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ABSTRACT

We provide an atomic-level description of the struc-
ture and dynamics of the UUCG RNA stem–loop
by combining molecular dynamics simulations with
experimental data. The integration of simulations
with exact nuclear Overhauser enhancements data
allowed us to characterize two distinct states of
this molecule. The most stable conformation corre-
sponds to the consensus three-dimensional struc-
ture. The second state is characterized by the ab-
sence of the peculiar non-Watson–Crick interactions
in the loop region. By using machine learning tech-
niques we identify a set of experimental measure-
ments that are most sensitive to the presence of
non-native states. We find that although our MD en-
semble, as well as the consensus UUCG tetraloop
structures, are in good agreement with experiments,
there are remaining discrepancies. Together, our re-
sults show that (i) the MD simulation overstabilize
a non-native loop conformation, (ii) eNOE data sup-
port its presence with a population of ≈10% and (iii)
the structural interpretation of experimental data for
dynamic RNAs is highly complex, even for a simple
model system such as the UUCG tetraloop.

INTRODUCTION

RNA loops are structural elements that cap A-form dou-
ble helices, and as such are fundamental structural units
in RNA molecules. The great majority of known RNA
loops contain four nucleotides (1), and these so-called
tetraloops are one of the most common and well-studied
three-dimensional RNA motifs. The great majority of
known RNA tetraloops have the sequence GNRA or
UNCG, where N is any nucleotide and R is guanine or
adenine (2). Their small size, together with their biologi-

cal relevance, has made these systems primary targets for
nuclear magnetic resonance (NMR) spectroscopy, X-ray-
crystallography, and atomistic molecular dynamics (MD)
simulation studies (3–5).

The UUCG tetraloop has been long known to be highly
stable, and both crystallographic and NMR studies sug-
gest that this tetraloop adopts a well-defined three di-
mensional structure including a characteristic trans-Sugar-
Watson (tSW) interaction between U6 and G9 (6,7) (Figure
1). Experimentally, the UUCG tetraloop is used to stabilize
the secondary structure of larger RNA molecules without
interacting with other RNAs or proteins (8).

Despite its stability, the UUCG tetraloop is not rigid, and
the sequence does not systematically determine a unique
structure (2,10). Three recent studies by independent groups
indicate the presence of alternative loop conformations (11–
13), and earlier NMR studies (7,14) also suggested the pres-
ence of loop dynamics, without providing a detailed struc-
tural interpretation of the data. More generally, the atomic-
detailed characterization of RNA structure and dynam-
ics requires specialized techniques and substantial exper-
imental effort, including NMR measurements of nuclear
Overhauser effects (NOE), scalar couplings, chemical shifts,
residual dipolar couplings, cross-correlated relaxation rates
as well as a wide range of relaxation–dispersion type NMR
experiments (15,16).

While NOEs are typically used to determine RNA and
protein structures, they also contain dynamic information.
Because ensemble-averaged NOEs are highly sensitive to
the underlying distance fluctuations, they may contain con-
tributions even from minor populations. Normally, such in-
formation is difficult to extract because standard NOE mea-
surements are relatively inaccurate. It has, however, been
demonstrated that a substantial part of the information
content inherent to these probes can be obtained from exact
NOE measurements (eNOEs) (13,17). As opposed to con-
ventional NOEs, eNOEs can be converted into tight upper
and lower distance limit restraints (18–20).

*To whom correspondence should be addressed. Tel: +45 3532 2027; Email: sandro.bottaro@bio.ku.dk
Correspondence may also be addressed to Kresten Lindorff-Larsen. Email: lindorff@bio.ku.dk

C© The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

http://orcid.org/0000-0003-1606-890X
http://orcid.org/0000-0003-1930-6408
http://orcid.org/0000-0003-1176-3137
http://orcid.org/0000-0001-6550-3272
http://orcid.org/0000-0002-4750-6039


5840 Nucleic Acids Research, 2020, Vol. 48, No. 11

Figure 1. Consensus secondary structure (left) and three dimensional
structure (right) of the UUCG tetraloop (7). The stem is formed by 5
consecutive Watson–Crick base-pairs capped by the loop U6–U7–C8–G9.
One of the most distinctive feature of this structure is the trans-sugar–
Watson interaction between U6 and G9 (bottom). Extended secondary
structure annotation follows the Leontis–Westhof nomenclature (9).

