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Abstract

Lyme disease is the most common vector-borne disease in the northern hemisphere and is caused 

by spirochetes of the Borrelia burgdorferi sensu lato complex. Lyme borreliae infect diverse 

vertebrate reservoirs without triggering apparent manifestations in these animals, however Borrelia 
strains differ in their reservoir hosts. The mechanisms that drive those differences are unknown. To 

survive in their vertebrate hosts, Lyme borreliae require the ability to escape from host defense 

mechanisms, in particular complement. To facilitate complement evasion, Lyme borreliae produce 

diverse proteins at different stages of infection, allowing them to persistently survive without being 

recognized by hosts and potentially resulting in host-specific infection. This review discusses the 

current knowledge regarding the ecology and evolutionary mechanisms of Lyme borreliae-host 

associations driven by complement evasion.
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Lyme borreliae and complement

Lyme disease (LD) or borreliosis is caused by spirochetes belonging to the Borrelia 
burgdorferi sensu lato (s.l.) complex [1]. (Note the genus of Borrelia also causes another 

disease, e.g. relapsing fever, we use the terminology Lyme borreliae here to represent the 

causative agent of LD). Lyme borreliae are transmitted from vertebrate reservoir hosts (see 

Glossary) to humans via hard ticks of the genus Ixodes [2]. More than 20 different 

genospecies of the complex have been identified so far of which six species are confirmed to 

cause human LD: B. burgdorferi sensu stricto (s.s.), B. afzelii, B. garinii, B. spielmanii, B. 
bavariensis (formerly referred to as B. garinii OspA serotype 4), and B. mayonii [2]. Within 

a genospecies, the isolates of Lyme borreliae may differ in their genetic contents and have 

been genotyped using different methodologies [3-6]. These isolates often vary in their 

associations with particular host species [7, 8].

Common to B. burgdorferi s.l. species is their ability to counteract the innate immune 

defense mechanisms of diverse hosts. Some mammalian and avian reservoir hosts can be 

persistently infected by certain species for prolonged periods without suffering from disease 

manifestations. In contrast, the immune system of humans and other animals that are non-
reservoir hosts can develop disease manifestations, including arthritis, carditis, neurological 

symptoms (known as neuroborreliosis), and acrodermatitis chronica atrophicans [2, 9]. The 

ability of B. burgdorferi s.l. to be maintained in these hosts, or cause disease manifestations 

differ, but the mechanisms that drive such differences remain unclear.

Complement, as an important pillar of innate immunity, forms a powerful surveillance 

system that comprises a well-organized network of fluid-phase and membrane-bound 

regulatory proteins circulating in the blood. Upon recognition of invading microorganisms, 

complement is immediately activated in a cascade-like manner. Despite the effectiveness of 

complement, Lyme borreliae develop strategies to circumvent this crucial, non-specific 

barrier of their hosts [10]. However, the heterogeneity in the ability of Lyme borreliae 

genospecies to survive in sera from different hosts lead to the hypothesis that such Lyme 

borreliae complement-inhibitory strategies do not necessarily protect spirochetes from 

killing by serum of every host species [11]. Additionally, the ability to evade complement 

appears to determines host infectivity of these pathogens [10, 12, 13]. This review thus 

focuses on the current knowledge of the molecular mechanisms utilized by Lyme borreliae 

to counteract complement and the potential role of complement evasion in the evolution of 

host specialization for those bacteria.

