra were window filtered 

by choosing only the top 6 peaks in the 50-Da window throughout the spectrum. The MS 

spectra were then clustered with a parent mass tolerance of 0.02 Da and an MS/MS fragment 

ion tolerance of 0.02; consensus spectra that contained fewer than 4 spectra were discarded. 

Network was created where with edges filtered to have a cosine score above 0.65 and more 

than 5 matched peaks. The edges between two nodes are kept in the network if and only if 

each of the nodes appeared in each other’s respective top 10 most similar nodes. The 

required library matches were set to have a score above 0.7 and at least 6 matched peaks 

when searched the spectra in the network against GNPS spectral libraries. All resulting 

annotations are at level 2/3 according to the proposed minimum standards in metabolomics 

(Sumner et al., 2007). The GNPS results are located at https://gnps.ucsd.edu/ProteoSAFe/

status.jsp?task=85c9922a8b8548e3a537dda24301673f Feature-based molecular network 

(Nothias et al., 2019) results can be found at https://gnps.ucsd.edu/ProteoSAFe/status.jsp?

task=e3ae9e9add4d484ea3715aa45dee8447. The raw data are available at the MassIVE 

repository (massive.ucsd.edu) under dataset ID: MSV000083734.

Antibiotic resistance screening.—Screening was carried out using Epsilometer (Etest) 

strips (bioMerieux) or broth dilution minimum inhibitory concentration (MIC) assay. For 

Etest strips, a 24 h broth culture was diluted to an OD600 of 0.1 before 500 μL was spread 

on 135 mm plates with 4 strips per plate. The assays used were: CL 256, TC 256, KM 256, 

AM 256, VA 256, MX 32, PG 32, and MZ 256. Resistance was determined based on 

EuCAST breakpoint tables (version 8.0 2018) where available, or by MIC distribution. For 

the broth MIC assay, a 24h broth culture was inoculated at 1% v/v in a 96-well plate and 

incubated in anaerobic conditions at 37°C for 48h with OD600 recorded by an Eon 

microplate reader (BioTek). Strains were assayed twice and the mean value reported. 

Resistance was determined based on the bimodal distribution of MICs. Antibiotic resistance 

determinants were predicted using Abricate version 0.9.8 using default parameters (https://

github.com/tseemann/abricate).
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Heterologous expression.—The sequences of a putative tetW and aminoglycoside 3’-

phosphotransferase were amplified from genomic DNA of E. lenta DSM 11767 with Q5 

polymerase (NEB) using for 30 cycles using 500nM primers 

(ACTGATCATATGAAAATAATCAATATTGGAATTC, 

AGCTATGGATCCTTACATTATCTTCTGAAACATATAG, 

ACTGATCATATGGCTAAAATGAGAATATCA, 

GCTATGGATCCCTAAAACAATTCATCCAGTAAA, where bold sites represent 

restriction enzymes sites). pET-19bTEV (a derivative of pET-19b with a tobacco etch virus 

[TEV] cut site replacing the enterokinase cut site) was used as the expression vector. Both 

inserts and plasmid were cut with NdeI and BamHI. The plasmid backbone was treated with 

recombinant shrimp alkaline phosphatase (rSAP) before both plasmid and inserts were gel 

purified (Qiaquick gel purification kit). Ligation was carried out with T4 ligase. All enzymes 

for cloning were purchased from New England Biolabs and used according to the 

manufacturer’s instructions. Ligation reactions were heat inactivated and transformed into E. 
coli DH5α and selected using LB media with 100μg/mL ampicillin. Plasmids were extracted 

from transformants and confirmed by sanger sequencing (GeneWiz) from the T7 promoter 

and terminator. Verified plasmids were then transformed into E. coli Rosetta and selected on 

LB with 50 μg/mL carbenicillin (for pET-19bTEV) and 30 μg/mL chloramphenicol (for 

selection of pRARE plasmid carrying rare codons). Verified transformants were then grown 

in LB broth for 8h with appropriate selection before being inoculated at 0.5% v/v across a 

range of tetracycline, kanamycin, and IPTG concentrations in 96 well plates. Plates were 

incubated for 16 h at 37°C and read at OD600 using an Eon microplate reader (BioTek).

E. lenta quantification in mouse and human samples.—The mock community was 

profiled using 515F/806R golay-barcodes (Caporaso et al., 2012) and denoised using 

DADA2 (Callahan et al., 2016). DNA was extracted from 100 mg aliquots of material using 

the ZymoBIOMICS 96 MagBead DNA Kit (Zymo D4302) according to the manufacturer’s 

protocol with an additional 10 min incubation after mechanical cell disruption at 65°C. 

Disruption was carried out using a BioSpec Mini-Beadbeater-96 for 5 min. qPCR was 

carried out using Taq Universal Probes Supermix (BioRad 1725131), in a CFX384 

thermocycler (BioRad) in triplicate 10 μL reactions with all oligos present at 200 nM final 

concentration and 4 μL of purified gDNA. The following oligos were used elnmrk1_for: 

GTACAACATGCTCCTTGCGG, elnmrk1_rev CGAACAGAGGATCGGGATGG, 

elnmrk1_probe [6FAM]TTCTGGCTGCACCGTTCGCGGTCCA[BHQ1], cgr2_for 

GAGGCCGTCGATTGGATGAT, cgr2_rev ACCGTAGGCATTGTGGTTGT, and 

cgr2_probe [HEX]CGACACGGAGGCCGATGTCG[BHQ1]. DNA was amplified using 40 

cycles of 5 s at 95°C and 30 s at 60°C after 5 min initial denaturation at 95°C. Absolute 

copies were determined by comparison against a standard curve of E. lenta DSM2243 

genomic DNA. The primer efficiencies of the elnmrk1 and cgr2 assays are 105% and 

103.5% respectively. A practical limit of quantification of 1400 genome copies/mL was 

determined as it was the last dilution in the series fitting the linear trend-line with 

concordant detection in all replicate wells. The primer/probe sets were designed by first 

focusing on highly conserved genes within E. lenta that were absent in all other members of 

the Coriobacteriia. Primers were designed with the aid of Primer-BLAST checking for 

specificity against the NCBI non-redundant database.
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StrainR.—The initial preprocessing step (PreProcessR) prepares an index for subsequent 

per-sample analysis. To provide multiple estimates of genome abundance, and to account for 

varied states of assembly quality, genomes are first fragmented to 50kbp with fragments 

smaller than 10kbp discarded. Next canonical k-mers (the lexicographically first of the 

forward and reverse complement) are generated using Jellyfish 2 (Marcais and Kingsford, 

2012) and a dereplicated list is generated and used to build a sparse matrix. Finally, a bbmap 

index is prepared for all fragments. The quantification step (StrainR) first filters and trims 

reads using strict user-modifiable parameters before mapping reads using bbmap with the 

following parameters: perfectmode=t, local=f, ambiguous=toss, pairedonly=t. For each 

genome subfragment, the mapped fragments per thousand unique k-mers per million reads 

mapped in sample is calculated (FKM). This data is provided on a per-sample basis to the 

user and the median value across all subfragments taken forward preventing undue bias due 

to library preparation, multicopy elements (ie plasmids), and other unobserved factors. 