Previous computational studies of the UUCG tetraloop
focused either on the dynamics around the near-native state
(21) or on the difficulty in separating force-field inaccura-
cies from insufficient sampling (22,23). In a previous study,
we reported converged free-energy landscape for RNA 8-
mer and 6-mer loops, and we have shown that native-like
states are not the global free-energy minimum using the cur-
rent AMBER RNA force-field (24). This problem has been
addressed in a new parameterization of the AMBER force-
field, that improves the description of the UUCG 14-mer
and other RNA systems (25). Nevertheless, it remains diffi-
cult to assess the accuracy of these simulations, because ex-
periments alone do not provide an atomic-detailed descrip-
tion of structure and dynamics that serve as a benchmark.

Here, we use extensive atomistic MD simulations to
map the conformational landscape of the UUCG tetraloop
using enhanced sampling techniques and a recent force-
field parameterization. To improve the description of this
system further, we perform an a posteriori refinement
of the MD simulation using experimental data via a
Bayesian/maximum entropy procedure (26,27). We vali-
date the eNOE-refined ensemble against independent NMR
measurements and find an agreement that is on average
comparable with NMR structures of the UUCG tetraloop
deposited in the Protein Data Bank (PDB).

Our experimentally-refined ensemble reveals the pres-
ence of two conformational states. The dominant, major
state (here called state A) is the consensus UUCG struc-
ture shown in Figure 1. The second, previously unreported
lowly-populated state (state B) is characterized by the ab-
sence of the signature U6–G9 non-Watson–Crick base pair,
with the C8 and G9 bases exposed into solution. We employ
a random forest classifier to identify the structural proper-
ties that distinguish state A from state B. Furthermore, we

use the same method in the space of experimental data to
identify specific measurements that are most sensitive to the
presence of state B.

The paper is organized as follows: in the Results section
we first compare the predictions obtained from MD simu-
lation against different experimental datasets. We then dis-
cuss the effect of the refinement procedure, showing how
it improves the agreement with experiments and how it af-
fects the population of different conformations. We proceed
by identifying the relevant degrees of freedom and contacts
that characterize the two states. Finally, we identify exper-
iments sensitive to the presence of state B. We accompany
this paper with the code to reproduce step-by-step the com-
plete analysis, including all figures and supplementary re-
sults presented in the manuscript.

MATERIALS AND METHODS

MD simulations

We simulate the RNA 14-mer with sequence GGCACUUCG-
GUGCC starting from a completely extended conformation.
Studying the folding free-energy landscape of this system
is computationally expensive: for this reason previous at-
tempts required �s-long simulations in combination with
tempering protocols (25,28,29).

Here, we combine two enhanced sampling techniques: so-
lute tempering in the REST2 formulation (30) and well-
tempered metadynamics (31). We used a nucleic-acid spe-
cific metric, called eRMSD, (32) as a collective variable for
enhanced sampling. The MD simulation setup and conver-
gence analysis are presented in supporting information 1
(SI1).

Calculating experimental quantities from structure (forward
models)

We calculated NOEs from the ensembles as NOECALC =
[
∑n

j w j r
−1/6
j ]−6. The index j runs over the n frames/models

with associated weight wj. This is an approximation because
the NOE depends also on the timescales of motion and may
contain contributions from angular fluctuations (18). In our
analyses we circumvent these problems by extracting effec-
tive average distances from the NOE buildup curves and
calculate these as weighted distance averages, and note that
more advanced analyses would require reweighting of long-
timescale correlation functions. We calculated 3J scalar cou-
plings using Karplus equations as defined in the software
package baRNAba (33). Cross-correlated relaxation rates
are predicted with an in-house script available on Github
(see Data Availability). Pales (34) is used to compute resid-
ual dipolar couplings (RDC), while solvent paramagnetic
resonance enhancements (sPRE) are calculated as described
in (35). More details and practical examples are available in
SI2.