Diversity in complement evasion of Lyme borreliae

Complement is a powerful component of vertebrates’ immune defense against invading 

microorganisms. A Lyme borreliae strain’s ability to evade complement has been determined 

by testing whether that a particular strain is able to survive in host sera (also described as 

serum resistance). B. burgdorferi s.l. varies in their ability to inhibit complement from 

humans and various animals (Table 1) [14-16]. A strain’s ability to avoid complement-

mediated killing by a particular host’s serum is strongly correlated with the capability of that 

strain to survive in that host. For example, the ave-associated species B. garinii and B. 
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valaisiana are generally able to survive in avian but not mammalian sera, while the mammal-

associated species B. afzelii, B. bavariensis, B. spielmanii, B. bissettiae, and B. japonica can 

generally survive in mammalian but not avian sera (reviewed in [17] (Table 1). Additionally, 

B. burgdorferi, B. afzelii, B. spielmanii, B. bavariensis, and B. mayonii, which have been 

isolated from humans, are capable of surviving in human sera. Note that the pathogenicity of 

B. valaisiana and B. lusitaniae for humans remains unclear, but these strains are killed by 

human serum (reviewed in [18]) (Table 1). A notable exception is B. garinii, which has been 

isolated from humans with neurological manifestations, yet some B. garinii strains are 

highly vulnerable to the killing by human sera. Despite several proteins derived from tick 

saliva were shown to contribute to the resistance of B. burgdorferi s.l. to complement attack 

[19], the correlation of host-specific serum resistance and the infectivity pattern among B. 
burgdorferi s.l. supporting the notion of bacterial factor(s) that determines host association.

The factors of Lyme borreliae involved in complement evasion.

Complement can be activated through three canonical routes: the classical (CP), the lectin 

(LP), and the alternative pathway (AP) (Fig. 1)[20]. The binding of antibody to antigen and 

C1 protein complex activates CP, whereas the association of mannan-binding lectin, ficolins, 

or collectins with carbohydrates on a pathogen’s surface induces activation of the LP. 

Formation of the C3 convertase in the fluid phase, C3bBb and subsequent cleavage of C3 to 

C3a and C3b triggers the activation of the AP and leads to the deposition of C3b to the 

microbal or other target surface (Fig. 1). Activation of each of these pathways results in 

formation of two different types of C3 convertases: C3bBb formed by the AP, and C4b2a 

generated by the- CP and LP (Fig. 1). Both C3 convertases then promote formation of the 

central complement component, C3b, which leads to formation of the C5 convertase(s) to 

cleave C5 into C5a and C5b. C5b deposition on bacterial surfaces initiates the terminal 

sequence (TS), which recruits the late complement proteins C6, C7, and C8. The association 

of C5b, C6, C7, and C8 leads to the deposition of C9, which is multimerized to form the 

bacteriolytic terminal complement complex (TCC, also known as the membrane attack 

complex, MAC). To protect self surfaces from excessive activation, complement is tightly 

controlled by a number of soluble and membrane-anchored regulators. These regulators 

include, but not limited to, C1 esterase inhibitor (C1-INH) and C4b-binding protein (C4BP) 

that inhibit CP and LP, Factor H (FH) and Factor H-like protein 1 (FHL-1) that inhibit AP, 

and vitronectin that negatively modulates the formation of the MAC (Fig. 1)[20].

Lyme borreliae possess a number of structurally diverse outer surface proteins to inactivate 

complement at different stages of the infection cycle. These proteins target complement 

proteins/regulators that can modulate different arms of complement (reviewed in [13]). The 

proteins that inhibit AP include the collectively termed FH/FHL-1-binding Complement-

Acquiring Surface Proteins (CRASP): CspA, CspZ, and OspE-related protein (members of a 

family of proteins collectively known as “Erp”, which include ErpA, ErpC, and ErpP) 

[21-27](Table 2). The recruitment of FH and/or FHL-1 by these proteins onto the bacterial 

surface leads to inactivation of the AP, permitting Lyme borreliae to survival in host sera. 

Additionally, B. burgdorferi s.l. produce at least two additional outer surface proteins to 

inhibit complement: BBK32 and OspC (Table 2) [28, 29]. BBK32 binds to C1r and thereby 

inhibits the activation of the C1 complex, resulting in the termination of all downstream 
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activation steps of the CP. OspC of B. burgdorferi s.l. binds to C4b to prevent the formation 

of C4b2a, the C3 convertase of CP and LP, and thus inhibits activation of those pathways 

[28, 29]. Of note, formation of the MAC can be down-regulated by several Lyme borreliae 

proteins [30, 31](Table 2) but the role of TS inhibition to contribute to Lyme borreliae 

infectivity is as yet unclear.