StrainR has been tested on Mac OS × Mojave, Ubuntu 14.04.5 and CentOS 7. It requires 

BBmap >=37.97, Jellyfish 2, and Samtools >=1.9 installed and the following R packages: 

tidyverse, Biostrings, doParallel, foreach, data.table, Matrix, Matrix.utils, vegan, openssl, 

dada2, and ShortRead.

To generate mock data for validation and testing, an actual Illumina Nova-seq containing a 

pilot run of input pool was used to generate error profiles for InSilicoSeq (Gourlé et al., 

2019). Next, InSilicoSeq was used to generate variable input communities containing even, 

skewed, random abundances, and a data set missing strains across variable sequencing 

depths. These profiles were then compared back to expected profiles to determine accuracy.

Competition Experiments.—A set of 22 non-clonal strains (Table S6) was selected for 

competition experiments including 8 tetracycline sensitive and 14 resistant strains. Strains 

were grown on BHI+ before drop-plate CFU estimation and preservation with 10% glycerol. 

Strains were subsequently thawed and pooled based on CFU for in vitro and in vivo 
competitions. For in vitro experiments, the pool was subcultured at 0.5% v/v into 50 mL 

BHI+ in 4 Erlenmeyer flasks and incubated for 24h at 37°C. After 24 h, subculturing again 

took place into fresh media and the resulting cultures were incubated for an additional 24 h. 

In the tetracycline group, 12 μg/mL tetracycline was added to media. Drop-plates were used 

to determine CFU after both passages demonstrating that tetracycline did not lead to a loss 

in total cell count. For the in vivo experiment, 100μL of the pooled strain collection 

(7e8CFU/mL) was administered via oral gavage to 10 11-week old female Swiss Webster 

germ-free mice housed individually in duplex cages. Five mice received 32 μg/mL 

tetracycline in their drinking water, corresponding to a final fecal concentration of 12 μg/g 

(Corpet et al., 1989). Fecal pellets were collected for analysis after 4 and 8 days with cages 

changed at 2 day intervals to prevent re-inoculation of the seed community due to 

coprophagy. For both experiments, DNA was extracted from fecal and cell pellets using 

protocol Q from the International Human Microbiome Standards Consortium (IHMS_SOP 

06 V1). Libraries were prepared using the Nextera XT library protocol and sequenced via an 

Illumina Nova-Seq with 2×141 chemistry. The median number of reads obtained after 

quality filtering was 20,972,910 (range 2,041,797 – 126,953,787). Strain abundances in 

pools were determined using StrainR. Per-strain growth parameters were generated by 
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inoculating 1.5 μL of 48 h broth cultures at OD600=0.2 into 150ul of BHI+ in a 96-well 

microplate and measuring OD600 every 20 min for 48 h at 37°C under anaerobic conditions 

in an Eon Microplate Spectrophotometer (BioTek) and estimated using GrowthCurveR 

(Sprouffske and Wagner, 2016).

QUANTIFICATION AND STATISTICAL ANALYSIS

Unless otherwise specified, statistical analysis was carried out in R 3.6.1 using appropriate 

base functions. Individual datapoints have been shown where possible but are otherwise 

represented as the mean ± standard error unless otherwise stated. Significance was 

determined as P<0.05 unless otherwise stated using the appropriately identified test.

DATA AND CODE AVAILABILITY

Genome accessions are listed in Table S1 and newly sequenced genomes are available as 

part of BioProject PRJNA412637. Raw reads for assembly and community competition 

were deposited under PRJNA578765. Source code for ElenMatchR and StrainR are 

available at github.com/turnbaughlab/ElenMatchR and github.com/turnbaughlab/StrainR. 

Raw metabolomic data is available at massive.ucsd.edu under accession MSV000083734.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGEMENTS

We are indebted to the UCSF Gnotobiotic Core Facility, Michelle Daigneault (UoG), Stephen Nayfach (UCSF), and 
Peter Spanogiannopoulos, An Luong, Niki Arab, and the other members of the Turnbaugh lab for technical 
assistance. We also thank the labs of Ramnik Xavier and Michael Blaut for sharing isolates. Support is 
acknowledged from the National Institutes of Health (R01HL122593; R21CA227232; R01AR074500; 
2T32AI060537–16), Searle Scholars Program (SSP-2016–1352), Burroughs Wellcome Fund, Chan Zuckerberg 
Biohub, Damon Runyon Cancer Research Foundation (DRR-42–16, DRG-2369–19), Natural Sciences and 
Engineering Research Council of Canada and the Canadian Institutes of Health Research.

REFERENCES

Bachmann BO, and Ravel J (2009). In silico prediction of microbial secondary metabolic pathways 
from DNA sequence data. Methods Enzymol 458, 181–217. [PubMed: 19374984] 

Bai X, Fu S, Zhang J, Fan R, Xu Y, Sun H, He X, Xu J, and Xiong Y (2018). Identification and 
pathogenomic analysis of an Escherichia coli strain producing a novel Shiga toxin 2 subtype. Sci. 
Rep 8, 6756. [PubMed: 29712985] 

Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, 
Pham S, Prjibelski AD, et al. (2012). SPAdes: a new genome assembly algorithm and its 
applications to single-cell sequencing. J. Comput. Biol 19, 455–477. [PubMed: 22506599] 

Barrick JE, Colburn G, Deatherage DE, Traverse CC, Strand MD, Borges JJ, Knoester DB, Reba A, 
and Meyer AG (2014). Identifying structural variation in haploid microbial genomes from short-
read resequencing data using breseq. BMC Genom 15, 1039.

Bauer E, Laczny CC, Magnusdottir S, Wilmes P, and Thiele I (2016). Phenotypic differentiation of 
gastrointestinal microbes is reflected in their encoded metabolic repertoires. Microbiome 4, 35. 
[PubMed: 27377779] 

Bayjanov JR, Molenaar D, Tzeneva V, Siezen RJ, and van Hijum SA (2012). PhenoLink-a web-tool for 
linking phenotype to omics data for bacteria: application to gene-trait matching for Lactobacillus 
plantarum strains. BMC Genom 13, 170.

Bisanz et al. Page 20

Cell Host Microbe. Author manuscript; available in PMC 2021 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.github.com/turnbaughlab/ElenMatchR
https://www.github.com/turnbaughlab/StrainR
https://www.massive.ucsd.edu


Bess EN, Bisanz JE, Yarza F, Bustion A, Rich BE, Li X, Kitamura S, Waligurski E, Ang QY, Alba DL, 
et al. (2020). Genetic basis for the cooperative bioactivation of plant lignans by Eggerthella lenta 
and other human gut bacteria. Nat Microbiol 5, 56–66. [PubMed: 31686027] 

Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, Medema MH, and Weber T (2019). 
antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 
47, W81–W87. [PubMed: 31032519] 

Blomberg SP, Garland T Jr, and Ives AR (2003). Testing for phylogenetic signal in comparative data: 
behavioral traits are more labile. Evolution 57, 717–745. [PubMed: 12778543] 

Breiman L (2001). Random Forests. Mach. Learn 45, 5–32.