Integrating simulations and experiments

We combine the MD simulation with experimental data us-
ing a maximum entropy/Bayesian procedure (26,36,37). In
our previous work, we have described this reweighting pro-
cedure as Bayesian/MaxEnt (BME) (27,38). In BME we use
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the experimental data to modify a posteriori the simulation
so that the new conformational ensemble has the following
properties: (i) the calculated averages are close to the ex-
perimental values taking uncertainty into account and (ii)
it maximizes the relative Shannon entropy with respect to
the original simulation ensemble. The modification comes
in the form of a new set of weights w∗

j , one for each simula-
tion frame.

It can be shown that this problem can be cast as a mini-
mization problem, in which one seeks the minimum of the
function � with respect to the set of Lagrange multipli-
ers λ̄ = λ1 · · · λm, with m being the number of experimental
constraints.

�(λ̄) = log(Z(λ̄)) +
m∑
i

λi F exp
i + θ

2

m∑
i

λ2
i σ

2
i (1)

Here, �i are the uncertainties on the experimental mea-
surements Fexp

i and include experimental errors and inac-
curacies introduced by the calculation of the experimental
quantity from the atomic positions (F(x)). The partition
function Z is defined as

Z(λ̄) =
n∑

j=1

w0
j exp

[
−

m∑
i

λi Fi (x j )

]
(2)

The sum over the index j runs over the n frames in the sim-
ulation, and w0

j are the original weights. w0 = 1/n when us-
ing plain MD simulations or enhanced sampling techniques
that sample directly from the target distribution (e.g. paral-
lel tempering). In this paper we use WT-METAD, and the
original weights w0 are estimated using the final bias po-
tential (39). The minimization of equation (1) yields a set of
Lagrange multipliers λ̄∗ that are used to calculate the opti-
mal weights

w∗
j = 1

Z(λ̄∗)
w0

j exp

[
−

m∑
i

λ∗
i Fi (x j )

]
(3)

We choose the free hyper-parameter of the algorithm (�)
by performing a 5-fold cross-validation procedure as de-
scribed in SI3.

Random forest classifier

The random forest analysis is set up according to the fol-
lowing procedure:

• Bootstrap n = 50 000 samples from the MD simulation
trajectories. The weight of each sample, w∗

j , is calculated
as described above.

• Samples are assigned to state A if the eRMSD from the
first model of the NMR structure 2KOC is <0.7, and state
B otherwise.

• Calculate a set of m features (torsion angles, distances be-
tween ring centres, experimental data) for each sample
(33).

• Construct a random forest classifier using n samples, m
features and 2 classes (state A and state B). In our work,
we use the implementation of the random forest algo-
rithm (40) available in sklearn 0.22 using a maximum tree

depth of 2. 80% of the samples are used for training, while
the remaining 20% are used to evaluate the accuracy of
the classifier (>97% in all cases).

• Rank the m features by their importance. In the analysis
of the experimental data in Figure 5, only features with
importance greater than 0.2 are shown.

The implementation of the procedure is described in SI 4.

RESULTS

First, we compare the computational prediction with avail-
able NMR spectroscopy data. More precisely, we consider
the following experimental datasets:

• Dataset A. Exact eNOEs (13), consisting in 62 bidi-
rectional exact NOE, 177 unidirectional eNOE and 77
generic normalized eNOE (gn-eNOE). This dataset alone
was used to determine the structure of the UUCG
tetraloop with PDB accession codes 6BY4 and 6BY5. In
addition to the original dataset, we added one new eNOE
and six new gn-eNOEs.

• Dataset B. 96 3J scalar couplings, 32 RDCs, 251 NOE
distances, and 84 cross-correlated relaxation rates. These
data were used to calculate the consensus UUCG
tetraloop structure (PDB 2KOC (7)).

• Dataset C. 39 (RDC1) plus 14 (RDC2) residual dipolar
couplings. These RDCs have been used in conjunction
with MD simulations to obtain a dynamic ensemble of
the UUCG tetraloop. (11).

• Dataset D. 91 solvent paramagnetic resonance enhance-
ment (sPRE) measurements (12).