Multiple regulatory mechanisms control expression of complement 

inhibitory proteins.

Lyme borreliae proteins that mediate resistance to host complement exhibit different patterns 

of expression during infection, indicative of several distinct regulatory pathways for the 

production of these proteins. Lyme borreliae within unfed ticks do not produce OspC, OspE-

related proteins, CspA, or CspZ [32-35](Table 2). When an infected tick begins to feed on 

the blood of a vertebrate host, production of OspC is induced, so that transmitted bacteria 

possess this protein on their outer surface [32]. However, OspC production is repressed 

within a few days after establishment of infection [36] (Table 2). In contrast, OspE-related 

proteins are also induced during tick feeding, but these outer surface proteins continue to be 

produced throughout vertebrate infection, and bacteria acquired by ticks from infected 

mammals produce all of their OspE-related proteins [33, 37] (Table 2). Production of CspA 

is also induced during tick feeding, repressed subsequently after the transmission begins, 

and the infection establishes at the tick biting site of the skin. The cspA expression is then 

induced when Lyme borreliae are transmitted from infected vertebrates to feeding ticks [34, 

35] (Table 2). CspZ exhibits yet another pattern of expression: its production begins after 

transmission of bacteria from the tick into the vertebrate, persists throughout vertebrate 

infection, then is repressed during acquisition by feeding ticks [34, 35](Table 2).

Of the Lyme borreliae complement-resistance mediators, the regulatory networks of OspC 

and the OspE-related proteins are the most well studied. High-level expression of OspC is 

dependent upon an alternative sigma factor (RpoS), which has led to a hypothesis that RpoS 

directly controls ospC transcription [38]. However, ospC is transcribed at low levels in rpoS-

deficient mutants, leading to an alternative hypothesis that the effect of RpoS is indirect [39, 

40]. Consistent with that second model, a region of DNA 5’ of the ospC promoter is required 

for RpoS-dependent induction of ospC, and is likely to be a binding site for a regulatory 

protein that is under control of RpoS [41, 42]. Additionally, bbk32 is also regulated by such 

a RpoS-dependent mechanism in the similar fashion as ospC [43, 44]. While the operon of 

ospC is controlled in the RpoS-independent manner [39], this operon contains a highly-

conserved operator region, and are under transcriptional regulation of three proteins that 

bind to erp operator DNA: the BpaB repressor, the BpuR co-repressor, and the EbfC anti-

repressor [45-49]. Studies of BpuR and EbfC indicated that each protein regulates its own 

production, and that production of both proteins is also controlled by the DnaA protein (the 

master regulator of bacterial replication) [50-52]. In addition, our preliminary studies of 

CspZ found that a novel Lyme borreliae protein binds near the cspZ transcriptional 

promoter, which warrants further investigation.
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Polymorphisms of complement-interacting proteins influencing Lyme 

borreliae-host association

CspA, a complement evasion factor operating in the ticks

The transcript encoding CspA is expressed by B. burgdorferi s.s. at the onset of tick feeding 

and during transmission to vertebrate hosts, and then repressed in the later stages of 

infection [35] (Table 2). The tick-specific expression profile of cspA is consistent with the 

previous finding that Lyme borreliae require CspA to survive in ticks’ midgut upon blood 

feeding [53]. A recent observation indicates that CspA-mediated FH-binding activity is 

essential for these pathogens to evade complement in the ingested blood, permitting efficient 

tick-to-host transmission [53] (Fig. 2, Key Figure). The CspA polymorphisms are associated 

with variable FH-binding activity [53, 54], resulting in the strains that are either highly 

vulnerable (in the absence of FH) or highly resistant (upon binding of FH) to complement of 

vertebrate hosts [53, 54]. These findings indicate that CspA is one of the determinants that 

define host-specific infection. However, whether particular CspA variants that promote 

inefficient tick-borne transmission to mice have a role in facilitating transmission to other 

animals remains unknown. The evolutionary mechanisms and amino acid determinants of 

this protein to drive such host associations need further investigations.