Brynildsrud O, Bohlin J, Scheffer L, and Eldholm V (2016). Rapid scoring of genes in microbial pan-
genome-wide association studies with Scoary. Genome Biol 17, 238. [PubMed: 27887642] 

Buchfink B, Xie C, and Huson DH (2015). Fast and sensitive protein alignment using DIAMOND. 
Nat. Methods 12, 59–60. [PubMed: 25402007] 

Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, and Holmes SP (2016). DADA2: High-
resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583. [PubMed: 
27214047] 

Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, 
Fraser L, Bauer M, et al. (2012). Ultra-high-throughput microbial community analysis on the 
Illumina HiSeq and MiSeq platforms. ISME J 6, 1621–1624. [PubMed: 22402401] 

Cekanaviciute E, Yoo BB, Runia TF, Debelius JW, Singh S, Nelson CA, Kanner R, Bencosme Y, Lee 
YK, Hauser SL, et al. (2017). Gut bacteria from multiple sclerosis patients modulate human T 
cells and exacerbate symptoms in mouse models. Proc. Natl. Acad. Sci. U. S. A 114, 10713–
10718. [PubMed: 28893978] 

Chen I-MA, Chu K, Palaniappan K, Pillay M, Ratner A, Huang J, Huntemann M, Varghese N, White 
JR, Seshadri R, et al. (2019). IMG/M v.5.0: an integrated data management and comparative 
analysis system for microbial genomes and microbiomes. Nucleic Acids Res 47, D666–D677. 
[PubMed: 30289528] 

Chen J, Wright K, Davis JM, Jeraldo P, Marietta EV, Murray J, Nelson H, Matteson EL, and Taneja V 
(2016). An expansion of rare lineage intestinal microbes characterizes rheumatoid arthritis. 
Genome Med 8, 43. [PubMed: 27102666] 

Chen S, Zhou Y, Chen Y, and Gu J (2018). fastp: an ultra-fast all-in-one FASTQ preprocessor. 
Bioinformatics 34, i884–i890. [PubMed: 30423086] 

Chung L, Orberg ET, Geis AL, Chan JL, Fu K, DeStefano Shields CE, Dejea CM, Fathi P, Chen J, 
Finard BB, et al. (2018). Bacteroides fragilis Toxin Coordinates a Pro-carcinogenic Inflammatory 
Cascade via Targeting of Colonic Epithelial Cells. Cell Host Microbe 23, 421. [PubMed: 
29544099] 

Connell JH (1983). On the Prevalence and Relative Importance of Interspecific Competition: Evidence 
from Field Experiments. Am. Nat 122, 661–696.

Corpet DE, Lumeau S, and Corpet F (1989). Minimum antibiotic levels for selecting a resistance 
plasmid in a gnotobiotic animal model. Antimicrob. Agents Chemother 33, 535–540. [PubMed: 
2658794] 

Deivanayagam CC, Rich RL, Carson M, Owens RT, Danthuluri S, Bice T, Höök M, and Narayana SV 
(2000). Novel fold and assembly of the repetitive B region of the Staphylococcus aureus collagen-
binding surface protein. Structure 8, 67–78. [PubMed: 10673425] 

Devlin AS, Sloan Devlin A, and Fischbach MA (2015). A biosynthetic pathway for a prominent class 
of microbiota-derived bile acids. Nat. Chem. Biol 11, 685–690. [PubMed: 26192599] 

Douglas GM, and Langille MGI (2019). Current and Promising Approaches to Identify Horizontal 
Gene Transfer Events in Metagenomes. Genome Biol. Evol 11, 2750–2766. [PubMed: 31504488] 

Dührkop K, Fleischauer M, Ludwig M, Aksenov AA, Melnik AV, Meusel M, Dorrestein PC, Rousu J, 
and Böcker S (2019). SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite 
structure information. Nat. Methods 16, 299–302. [PubMed: 30886413] 

Erbilgin O, Rübel O, Louie KB, Trinh M, Raad M. de, Wildish T, Udwary D, Hoover C, Deutsch S, 
Northen TR, et al. (2019). MAGI: A Method for Metabolite Annotation and Gene Integration. 
ACS Chem. Biol 14, 704–714. [PubMed: 30896917] 

Bisanz et al. Page 21

Cell Host Microbe. Author manuscript; available in PMC 2021 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Ferretti P, Pasolli E, Tett A, Asnicar F, Gorfer V, Fedi S, Armanini F, Truong DT, Manara S, Zolfo M, 
et al. (2018). Mother-to-Infant Microbial Transmission from Different Body Sites Shapes the 
Developing Infant Gut Microbiome. Cell Host Microbe 24, 133–145.e5. [PubMed: 30001516] 

Gardiner BJ, Tai AY, Kotsanas D, Francis MJ, Roberts SA, Ballard SA, Junckerstorff RK, and Korman 
TM (2015). Clinical and microbiological characteristics of Eggerthella lenta bacteremia. J. Clin. 
Microbiol 53, 626–635. [PubMed: 25520446] 

Garud NR, Good BH, Hallatschek O, and Pollard KS (2019). Evolutionary dynamics of bacteria in the 
gut microbiome within and across hosts. PLoS Biol 17, e3000102. [PubMed: 30673701] 

Giessen TW, and Silver PA (2017). Widespread distribution of encapsulin nanocompartments reveals 
functional diversity. Nat. Microbiol 2, 17029. [PubMed: 28263314] 

Gil-de-la-Fuente A, Godzien J, Saugar S, Garcia-Carmona R, Badran H, Wishart DS, Barbas C, and 
Otero A (2019). CEU Mass Mediator 3.0: A Metabolite Annotation Tool. J. Proteome Res 18, 
797–802. [PubMed: 30574788] 

Goltsman DSA, Aliaga Goltsman DS, Sun CL, Proctor DM, DiGiulio DB, Robaczewska A, Thomas 
BC, Shaw GM, Stevenson DK, Holmes SP, et al. (2018). Metagenomic analysis with strain-level 
resolution reveals fine-scale variation in the human pregnancy microbiome. Genome Res 28, 
1467–1480. [PubMed: 30232199] 

Gourlé H, Karlsson-Lindsjö O, Hayer J, and Bongcam-Rudloff E (2019). Simulating Illumina 
metagenomic data with InSilicoSeq. Bioinformatics 35, 521–522. [PubMed: 30016412] 

Greenblum S, Carr R, and Borenstein E (2015). Extensive strain-level copy-number variation across 
human gut microbiome species. Cell 160, 583–594. [PubMed: 25640238] 

Gurevich A, Saveliev V, Vyahhi N, and Tesler G (2013). QUAST: quality assessment tool for genome 
assemblies. Bioinformatics 29, 1072–1075. [PubMed: 23422339] 