The exact set of experimental data we used is described
in SI2 and available in tabular format in SI 5. The or-
ange bars in the four panels of Figure 2 show the agree-
ment between simulation and the different experimental
datasets. The agreement between experiment and simula-
tions is expressed using the reduced � 2 statistics, defined
as the average square difference between the experimental
measurement (Fexp) and the back-calculated ensemble aver-
age 〈F(x)〉normalized by the experimental error �:

χ2 = 1
m

m∑
i

(〈F(x)〉i − F EXP
i )2

σ 2
i

(4)

Hence, the lower the � 2, the better the agreement. As a rule
of thumb, � 2 < 1 can be considered small, as the average
difference between experiment and prediction is within ex-
perimental error.

As a reference, we report in Figure 2 the agreement calcu-
lated on the PDB ensembles 6BY5 (13) and 2KOC (7). For
set A, the agreement of the MD with experiment is consid-
erably poorer than the one calculated on 6BY5. We recall
that this latter ensemble was determined by fitting dataset
A, we thus expect � 2 to be small in this case. On datasets
B, D the MD better agrees with experiments compared to
2KOC, 6BY5, while differences on set C are smaller. The
same conclusions apply when performing the comparison
for each type of data and when considering other statistics
(SI 6). Note that � 2 for sPRE, RDC, and scalar couplings
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Figure 2. Comparison between experiment and simulations. (A) � 2 between experimental dataset A against the MD ensemble (MD) and against the
refined ensembles (MD+set A, MD+set B, MD+set C, MD+set D). As a reference, values calculated from all NMR models from PDB structures 2KOC
and 6BY5 are shown as dashed lines. The agreement between the same ensembles and datasets B, C, D, are shown in panels (B), (C) and (D), respectively.
Error bars show the standard error estimated using four blocks.

is very large. This discrepancy may arise both from the im-
perfect ensembles, from the underestimation of the experi-
mental error, as well as from the limitation of the function
used to calculate the experimental quantity from the atomic
positions (i.e. the forward model). As an example, the pa-
rameters in the Karplus equation for HCOP couplings crit-
ically depend on a single experimental data point measured
in 1969 (41).

Bayesian/Maximum entropy refinement of the MD ensemble

As described above, our MD simulation provides a confor-
mational ensemble consisting of a rich and diverse set of
conformations, that, however, as a whole does not match
all experimental data perfectly.

In order to improve the description provided by the MD
simulation, we calculate a refined conformational ensemble
by a posteriori including experimental information into sim-
ulations. In brief, the refinement is obtained by assigning a

new weight to each MD snapshot, in such a way that the
averages calculated with these new weights match a set of
input (or ‘training’) experimental data within a given error.
Among all the possible solutions to this underdetermined
problem, we use the one that maximizes the Shannon cross-
entropy (36,42,43).

Since we have four independent experimental datasets,
we can refine the simulation by using one of them, using
the other three as test set. By construction, the refinement
procedure improves the agreement on the training data, but
it does not guarantee improved agreement on the test sets.
Figure 2 shows the effect of the refinement for different
combinations of training/test set. For example, the blue bar
in panel A shows the agreement between experiment and
the MD simulations refined against set A (MD+set A) eval-
uated on set A itself (training). The blue bars in panels B, C,
D show the � 2 of MD+set A on datasets B, C, D (test). The
MD+set B is trained on set B and tested on datasets A, C, D
and so on.
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Figure 3. Histograms of the eRMSD from native. The original MD simu-
lation (orange) is compared with the four refined ensembles: MD+set A in
panel (A), MD+set B in panel (B), MD+set C in panel (C) and MD+set D
in (D). Shades show the standard error estimated using four blocks. The
vertical dashed line in panel (A) shows the separation between state A
(eRMSD < 0.7) and state B (eRMSD ≥ 0.7).

We observe that including into simulations dataset A has
a detrimental effect on the agreement with set D, leaving the
agreement with dataset B and C unchanged. The MD+set
B ensemble shows improved agreement with dataset D, but
performs worse than the original MD on set A and C. We
observe a similar behavior for MD+set D. Among the four
refined ensembles the MD+set C is the one that behaves bet-
ter, as it shows a smaller or equal � 2 (relative to MD) on
the three tests sets A,B,D. Taken together, our results show
that the MD and the refined ensembles fit available experi-
mental data to a degree that is comparable to the one cal-
culated from PDB structures 2KOC and 6BY5 (Figure 2).
However, there exists substantial discrepancies with exper-
imental data, and none of the considered ensembles clearly
outperforms the others.