CspZ, a complement evasion factor operating in the vertebrate host

In contrast to cspA, expression of cspZ occurs only in the vertebrate host [35] (Table 2). 

Lyme borreliae that lack cspZ or produce a mutant CspZ without FH-binding activity exhibit 

reduced colonization of distal tissues during mouse infection. Those results indicate that 

CspZ-mediated FH-binding activity contributes to spirochete dissemination [55, 56] (Fig. 2). 

Unlike CspA, the amino acid sequences of CspZ are largely conserved among different B. 
burgdorferi s.s. strains (> 95% identity) and species of the B. burgdorferi s.l. complex (>70% 

identity) [57, 58]. However, allelically different human FH-binding activity was observed in 

CspZ from different B. burgdorferi s.s. strains [57, 58]. Comparisons of the solved structure 

of CspZ of B. burgdorferi B31 with different B. burgdorferi s.s. strain showed variations in 

the regions that are involved with FH-binding activity [59]. These results raise an intriguing 

question: would this host-specific FH-binding activity of CspZ enable this protein as one of 

the determinants that drive host association? Additionally, CspZ is not carried by every B. 
burgdorferi s.s. strain, suggesting that additional genes encoding complement-inhibitory 

proteins are co-expressed with cspZ [57, 60] (Table 2).

OspE paralogs, additional complement evasion factors operating in the vertebrate host?

B. burgdorferi s.l. produces multiple paralogs of OspE [61-63]. Consistent with expression 

of ospE triggered by host-specific environmental cues (e.g. blood meal), a previous study 

reported that passive transfer of anti-OspE IgG reduces the levels of spirochetes transmission 

to mice [64]. A B. burgdorferi s.s. strain with transposon inserted into erpA (one ospE 
paralog in B. burgdorferi s.s. strain B31-A3) displays a two-week delay in the distal tissue 

colonization when co-infected with a population of mutant Lyme borreliae strains with 

transposon inserting in different genes [65]. These findings suggest that OspE promotes 

spirochetes’ tick-to-host transmission and hematogenous dissemination (Fig. 2). The ospE 
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genes largely differ in the number of copies and sequences among different species or strains 

of B. burgdorferi s.l. , raising a possibility that OspE determines host-specificity of infection 

[66, 67].

OspC and BBK32, complement evasion factors operating in the initial phase of infection

OspC is one of the most studied outer surface lipoproteins in B. burgdorferi s.l. This protein 

is not expressed when Lyme borreliae are in ticks prior to blood feeding but produced upon 

the blood feeding of ticks and during transmission. After the entry into hosts, the production 

of OspC remains until Lyme borreliae begin disseminating to distal tissues (Table 2). OspC 

binds to a tick salivary protein, Salp15, and the decoration of this tick protein on the surface 

of Lyme borreliae prevents opsonophagocytosis at the tick biting site [68]. OspC also binds 

to human complement C4b to inactivate CP and LP. Consistent with these activities, OspC is 

required for Lyme borreliae to survive at infection initiation sites during the first 24 hours of 

pathogen inoculation and confers spirochetes’ the ability to remain in the mammalian 

bloodstream [28, 69] (Fig. 2). Nonetheless, the molecular mechanisms leading to such 

phenotypes need further investigations. Furthermore, OspC is one of the most polymorphic 

proteins among different strains or species of B. burgdorferi s.l. [1]. However, whether this 

protein is a determinant of host-specific survival and if so, which mechanisms drive such 

survival is still unclear.