Haiser HJ, Gootenberg DB, Chatman K, Sirasani G, Balskus EP, and Turnbaugh PJ (2013). Predicting 
and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta. Science 
341, 295–298. [PubMed: 23869020] 

Harris SC, Devendran S, Méndez-García C, Mythen SM, Wright CL, Fields CJ, Hernandez AG, Cann 
I, Hylemon PB, and Ridlon JM (2018). Bile acid oxidation by Eggerthella lenta strains C592 and 
DSM 2243T. Gut Microbes 9, 523–539. [PubMed: 29617190] 

Håvarstein LS, Diep DB, and Nes IF (1995). A family of bacteriocin ABC transporters carry out 
proteolytic processing of their substrates concomitant with export. Mol. Microbiol 16, 229–240. 
[PubMed: 7565085] 

Hecht AL, Casterline BW, Earley ZM, Goo YA, Goodlett DR, and Bubeck Wardenburg J (2016). 
Strain competition restricts colonization of an enteric pathogen and prevents colitis. EMBO Rep 
17, 1281–1291. [PubMed: 27432285] 

Hudson GA, Burkhart BJ, DiCaprio AJ, Schwalen CJ, Kille B, Pogorelov TV, and Mitchell DA (2019). 
Bioinformatic Mapping of Radical S-Adenosylmethionine-Dependent Ribosomally Synthesized 
and Post-Translationally Modified Peptides Identifies New Cα, Cβ, and Cγ-Linked Thioether-
Containing Peptides. J. Am. Chem. Soc 141, 8228–8238. [PubMed: 31059252] 

Jones P, Binns D, Chang H-Y, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, 
Nuka G, et al. (2014). InterProScan 5: genome-scale protein function classification. 
Bioinformatics 30, 1236–1240. [PubMed: 24451626] 

Kanehisa M, Sato Y, and Morishima K (2016). BlastKOALA and GhostKOALA: KEGG Tools for 
Functional Characterization of Genome and Metagenome Sequences. J. Mol. Biol 428, 726–731. 
[PubMed: 26585406] 

Kang HJ, Paterson NG, Gaspar AH, Ton-That H, and Baker EN (2009). The Corynebacterium 
diphtheriae shaft pilin SpaA is built of tandem Ig-like modules with stabilizing isopeptide and 
disulfide bonds. Proc. Natl. Acad. Sci. U. S. A 106, 16967–16971. [PubMed: 19805181] 

Kankainen M, Paulin L, Tynkkynen S, von Ossowski I, Reunanen J, Partanen P, Satokari R, Vesterlund 
S, Hendrickx APA, Lebeer S, et al. (2009). Comparative genomic analysis of Lactobacillus 
rhamnosus GG reveals pili containing a human- mucus binding protein. Proc. Natl. Acad. Sci. U. 
S. A 106, 17193–17198. [PubMed: 19805152] 

Bisanz et al. Page 22

Cell Host Microbe. Author manuscript; available in PMC 2021 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Koppel N, Bisanz JE, Pandelia M-E, Turnbaugh PJ, and Balskus EP (2018). Discovery and 
characterization of a prevalent human gut bacterial enzyme sufficient for the inactivation of a 
family of plant toxins. eLife 7, e33953. [PubMed: 29761785] 

Lagier J-C, Khelaifia S, Alou MT, Ndongo S, Dione N, Hugon P, Caputo A, Cadoret F, Traore SI, Seck 
EH, et al. (2016). Culture of previously uncultured members of the human gut microbiota by 
culturomics. Nat. Microbiol 1, 16203. [PubMed: 27819657] 

Lechner M, Findeiß S, Steiner L, Marz M, Stadler PF, and Prohaska SJ (2011). Proteinortho: Detection 
of (Co-)orthologs in large-scale analysis. BMC Bioinform 12, 124.

Lee SM, Donaldson GP, Mikulski Z, Boyajian S, Ley K, and Mazmanian SK (2013). Bacterial 
colonization factors control specificity and stability of the gut microbiota. Nature 501, 426–429. 
[PubMed: 23955152] 

Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD (2019). The sva package for removing batch 
effects and other unwanted variation in high-throughput experiments. Bioinformatics 28, 882–883.

Marcais G, and Kingsford C (2011). A fast, lock-free approach for efficient parallel counting of 
occurrences of k-mers. Bioinformatics 27, 764–770. [PubMed: 21217122] 

Matthies A, Loh G, Blaut M, and Braune A (2012). Daidzein and genistein are converted to equol and 
5-hydroxy-equol by human intestinal Slackia isoflavoniconvertens in gnotobiotic rats. J. Nutr 142, 
40–46. [PubMed: 22113864] 

McDonald D, Hyde E, Debelius JW, Morton JT, Gonzalez A, Ackermann G, Aksenov AA, Behsaz B, 
Brennan C, Chen Y, et al. (2018). American Gut: an Open Platform for Citizen Science 
Microbiome Research. mSystems 3, e00031–18. [PubMed: 29795809] 

Nayfach S, Shi ZJ, Seshadri R, Pollard KS, and Kyrpides NC (2019). New insights from uncultivated 
genomes of the global human gut microbiome. Nature 568, 505–510. [PubMed: 30867587] 

Nothias LF, Petras D, Schmid R, Dührkop K, Rainer J, Sarvepalli A, Protsyuk I, Ernst M, Tsugawa H, 
Fleischauer M, et al. (2019). Feature-based Molecular Networking in the GNPS Analysis 
Environment. bioRxiv, doi.org/10.1101/812404.

Nouioui I, Carro L, García-López M, Meier-Kolthoff JP, Woyke T, Kyrpides NC, Pukall R, Klenk H-P, 
Goodfellow M, and Göker M (2018). Genome-Based Taxonomic Classification of the Phylum 
Actinobacteria. Frontiers Microbiol 9, 2007.

Paauw A, Leverstein-van Hall MA, van Kessel KPM, Verhoef J, and Fluit AC (2009). Yersiniabactin 
Reduces the Respiratory Oxidative Stress Response of Innate Immune Cells. PLoS ONE 4, e8240. 
[PubMed: 20041108] 

Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MTG, Fookes M, Falush D, Keane JA, 
and Parkhill J (2015). Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31, 
3691–3693. [PubMed: 26198102] 

Paniagua-Michel J, Olmos-Soto J, and Ruiz MA (2012). Pathways of carotenoid biosynthesis in 
bacteria and microalgae. Methods Mol. Biol 892, 1–12. [PubMed: 22623294] 

Paradis E, and Schliep K (2018). ape 5.0: an environment for modern phylogenetics and evolutionary 
analyses in R. Bioinformatics 35, 526–528.

Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, and Tyson GW (2015). CheckM: assessing the 
quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 
25, 1043–1055. [PubMed: 25977477] 

Patnode ML, Beller ZW, Han ND, Cheng J, Peters SL, Terrapon N, Henrissat B, Le Gall S, Saulnier L, 
Hayashi DK, et al. (2019). Interspecies Competition Impacts Targeted Manipulation of Human Gut 
Bacteria by Fiber-Derived Glycans. Cell 179, 59–73.e13. [PubMed: 31539500] 

Plata G, Henry CS, and Vitkup D (2015). Long-term phenotypic evolution of bacteria. Nature 517, 
369–372. [PubMed: 25363780] 

Pluskal T, Castillo S, Villar-Briones A, and Oresic M (2010). MZmine 2: modular framework for 
processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC 
Bioinformatics 11, 395. [PubMed: 20650010] 

Potter SC, Luciani A, Eddy SR, Park Y, Lopez R, and Finn RD (2018). HMMER web server: 2018 
update. Nucleic Acids Res 46, W200–W204. [PubMed: 29905871] 

Poyet M, Groussin M, Gibbons SM, Avila-Pacheco J, Jiang X, Kearney SM, Perrotta AR, Berdy B, 
Zhao S, Lieberman TD, et al. (2019). A library of human gut bacterial isolates paired with 

Bisanz et al. Page 23

Cell Host Microbe. Author manuscript; available in PMC 2021 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



longitudinal multiomics data enables mechanistic microbiome research. Nat. Med 25, 1442–1452. 
[PubMed: 31477907] 

Price MN, Dehal PS, and Arkin AP (2009). FastTree: computing large minimum evolution trees with 
profiles instead of a distance matrix. Mol. Biol. Evol 26, 1641–1650. [PubMed: 19377059] 

Rekdal VM, Bess EN, Bisanz JE, Turnbaugh PJ, and Balskus EP (2019). Discovery and inhibition of 
an interspecies gut bacterial pathway for Levodopa metabolism. Science 364, eaau6323. [PubMed: 
31196984] 

Robinson AE, Lowe JE, Koh E-I, and Henderson JP (2018). Uropathogenic enterobacteria use the 
yersiniabactin metallophore system to acquire nickel. J. Biol. Chem 293, 14953–14961. [PubMed: 
30108176] 

Rognes T, Flouri T, Nichols B, Quince C, and Mahé F (2016). VSEARCH: a versatile open source tool 
for metagenomics. PeerJ 4, e2584. [PubMed: 27781170] 

Sahl JW, Caporaso JG, Rasko DA, and Keim P (2014). The large-scale blast score ratio (LS-BSR) 
pipeline: a method to rapidly comapre genetic content between bacterial genomes. PeerJ 2, e332. 
[PubMed: 24749011] 

Saunders E, Pukall R, Abt B, Lapidus A, Del Rio TG, Copeland A, Tice H, Cheng J-F, Lucas S, Chen 
F, et al. (2009). Complete genome sequence of Eggerthella lenta type strain (VPI 0255 T). Stand. 
Genomic Sci 1, 174. [PubMed: 21304654] 

Segata N, Börnigen D, Morgan XC, and Huttenhower C (2013). PhyloPhlAn is a new method for 
improved phylogenetic and taxonomic placement of microbes. Nat. Commun 4, 2304. [PubMed: 
23942190] 

Seipke RF, Song L, Bicz J, Laskaris P, Yaxley AM, Challis GL, and Loria R (2011). The plant 
pathogen Streptomyces scabies 87–22 has a functional pyochelin biosynthetic pathway that is 
regulated by TetR- and AfsR-family proteins. Microbiology 157, 2681–2693. [PubMed: 
21757492] 

Skinnider MA, Merwin NJ, Johnston CW, and Magarvey NA (2017). PRISM 3: expanded prediction 
of natural product chemical structures from microbial genomes. Nucleic Acids Res 45, W49–W54. 
[PubMed: 28460067] 

Song L, Pan Y, Chen S, and Zhang X (2012). Structural characteristics of genomic islands associated 
with GMP synthases as integration hotspot among sequenced microbial genomes. Comput. Biol. 
Chem 36, 62–70. [PubMed: 22306813] 

Sperry JF, and Wilkins TD (1976). Arginine, a growth-limiting factor for Eubacterium lentum. J. 
Bacteriol 127, 780–784. [PubMed: 182668] 

Sprouffske K, and Wagner A (2016). Growthcurver: an R package for obtaining interpretable metrics 
from microbial growth curves. BMC Bioinform 17, 172.

Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, Fan TW-M, Fiehn O, Goodacre 
R, Griffin JL, et al. (2007). Proposed minimum reporting standards for chemical analysis. 
Metabolomics 3, 211–221. [PubMed: 24039616] 

Sybesma W, Molenaar D, van IJcken W, Venema K, and Kort R (2013). Genome instability in 
Lactobacillus rhamnosus GG. Appl. Environ. Microbiol 79, 2233–2239. [PubMed: 23354703] 

Theriot CM, and Young VB (2015). Interactions Between the Gastrointestinal Microbiome and 
Clostridium difficile. Annu. Rev. Microbiol 69, 445–461. [PubMed: 26488281] 

Tietz JI, Schwalen CJ, Patel PS, Maxson T, Blair PM, Tai H-C, Zakai UI, and Mitchell DA (2017). A 
new genome-mining tool redefines the lasso peptide biosynthetic landscape. Nat. Chem. Biol 13, 
470–478. [PubMed: 28244986] 

Truong DT, Franzosa EA, Tickle TL, Scholz M, Weingart G, Pasolli E, Tett A, Huttenhower C, and 
Segata N (2015). MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat. Methods 12, 
902–903. [PubMed: 26418763] 

Verster AJ, and Borenstein E (2018). Competitive lottery-based assembly of selected clades in the 
human gut microbiome. Microbiome 6, 186. [PubMed: 30340536] 

Vos M, Hesselman MC, Te Beek TA, van Passel MWJ, and Eyre-Walker A (2015). Rates of Lateral 
Gene Transfer in Prokaryotes: High but Why? Trends Microbiol 23, 598–605. [PubMed: 
26433693] 

Bisanz et al. Page 24

Cell Host Microbe. Author manuscript; available in PMC 2021 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N, Peng Y, Nguyen DD, Watrous J, Kapono CA, 
Luzzatto-Knaan T, et al. (2016). Sharing and community curation of mass spectrometry data with 
Global Natural Products Social Molecular Networking. Nat. Biotechnol 34, 828–837. [PubMed: 
27504778] 

Wehrens R, Hageman JA, van Eeuwijk F, Kooke R, Flood PJ, Wijnker E, Keurentjes JJB, Lommen A, 
van Eekelen HDLM, Hall RD, et al. (2016). Improved batch correction in untargeted MS-based 
metabolomics. Metabolomics 12, 88. [PubMed: 27073351] 

Wickham H (2016). ggplot2: Elegant Graphics for Data Analysis (Springer).

Wright E., Erik, and Wright S (2016). Using DECIPHER v2.0 to Analyze Big Biological Sequence 
Data in R. R J 8, 352.