Conformational ensemble of the UUCG Tetraloop

In this section we analyse in detail the refined MD ensemble,
and discuss the differences with respect to the original sim-
ulation and previously determined structures. We consider
the histogram of the distance (structural dissimilarity) from
the consensus structure (PDB: 2KOC). Distances are mea-
sured using the eRMSD, a nucleic-acid specific metric that
takes into account both position and orientations between
nucleobases (32), although a qualitatively similar picture is
obtained using the standard RMSD metric.

The distribution obtained from the original MD ensem-
ble is shown in orange in Figure 3A, and repeated in the
four panels. The two peaks correspond to structures where
the stem is fully formed, but with different loop conforma-
tions. Structures in the left peak (eRMSD < 0.7, state A)

display the signature interactions present in the consensus
structure, while in the second peak (state B) the loop is dis-
ordered. The population of state A in our MD is 60% ± 4,
larger than the one calculated from the 180�s simulated
tempering simulation by Tan et al. (25) (≈ 40%).

The inclusion of experimental data in simulations affects
the histogram in different ways. When including eNOE data
from dataset A (Figure 3A, blue), we observe an increase
in the population of state A to 83% ± 16. The refinement
obtained with datasets B and C (Figure 3 panels b,c) has
a small effect on the population of state A, i.e. 60% ± 7
and 65% ± 5, respectively. In the MD+set D ensemble, the
population of state A is decreased (44% ± 10). Interestingly,
a new peak appears at eRMSD >1.5 in the MD+set B
and MD+set C ensembles. This peak corresponds to fully
extended conformations, and it is present when including
RDC measurements. If we trust our simulation, the for-
ward model including the complex issue of estimating the
alignment tensor, and the refinement procedure, we can con-
clude that RDC are sensitive to a small population of ei-
ther dimers or unfolded structures. Unfortunately, we do
not have the possibility to test this hypothesis, which is left
for future investigations.

Here, instead, we focus on the results obtained from
MD+set A. First, because this ensemble has the highest
population of state A, and it is thus less ‘surprising’. Sec-
ond, because we better understand and control the exper-
imental data, and lastly because we can take advantage of
our previous experience in using NOE for RNA ensemble
refinement (13,27).

Structural differences between state A and B

Having discovered this new B-state, we proceed to analyse
its structural features. While state A is known and struc-
turally well-defined (Figures 1 and 4A), it is not trivial from
a simple visual inspection to identify which are the main
features of state B (Figure 4B). Here, we address this ques-
tion by using a random forest classifier. In practice, we first
extract samples from the MD+set A ensemble. Second, we
label each conformation depending on the distance from na-
tive (state A if eRMSD<0.7, and state B otherwise). For
each conformation we calculate structural properties (e.g.
torsion angles, distances) that are used to train a random
forest classifier. In this context we are not interested in the
decision tree per se, but rather in its ability to rank the im-
portance of the input features in the classification problem.
Thus, we can find the most relevant degrees of freedom that
discriminate the two states. The result of such analysis on
all dihedral angles �, �, � , 	, 
, � , � in the 14-mer reveals
that the two highest-ranked angles are � in C8 and G9. Fig-
ure 4D,E show the histograms for these two angles: the an-
gle in C8 is a good classifier, as all samples from state A
(empty curve) are in gauche + conformation, while all sam-
ples from state B (filled curve) are in gauche −. Informa-
tion on state A/B differences are also contained in G9 � , al-
though the separation of the two states is not as striking as
in C8.

The importance of C8 and G9 is further confirmed when
using the distance between the center of the six-membered
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Figure 4. (A) Representative (random) conformations sampled from state A. (B) Representative (random) conformations sampled from state B. The color
code is identical to Figure 1: U6 in ochre, U7 in purple, C8 in green and G9 in red. (C) Free energy surface projected onto the the U6-C8/U6-G9 distance
between ring centres. The units of the colorbar are in kBT. (D) Histogram of � dihedral angle in C8. The open filled area indicates conformations belonging
to state A, and the filled area indicates conformations belonging to state B. (E) Histogram of � dihedral angle in G9.