BBK32 was initially identified as an adhesin that binds to extracellular matrix molecules 

fibronectin and glycosaminoglycans on the host cell surface and later demonstrated as a C1r-

binding protein to inactivate CP [29]. In agreement with a blood meal-induced expression 

profile of bbk32 (Table 2), BBK32 contributes to the ability to survive in mouse bloodstream 

at short-term and disseminate to joints at early stages of infection [69, 70] (Fig. 2). Though 

BBK32 is conserved (close to 90% similarity among strains or species of B. burgdorferi s.l.), 

the orthologs from B. afzelii and B. garinii differ in their capability to bind to human C1r 

[71]. Assuming that C1r-binding activity plays a role in conferring spirochete survival in 

vertebrate bloodstream and promoting dissemination at infection onset, such a strain-to-

strain variation of BBK32-mediated C1r-binding activity may support the notion that this 

protein drives host-specific infectivity.

Host specialism of LD spirochetes at a glance

The spirochetes of the B. burgdorferi s.l. complex are maintained in an enzootic cycle 

between ticks of the Ixodes ricinus species complex and reservoir hosts, including small and 

medium-sized mammals, birds and reptiles [9]. In most Lyme disease endemic regions, there 

is a diverse community of co-circulating Lyme borreliae and an association between 

different classes of vertebrate hosts and some B. burgdorferi s.l. genospecies has been 

observed [9, 72, 73]. Some of these observed associations may be due to extrinsic factors 

such as geographic co-occurrence of hosts with specific B. burgdorferi s.l. genospecies. 

However, there is strong evidence that at least some of these genospecies differ intrinsically 

in transmissibility across hosts, i.e. they are “host specialized” [11, 12, 72]. The strongest 

evidence is provided by experiments demonstrating increased fitness for B. afzelii in mice 

and B. garinii in birds [11, 12, 73] and, to some extent, field studies demonstrated greater 
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genospecies infection prevalence in certain hosts compared to the background infection 

prevalence in local populations of Ixodes spp [74].

In contrast to the other genospecies in the B. burgdorferi s.l. complex, B. burgdorferi s.s. is 

considered a host generalist, as it has been isolated from multiple classes of vertebrate 

animals (e.g. mammalian and avian hosts) [[72] and summarized in [9]]. However, multiple 

studies indicate that some genotypes of B. burgdorferi s.s. have higher fitness in some hosts 

in laboratory studies [75] and are more prevalent in certain mammalian or avian host species 

[9, 76-82]. Evidence of within-genospecies association of specific genotypes of B. 
burgdorferi s.l. and certain hosts has also been described for B. garinii and B. afzelii in 

laboratory experiments [9, 73, 83] and some field studies [84, 85], but not in others [86]. A 

limitation of field studies is that they represent only snapshots of population structures that 

are spatially and temporally variable due to stochastic effects or other forces, making 

inferences of host association difficult [72].

Eco-evolutionary mechanisms driving B. burgdorferi-host specialism

Despite evidence for some level of association between B. burgdorferi s.s. strains and hosts 

from laboratory infections and field studies [5, 87], the extent to which host adaptation 

drives the genome-wide diversification in B. burgdorferi s.l. is currently under debate. 

Particular attention has focused on factors driving polymorphism in OspC, one the most 

diverse Lyme borreliae antigens that is heavily targeted by the vertebrate immune system 

[88-90]. Balancing selection has been proposed to maintain ospC alleles at intermediate 

frequencies, with high sequence diversity within a population [91]. Genome-wide linkage to 

this single locus may then be responsible for maintaining genetic variation at linked loci 

[92-94]. It is currently debated which specific mode of balancing selection drives the OspC 

polymorphism in B. burgdorferi s.s.. Some authors have proposed that, similarly to the 

process operating across B. burgdorferi s.l. species, host specialization via multiple-niche 

polymorphism (with hosts acting as different ‘niches’ for B. burgdorferi) could lead to 

diversification within B. burgdorferi s.s. [72, 80, 81, 95].