Yamaguchi Y, and Inouye M (2011). Regulation of growth and death in Escherichia coli by toxin-
antitoxin systems. Nat. Rev. Microbiol 9, 779–790. [PubMed: 21927020] 

Zallot R, Oberg N, and Gerlt JA (2019). The EFI Web Resource for Genomic Enzymology Tools: 
Leveraging Protein, Genome, and Metagenome Databases to Discover Novel Enzymes and 
Metabolic Pathways. Biochemistry 58, 4169–4182. [PubMed: 31553576] 

Zeevi D, Korem T, Godneva A, Bar N, Kurilshikov A, Lotan-Pompan M, Weinberger A, Fu J, 
Wijmenga C, Zhernakova A, et al. (2019). Structural variation in the gut microbiome associates 
with host health. Nature 568, 43–48. [PubMed: 30918406] 

Bisanz et al. Page 25

Cell Host Microbe. Author manuscript; available in PMC 2021 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Highlights:

• Curated analysis of paired genome and isolate collection for the study of 

Coriobacteriia

• Eggerthella lenta is genotypically and phenotypically diverse

• Development of tools for discovering and validating effector genes in E. lenta

• Intra-species competition in E. lenta is correlated with a putative host 

adhesion
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Figure 1. Phylogenetic and taxonomic consistency of Coriobacteriia genomes.
(A) Phylogenetic tree of Coriobacteriia genomes (T denotes a type or proposed-type strain). 

*Denotes taxonomic inconsistencies. (B) High-resolution phylogenetic tree of Eggerthella 
lenta strains based on SNPs in 195 core Eggerthella genes. (C) Whole genome average 

nucleotide identity (ANI) within and between species reveals consistent assignment of 

species based on a 95% speciation threshold. A.c. Assacharobacter celatus (2 strains) A.e. 
Adlercreutzia equolifaciens, G.f. Gordonibacter faecihominis,G.u. Gordonibacter 
urolithinfaciens. (D) Resequencing of the E. lenta type strain does not provide evidence of 

gene loss across contiguous reference assembly (CP001726.1). The y-axis denotes scaled 

relative sequencing depth for qualitative comparison. (E) Polymorphisms between E. lenta 
type strain isolates and the reference genome.
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Figure 2. Gene and metabolite diversity in E. lenta.
(A) Analysis of dereplicated isolate genomes (n=30) and MAGs (n=12) reveals an open pan-

genome with a core genome of 771 genes. The ribbon denotes mean±SD. (B) Gene and 

KEGG orthologous group conservation across strains demonstrates functional diversity 

within E. lenta. (C) BLASTn comparison of all dereplicated E. lenta genomes (n=42) 

demonstrates localized regions of horizontal gene transfer including hot spots centered at 

~1.1 Mb and ~1.9 Mb. (D) Principal components analysis of metabolite profiles within E. 
lenta species and close relatives. (E) Phylogeny (cophenetic distance) is correlated with 

metabolomic profiles. (F) Most of the 51 metabolite features enriched by any Coriobacteriia 

(counts shown in red) are strain specific, while strains have both a shared and unique set of 

features depleted (counts shown in blue, 47 features total).
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Figure 3. Identification of natural products produced by E. lenta strains.
(A) 4 biosynthetic gene clusters are consistently identified in E. lenta predicted to generate: 

a non-ribosomal peptide synthetase (NRPS)-derived compound, a carotenoid, a series of 

ribosomally synthesized and post-translationally modified peptides (RiPP), and an 

encapsulin. (B) The carotenoid and encapsulin gene clusters are found in all E. lenta strains 

while RiPP and NRPS gene clusters are variable. Empty circles represent variant clusters 

(truncated NRPS clusters or RiPP clusters with methyltransferases.) (C) Detailed analysis of 

the NRPS gene cluster. The NRPS cluster encodes a probable metallophore from the 2-

hydroxyphenylthiazoline family, which includes the known metallophores pyochelin and 

yersiniabactin. Most strains encode a larger compound with up to four thiazoline-derived 

heterocycles; two appear to encode a smaller compound more similar to pyochelin or 

watasemycin (predicted structures shown underneath). NRPS domains include A 

(adenylation), Cy (cyclization/condensation), E* (non-canonical epimerase, also found in 
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pyochelin), P (peptidyl carrier protein), MT (methyltransferase), Sal (salicylate activation 

domain), and TE (thioesterase). (D) The encapsulin (encaps.) is predicted to form a 

nanocompartment with the rubrerythrin (Rb.) its predicted cargo. (E) The RiPP gene cluster 

contains only two biosynthetic enzymes: a radical SAM enzyme (rSAM) and in some cases 

a methyltransferase (MT). A regulator and a LagD-family exporter (which is expected to 

cleave the leader peptide) are also found, as are 7 or more precursor peptides. The core 

peptides are hypervariable, but consistently contain 4+ cysteines spread throughout the 

sequence. The leader peptides, while also variable, contain a conserved recognition region 

and cleavage site for the LagD exporter and the precursor peptide genes are sometimes 

annotated as members of the Nif11-like precursor peptide family. Representative sequences 

from E. lenta A2 are depicted with universally conserved residues in capital letters. (F) 
Sequence similarity network for the E. lenta RiPP rSAM. This radical SAM biosynthetic 

enzyme is distinct from previously observed families of cysteine-modifying rSAM enzymes. 

(G) Variability of RiPP precursor peptide types between strains. Some precursor peptide 

subfamilies exhibit more sequence diversity, and some possibly defunct precursor peptides 

(containing poorly conserved LagD cleavage sites or cysteines) are also found in most 

species. Groups of identical precursor peptides are highlighted in different colors. (H) E. 
lenta strains encode the requisite machinery for the production of lycopene (or its 

precursors) via the MEP/DOXP pathway, although the genes are scattered across multiple 

genomic locations.
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Figure 4. Validation of comparative genomics methodology using tetracycline resistance.
(A) Broth minimum inhibitory concentration (MIC) testing reveals a bimodal distribution in 

resistance (n=22 strains). (B) Epsilometer test on solid media confirms bimodal resistance 

profiles (n=28 strains). All 22 of the retested strains showed the same phenotype based on 

solid media. Panels A,B: green denotes tetracycline resistant strains. (C) Gene clusters 

ranked on random forest classifier importance (mean decrease in GINI coefficient). (D) 
Visualization of gene presence/absence in TetR and TetS strains reveals a single gene (2477) 

present in all TetR strains and absent in all TetS. Heterologous expression of the putative 

Bisanz et al. Page 31

Cell Host Microbe. Author manuscript; available in PMC 2021 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



tetW resistance protein from E. lenta DSM 11767 in E. coli increases resistance to 

tetracycline under induced (E) and basal expression (F). Data in panel E and F represents 

mean±sem.
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Figure 5. Validation of a duplexed qPCR assay for quantifying Eggerthella lenta and specific 
genes of interest.
(A) Correlation of elnmrk1 and E. lenta abundances in metagenomes reveals a high degree 

of correlation (p<0.001, r=0.97) and little evidence of an elnmrk1-negative E. lenta 
population in 760 human GI tracts (red dashed line x=y). (B) Validation of assay sensitivity 

demonstrates a practical quantification limit of 1400 genome copies and that the presence of 

a second more abundant, and easily lysed, organism (4E9 CFU/mL E. coli K12 MG1655) 

does not prevent the recovery and quantification of E. lenta (inset controls: no-template 

control (NTC), blank DNA extraction control (ext con), and negative and positive human 

controls. (C) Quantification of E. lenta DSM 2243 in gnotobiotic mice monocolonized or 

colonized with a 7-member synthetic community. E. lenta is detectable along the entire 

length of the gastrointestinal tract with highest levels observed in the colon and cecum. 