rings in the nucleobases as input features. In this case, the
distances between U6–C8 and U6–G9 are the two most im-
portant degrees of freedom that distinguish state A from
state B. The two-dimensional log-histogram (i.e. the free en-
ergy surface) of these distances is shown in Figure 4C. In
the consensus structure U6 and G9 interact through a trans
sugar-Watson base-pair and U6 and C8 are stacked. On top
of the free-energy surface, in Figure 4C we plot the two
tetraloop structures 2KOC and 6BY5. As expected, both

structures lie in the left-bottom region. Note also that the
original experimental study described the presence of two
sub-states in 6BY5, that are separated along the y projec-
tion in Figure 4C. State B is characterized instead by the
absence of the stacking interaction (large U6–C8 distance),
and of the non-Watson-Crick base-pair (large U6–G9 dis-
tance). PDB structures of both states A and B are available
in supplementary material as well as in the Github reposi-
tory (see data availability).
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Figure 5. Comparison between 2KOC and MD+set A ensemble on experimental data that are most sensitive to the presence of state B. Scatter plots show
the Z-score calculated on the MD+set A ensemble (x-axis) versus the same quantity calculated on the PDB ensemble 2KOC (y-axis). The four panels show
data belonging to the four datasets: set A in panel (A), set B in panel (B), set C in panel (C) and set D in panel (D). Points discussed in the main text and
shown in Figure 6 are labeled in red.

Experimental measurements sensitive to the presence of state
B

In the previous section we have described the structural dif-
ferences between state A and state B, and we now seek for
additional experimental validation. In particular, we would
like to answer the following question: does the MD+set A
ensemble provide a better loop description compared to the
consensus NMR structure 2KOC?

The four experimental sets contain >1000 datapoints in
total, and it is therefore not trivial to identify specific mea-
surements that probe directly the presence of state B. In
machine learning this is called a feature importance prob-
lem, that we solve using a random forest classifier, as we
did in the previous section. Here, however, the features are
not structural properties, but back-calculated experimental

data. We construct a random forest classifier for each exper-
imental dataset, and we obtain four sub-datasets with the
features (measurements) that are most important for classi-
fying (i.e. separating) state A and B. Consistently with Fig-
ure 4, we find that these measurements involve nucleotides
in the loop region.

For each measurement in the sub-datasets, we calculate
the difference between the ensemble average and experi-
ments divided by the error � (i.e. the Z-score).

|Z-score|i = |〈F(x)〉i − F EXP
i |

σi
(5)

Figure 5 shows the Z-score calculated on the MD+set A
ensemble (x-axis) against the same quantity calculated on
the 2KOC structures. Points above the diagonal (such as
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Figure 6. Comparison between calculated and experimental data for selected measurements discussed in the text and labelled as in Figure 5.

1 in panel a, 3 in panel b, and 7 in panel d) indicate mea-
surements for which the MD+set A ensemble better agrees
with experimental data (|Z-score|MD + setA < |Z-score|2KOC),
while points below the diagonal (e.g. 2, 4, 5, 6, 8) indicate
the opposite.

Overall, there are more points below the diagonal (56)
than above (40), suggesting that the original 2KOC ensem-
ble provide a better description of the loop region. For ex-
ample, the eNOE C8 H5’ to G9 H8 in dataset A is signifi-
cantly closer to the experiment in the MD+set A ensemble
(point 1, Figure 6). This is also true for the cross-correlated
relaxation rate U7 C3’–C8 P (point 3). In other cases the
2KOC value is within experimental error, but not in our
MD+set A ensemble (points 2,5 Figure 6). Note that major
discrepancies are present in both ensembles, such as point
4 (RDC in C8 C1’–H1’), point 6 (RDC G10 C8–H8), and
point 8 (sPRE G9 H1). Again, we stress that these discrep-
ancies can be ascribed to errors in the ensembles, but also
to inaccuracies in the empirical model employed to calcu-
late experimental data from structures, or to errors in the
data.