Alternatively, the OspC polymorphism could be maintained by negative frequency 

dependent selection mediated by adaptive immunity, such that bacterial populations carrying 

rare genotypes have a selective advantage over common genotypes and are thus maintained 

in the population [91, 95, 96]. Theoretical studies predict that frequency dependent fitness 

leads to fluctuations in the abundance of spirochete genotypes, which would result in 

temporal shifts in the population structures; however evidence for these fluctuations is 

limited [97, 98].

An intriguing question is whether the partial and regionally constrained host associations 

observed in B. burgdorferi s.s. represent an incipient evolutionary process of host 

specialization (Fig. 3). That is, is B. burgdorferi s.s. on an evolutionary path to diversify into 

species-associated ecotypes similar to the B. burgdorferi s.l. genospecies in Europe? B. 
burgdorferi s.s. generalism, i.e. the ability to infect multiple hosts, has in fact been proposed 

as a key property allowing it to spread across the northeastern United States following large-

scale habitat destruction in the course of the post-Columbian settlement and during the 
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industrial revolution [81]. The more recent geographic expansion of B. burgdorferi s.s may 

provide additional opportunities for adaptation to different host niches, resulting in the 

development of species-associated ecotypes similar to the B. burgdorferi s.l. genospecies in 

Europe [85]. The recent redefinition of B. bavariensis from a genotype of B. garinii to a 

novel genospecies, after it was shown to infect mice in contrast to B. garinii (a bird-adapted 

genospecies), provides a glimpse of potential future processes of host specialization and 

Lyme borreliae speciation by B. burgdorferi s.l. linked to vector or host association [85].

Concluding Remarks

Here we summarize the evidence that supports the proteins that contribute to complement 

evasion-mediated infectious phenotypes in a host-specific manner, leading a question if 

complement evasion activity of B. burgdorferi s.l. confers the host association (see 

Outstanding questions). The fact that some of these proteins are functionally redundant and 

produced simultaneously in the infection cycle, raising the hypothesis that these proteins 

play in concert in promoting host association of B. burgdorferi s.l. (see Outstanding 

Questions). Furthermore, the ability of complement to eliminate Lyme borreliae differs 

among diverse animal species falling in the same taxonomic class (e.g. aves or mammalia) 

appears to differ. This leads to an intriguing question if complement plays a role in defining 

the different levels of competence for the hosts within the same taxonomic classes (see 

Outstanding questions). In addition, though a spirochete-host association has been clearly 

defined for different Lyme borreliae genospecies, whether this association also applies to 

different genotypes of spirochetes within the same genospecies (e.g. B. burgdorferi s.s.) is 

unclear. Teasing apart this question could examine an incipient evolutionary process of B. 
burgdorferi s.l. toward a more complete host association (see Outstanding questions). Future 

investigations of the above-mentioned questions will undoubtedly contribute to an insight 

about the factors contributing in the pathobiology of spirochetes and their diversity in host 

association.

Acknowledgement

This work was supported by NSF-IOS1755286 (YL, MDW), DoD-TB170111 (YL), NIH-R21AI144891 (YL), 
NIH-R01AI121401 (PK), and the LOEWE Center DRUID Novel Drug Targets against Poverty-Related and 
Neglected Tropical Infectious Diseases, project C3 (PK).

Glossary

Host infectivity
Efficiency with which infection is transmitted from a tick host population to to feeding ticks.

Host specialism/specialization 
(with host specialization as the process and host specialized as the adjective)
Ecological and evolutionary process by which a pathogen becomes differentially adapted 

and thus restricts its host range to a subset of potential hosts. Intrinsic fitness variation of B. 
burgdorferi s.l. strains in vertebrate host species is generally cited as evidence of host 

specialization.

Lyme borreliae speciation
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The evolution of a new Lyme borreliae species.

Lyme borreliae-host association
Hosts from which the specified Lyme borreliae species/strains has been isolated, i.e. the 

species/strain is capable of infecting (surviving and disseminating) in the host. These 

associations represent a pattern (compare with host specialization) that may be due to 

multiple processes, including differential susceptibility or resistance to serum complement 

(the topic in this paper) as well as other mechanisms.