Points represent individual animals (n=6–10/group) and lines represent mean±sem.
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Figure 6. Mapping determinants of intra-species competition in vitro.
(A) Experimental design: 22 dereplicated E. lenta strains were pooled at equal CFU and 

passaged in vitro and in vivo with the addition of tetracycline as a known selective pressure. 

(B) All expected strains were observed in the input pool with concentrations ranging from 

74.3±1.7 to 238.5±18.2 fragments per thousand unique k-mers per million reads mapped 

(FKM; mean±sd). (C) In the presence of tetracycline (12 μg/mL), TetR strains (n=14) are 

enriched in the output community at the expense of TetS strains (n=8). (D) In the absence of 

tetracycline, reproducible differences in strain abundances were observed. (E) Correlation of 

growth in the presence and absence of tetracycline demonstrates consistent outcomes for 

extremes of TetR strains (dashed line x=y, time=1 day). (F) Bacterial abundance in the 

absence of tetracycline is correlated with growth rate in mono-culture, but not carrying 

capacity (rho=0.158, P=0.482). (G) The 10 gene clusters which are most predictive of 

competitive growth in tetracycline (% Inc MSE, random forest regression) shows the most 

predictive gene (2355) corresponds to tetW, demonstrating the validity of this method to 

uncover biologically meaningful predictors. (H) Gene clusters predictive of competitive 

fitness in the absence of tetracycline reveal signatures for both strong and weak fitness.
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Figure 7. Mapping determinants of in vivo fitness.
(A) While TetR strains have a selective advantage at 4-days post inoculation in the presence 

of tetracycline, (B) a subset of TetR strains are strongly favored irrespective of tetracycline, 

particularly E. lenta 22C and 1-3-56 FAA. (C) Correlation of community shifts at 4-days 

post inoculation suggests the selective pressure induced by tetracycline is less than 

differences in in vivo competitive advantage (dashed line x=y). (D) Competition outcomes in 
vivo are correlated with in vitro outcomes in the absence of tetracycline (Spearman 

correlation, 4 days in vivo, 1 day in vitro). (E) Top 10 gene clusters which are predictive of 

outcomes in competition in vehicle control (%Inc MSE) reveals signatures of both strong 

and weak competitive fitness. (F) A putative membrane-anchored adhesion protein is 

negatively correlated with fitness (gene cluster 3024). (G) More recently diverged E. lenta 
strains are less fit during competition with evidence of more recent acquisition(s) of the 

putative adhesin protein 3024 (phylogenetic tree of core SNPs [Figure 1B]).
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

Asaccharobacter celatus AP38TSA This Paper NA

Asaccharobacter celatus OB21 GAM11 This Paper NA

Collinsella aerofaciens ATCC 25986 This Paper NA

Collinsella aerofaciens CaUC5 This Paper NA

Eggerthella lenta FAA 1-1-60A This Paper NA

Eggerthella lenta 11C This Paper NA

Eggerthella lenta FAA 1 −3–56 This Paper NA

Eggerthella lenta 14A This Paper NA

Eggerthella lenta 16A This Paper NA

Eggerthella lenta 22C This Paper NA

Eggerthella lenta 28B This Paper NA

Eggerthella lenta 32–6-I-6 NA This Paper NA

Eggerthella lenta A2 This Paper NA

Eggerthella lenta AB12 #2 This Paper NA

Eggerthella lenta AB8 #2 This Paper NA

Eggerthella lenta AN51 LG This Paper NA

Eggerthella lenta ATCC 25559 ATCC 25559

Eggerthella lenta CC7/5 D5 2 This Paper NA

Eggerthella lenta CC8/2 BHI2 This Paper NA

Eggerthella lenta CC8/6 D5 4 This Paper NA

Eggerthella lenta RJX1626 This Paper NA

Eggerthella lenta RJX1627 This Paper NA

Eggerthella lenta DSM 11767 DSMZ 11767

Eggerthella lenta DSM 11863 DSMZ 11863

Eggerthella lenta DSM 15644 DSMZ 15644

Eggerthella lenta DSM 2243D DSMZ 2243

Eggerthella lenta ElUC2 This Paper NA

Eggerthella lenta ElUC5 This Paper NA

Eggerthella lenta MR1 #12 This Paper NA

Eggerthella lenta RC4/6F This Paper NA

Eggerthella lenta SECO-Mt75m2 This Paper NA

Eggerthella lenta UCSF 2243 This Paper NA

Eggerthella lenta Valencia This Paper NA

Eggerthella lenta W1 BHI 6 This Paper NA

Eggerthella sinensis DSM 16107 DSMZ 16107

Gordonibacter pamelaeae 3C This Paper NA
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REAGENT or RESOURCE SOURCE IDENTIFIER

Gordonibacter pamelaeae DSM 19378 DSMZ 19378

Gordonibacter species 28C This Paper NA

Gordonibacter urolithinfaciens DSM 27213 DSMZ 27213

Paraeggerthella hongkongensis CD11 This Paper NA

Paraeggerthella hongkongensis RC2/2 A This Paper NA

Senegalimassilia anaerobia AP69FAA This Paper NA

Slackia exigua UCSF 15923 This Paper NA

Slackia heliotrinireducens DSM 20476 DSMZ 20476

Slackia isoflavoniconvertens OB21 GAM31 This Paper NA

Bacteroides thetaiotaomicron DSMZ 2079

Bacteroides uniformis DSMZ 6597

Clostridium spiroforme DSMZ 1552

Collinsella aerofaciens DSMZ 3979

Akkermansia muciniphila DSMZ 22959

Clostridium scindens DSMZ 5676

Dorea longicatena DSMZ 13814

Prevotella copri DSMZ 18205

E. coli DH5a NEB C2989K

E. coli Rosetta Millipore Sigma 70953–3

Chemicals, Peptides, and Recombinant Proteins

Brain Heart Infusion BD 237500

Arginine Sigma Aldrich W381918

Tryptic Soy Broth Millipore 1054590500

Gifu Anaerobic Media HiMedia M1801

rSAP NEB M0371

NdeI NEB R0111

BamHI NEB R0136

T4 Ligase NEB M0202

ZymoBIOMICS 96 Well DNA kit Zymo Research D4302

iTaq Universal Probes Supermix BioRad 1725131

Tetracycline (USP) Sigma Aldrich T4062

Critical Commercial Assays

Purelink genomic DNA Mini Kit ThermoFisher K182002

DNeasy UltraClean Microbial kit Qiagen 12224–250

Nextera XT kit Illumina FC-131–1024

Nextera XT Index Kit Illumina FC-131–1001

Epsilometer Strips bioMerieux CL 256, TC 256, KM 256, AM 256, VA 256, MX 32, PG 32, MZ 
256