DISCUSSION

Based on our extensive MD simulations and integrating
them with exact NOE data, we report the free energy land-
scape of a prototype stem-loop RNA 14-mer known as the
UUCG tetraloop. By combining a recently refined force
field for RNA with enhanced sampling MD we were able
to fold the tetraloop to its native conformation(s) as judged
by the agreement with several sets of experiments. The
main finding of the present study is the presence of a low
populated, non-native conformation (state B). The low-
populated state differs from the consensus structure (state
A) only in the loop region, and it is characterized by the
absence of the tSW base-pair between U6 and G9, with C8
and G9 partially exposed into solution (Figure 4). This re-
sult has been obtained by using atomistic MD simulations
and eNOE, without the need of additional data.

The free-energy surfaces and estimated population pro-
vided here are based on the available experimental data, on
the employed model, and the extent of our sampling. There-
fore, they are subject to inaccuracies. However, both simu-
lations and eNOE data are consistent with the presence of
the B state as described in this paper. This interpretation
is qualitatively consistent with several NMR studies, that
also suggested the presence of dynamics in G9 (7,12,14).
Conversely, on-resonance 13C R1� relaxation dispersion
experiments on a UUCG tetraloop with a different stem
sequence showed no significant exchange contributions, in-
dicating the absence of motions with substantial chemical
shift variation in the �-ms timescale (44). Note also that
G9-exposed structures were reported in previous MD sim-
ulations (23,28,45), suggesting our finding to be robust with
respect to the choice of the force-field and water model.

In this work, we have used eNOEs to reweight a posteriori
the ensemble generated via enhanced sampling MD simula-
tions. This refinement procedure is a computationally cheap
post-processing (26,27,46) that allows one to try different
combinations of training and test sets, as we did in this work
(43). Note that refinement is in principle less powerful com-
pared to on-the-fly methods that samples directly from the
target probability distribution (47,48).

In our study, we refine the simulation by matching RDC
data (set B, C) or solvent PRE (set D) as well. Only when
we use set C for training we obtain an improved or equal
agreement on the test sets relative to the original MD simu-
lation (Figure 2). Additionally, different data affect the MD
conformational ensemble in different ways (Figure 3). Sev-
eral reasons can contribute to this behavior. First, we do
not expect all experimental data to be perfectly compat-
ible one with the other, because measurements were con-
ducted in similar, but not identical conditions. Second, the
forward models might not be accurate for arbitrary molecu-
lar conformations. For example, if the forward model accu-
rately predicts the RDC given the native structure, but fails
on unfolded/misfolded conformations, we obtain artefacts
that cannot be easily accounted for in our refinement proce-
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dure. Note that this problem is typically less relevant when
using experimental RDC, sPRE or chemical shift data for
scoring structures (12,44,49).

Based on the above observations, and considering our
previous experience with eNOE data, we here analyse in
detail the results obtained using MD refined using set A
(Figure 3A). The structural features that are most impor-
tant to discriminate between state A and state B are iden-
tified using a random forest classifier. The problem of con-
cisely interpret differences in biomolecular conformations
has been recently pursued using a variety of machine learn-
ing methods, including linear discriminant analysis (50), de-
cision trees (51), and others (52). In this work we extend
this idea, and use back-calculated experimental data as in-
put features for the random forest classifier. In this way, we
identify individual (available) measurements that are most
sensitive to the presence of state B. Note that this approach
can also be used in a generative fashion to design experi-
ments that probe the existence of specific conformational
states.

We closely inspect the selected set of measurements that
are sensitive to state B (Figure 5). In the majority of the
cases, we find the presence of the additional state to provide
a worse agreement with experiment compared to the con-
sensus NMR structure (PDB code 2KOC) (see e.g. Figure
6, points 2, 4, 5). In other cases (Figure 6, points 1, 3, 7, in-
stead, the MD+set A performs better than 2KOC. Several
other data significantly deviate from experiments in both
ensembles (Figure 6, points 6,8). This suggest the possibil-
ity that conformations that are different from state A are
indeed present, but do not correspond to the state B as de-
scribed in Figure 4B.

Finally, we note that the approach taken here is gen-
eral and it is applicable to other RNA or protein sys-
tems (53,54). Previous characterization of slow, larger mo-
tions in RNA molecules have mostly relied on relaxation-
dispersion, chemical exchange saturation transfer or related
NMR experiments that probe chemical shift differences be-
tween different conformational states. We hope that the in-
tegration of MD simulations and eNOE measurements pro-
vides further opportunities for characterizing the free en-
ergy landscapes of RNA molecules.
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