Non-reservoir hosts
Hosts that may have contact with infected ticks and may or may not develop a long-lasting 

infection but are incapable of transmitting the infection to ticks.

Opsonophagocytosis
Identification of an invading microorganism by opsonins following phagocytosis.

Reservoir hosts
Nature hosts that the vector (e.g. ticks) become infected by feeding on such hosts.
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Outstanding questions

• Does the species-specific polymorphism of complement- or complement 

regulators-binding activity play a key role in driving host association of B. 
burgdorferi s.l.?

• Why would B. burgdorferi s.l. produce multiple proteins displaying redundant 

complement-inhibitory activity (e.g. CspZ, OspE, BBK32, and OspC) when 

they are in the vertebrate hosts? Would they all contribute Lyme borreliae-

host association?

• Within the same taxonomic classes (e.g. aves or mammalia), would there be a 

difference in complement evasion for different species/strains of the B. 
burgdorferi s.l. complex leading to different levels of Lyme borreliae-host 

association?

• Would the partial and regionally constrained host-specific infectivity be 

observed in B. burgdorferi s.s., representing an incipient evolutionary process 

toward more complete Lyme borreliae-host association?
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Highlights

• Emerging and re-emerging zoonotic diseases have a major impact on global 

public health including tick-transmitted illnesses such as Lyme disease. The 

Lyme disease causing pathogens developed a range of sophisticated strategies 

to overcome the innate immune system of various vertebrate hosts to 

accomplish their natural host-tick enzootic cycle.

• Inactivation of host’s complement in ticks ‘blood meal and host bloodstream 

are crucial steps to secure spirochetes from killing during transmission and 

dissemination.

• Strain to strain variation of the levels to evade complement may contribute to 

distinct Lyme borreliae-host association.

Lin et al. Page 16

Trends Parasitol. Author manuscript; available in PMC 2021 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Schematic diagram of vertebrate complement cascades and the particular steps Lyme 
borreliae anti-complement protein interact.
The CspA, CspZ, and OspE of B. burgdorferi s.l. target the host complement regulator, FH, 

by inhibiting the formation C3bBb to inactivate AP. LD spirochetes also produce BBK32 

and OspC that bind to C1r and C4b, respectively. These proteins inhibit CP (for BBK32 and 

OspC) and LP (for OspC). Additional proteins of B. burgdorferi s.l. (e.g. CspA, BGA66, and 

BGA71) inactivate TCC by preventing the formation of C5b-9 on the surface of spirochetes 

(Part of the figure is adapted from [18]). FH, Factor H; AP, alternative pathway; CP, classical 

pathway; LP, Lectin pathway; TS, terminal sequence; LD, Lyme disease; TCC, terminal 

complement complex
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Figure 2, Key Figure. Complement inhibitory proteins and their potential roles in the infection 
route.
When ticks feed on hosts, B. burgdorferi s.s. produce CspA to facilitate spirochete escape 

from complement-mediated killing in the blood meal. After transmission to a host, the tick 

salivary protein, Salp15, binds to OspC on the spirochete surface to prevent 

opsonophagocytosis at tick bite sites. Additionally, B. burgdorferi s.s. produces OspC, 

BBK32, and CspZ to promote complement evasion and bloodstream survival of spirochetes. 

The cell types and complement complex have been indicated on the figure. Though the 

function of OspE during infection remains unclear, the current evidence supports that this 

protein may confer spirochete dissemination in vertebrate animals (Part of the figure is 

adapted from [27]).
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Figure 3. The host-pathogen association for B. burgdorferi s.l. genospecies.
The indicated B. burgdorferi s.l. genospecies are acquired and transmitted between ticks and 

different vertebrate hosts including humans, small mammals, reptiles, and aves. Shown is the 

vertebrate hosts that have been demonstrated or suspected to carry respective species of the 

B. burgdorferi s.l. complex (Part of the figure is adapted from [9]).
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