Deposited Data

Competition Experiment Reads Sequence Read Archive PRJNA578765
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REAGENT or RESOURCE SOURCE IDENTIFIER

Genomes Sequenced in this Manuscript NCBI Genbank PRJNA412637

Metabolomics Data massive.ucsd.edu MSV000083734

Adlercreutzia caecimuris DSM 21839 NCBI Genbank GCA_000403355.2

Adlercreutzia equolifaciens DSM 19450 NCBI Genbank GCA_000478885.1

Adlercreutzia caecicola DSM 22242 NCBI Genbank GCA_003725335. 1

Adlercreutzia mucosicola DSM 19490 NCBI Genbank GCA_000422625. 1

Arabia massiliensis Marseille-P3078 NCBI Genbank GCA_900169505.1

Asaccharobacter celatus DSM 18785 NCBI Genbank GCA_003726015.1

Collinsella aerofaciens ATCC 25986 NCBI Genbank GCA_000169035.1

Coriobacterium glomerans DSM20642 NCBI Genbank GCA_000195315.1

Cryptobacterium curtum DSM 15641 NCBI Genbank GCA_000023845. 1

Denitrobacterium detoxificans DSM 21843 NCBI Genbank GCA_900110565.1

Eggerthella lenta FAA 1-1-60ABroad NCBI Genbank GCA_000763035. 1

Eggerthella lenta FAA 1-3-56 NCBI Genbank GCA_000185625.1

Eggerthella lenta C592 NCBI Genbank GCA_002148255.1

Eggerthella lenta HGA1 NCBI Genbank GCA_000191845.2

Eggerthella lenta TF05–26B-4 NCBI Genbank GCA_003438525. 1

Eggerthella sp. YY7918 NCBI Genbank GCA_000270285. 1

Eggerthella timonensis Marseille-P3135 NCBI Genbank GCA_900184265.1

Enorma massiliensis DSM25476 NCBI Genbank GCA_000311845.1

Enteroscipio rubneri DSM105130 NCBI Genbank GCA_002899715.1

Gordonibacter faecihominis JCM 16058 NCBI Genbank GCA_003788985.1

Gordonibacter massiliensis Marseille-P2775 NCBI Genbank GCA_900170005.1

Gordonibacter pamelaeae DSM 19378 NCBI Genbank GCA_000210055. 1

Gordonibacter urolithinfaciens DSM 27213 NCBI Genbank GCA_003788975.1

Atopobium rimae ATCC 49626 NCBI Genbank GCA_000174015.1

Libanicoccus massiliensis Marseille-P3237 NCBI Genbank GCA_900143685.1

Olegusella massiliensis DSM 101849 NCBI Genbank GCA_900078545.1

Olsenella uli DSM 7084 NCBI Genbank GCA_000143845.1

Paraeggerthella hongkongensis DSM 16106 NCBI Genbank GCA_003726035. 1

Parolsenella catena DSM 105194 NCBI Genbank GCA_003966955. 1

Phoenicibacter congonensis Marseille-
P3241

NCBI Genbank GCA_900169485.1

Raoultibacter massiliensis Marseille-P2849 NCBI Genbank GCA_900199545.1

Raoultibacter timonensis Marseille-P3277 NCBI Genbank GCA_900240215.1

Rubneribacter badeniensis DSM 105129 NCBI Genbank GCA_002899695.1

Senegalimassilia anaerobia JC110 NCBI Genbank GCA_000236865. 1

Slackia equolifaciens DSM 24851 NCBI Genbank GCA_003725995. 1

Slackia exigua DSM 15923 NCBI Genbank GCA_000162875.1

Slackia faecicanis DSM 17537 NCBI Genbank GCA_003725295. 1
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REAGENT or RESOURCE SOURCE IDENTIFIER

Slackia heliotrinireducens DSM 20476 NCBI Genbank GCA_000023885. 1

Slackia isoflavoniconvertens DSM 22006 NCBI Genbank GCA_003725955. 1

Slackia piriformis DSM 22477 NCBI Genbank GCA_000296445. 1

Experimental Models: Organisms/Strains

Germ-free Swiss Webster Mice UCSF Gnotobiotics 
Core

NA

Oligonucleotides

Tetw_FACTGATCATATGAAAATAATCA
ATATTGGAATTC

This paper NA

Tetw 
RAGCTATGGATCCTTACATTATCTTCT
GAAACATATAG

This paper NA

Apt FACTGATCATATGGCTAAAATG This paper NA

AGAATATCA

Apt RGCTATGGATCCCTAAAACAAT 
TCATCCAGTAAA

This paper NA

Elenmkr1_FGT ACAACAT G CT CCTT 
GCGG

This paper NA

Elenmkr1_RCGAACAGAGGATCGGGAT
GG

This paper NA

Elenmkr1_P[6FAM]TTCTGGCTGCACCG
TT CGCGGTCCA[BHQ1]

This paper NA

Cgr2FGAGGCCGTCGATTGGATGAT This paper NA

Cgr2RACCGTAGGCATTGTGGTTGT This paper NA

Cgr2P[HEX]CGACACGGAGGCCGATGT
CG[BHQ1]

This paper NA

Software and Algorithms

BBtools jgi.doe.gov/data-and-
tools/bbtools/

v37.97

fastp Chen et al. (2018) v0.20.0

vsearch Rognes et al. (2016) v2.13.4

SPAdes Bankevich et al. (2012) v3.13.1

Prokka github.com/tseemann/
prokka

v1.13.3

CheckM Parks et al. (2015) v1.0.12

Quast Gurevich et al. (2013) v5.0.2

FastT ree Price et al. (2009) 2.1.10

DECIPHER Wright et al. (2016) v2.12.0

PhyloPhlAn Segata et al. (2013) v0.99

Roary Page et al. (2015) v3.12.0

Pyani github.com/
widdowquinn/pyani

v0.2.9

Interproscan Jones et al. (2014) v5

ProteinOrtho Lechner et al. (2011) v6

DIAMOND Buchfink et al. (2015) v0.9.14.115
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REAGENT or RESOURCE SOURCE IDENTIFIER

GhostKoala Kanehisa et al. (2016) v2.2

Snippy github.com/tseemann/
snippy

v4.4.3

MZmine2 Pluskal et al. (2010) NA

Abricate github.com/tseemann/
abricate

v0.9.8

Jellyfish 2 Marcais and Kingsford 
(2012)

v2.2.10

Samtools http://www.htslib.org/ v1.9

InSilicoSeq Gourle et al. (2019) v1.4.3

GNPS Molecular Networking Wang et al. (2016) v1.2.3

ComBat Leek et al. (2019) 3.32.1

CEU Mass Mediator Gil-de-la-Fuente et al. 
(2019)

3.0

MAGI Erbilgin et al. (2019) Docker image 1804676bbef1

Other

HLB 96-well plate Waters Oasis WAT058951

C18 column Kinetix 1.7μM 100-A 50×2.1mm
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