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SUMMARY

Non-genetic transcriptional variability is a potential mechanism for therapy resistance in 

melanoma. Specifically, rare subpopulations of cells occupy a transient pre-resistant state 

characterized by coordinated high expression of several genes and survive therapy. How might 

these rare states arise and disappear within the population? It is unclear whether the canonical 

models of probabilistic transcriptional pulsing can explain this behavior, or if it requires special, 

hitherto unidentified mechanisms. We show that a minimal model of transcriptional bursting and 

gene interactions can give rise to rare coordinated high expression states. These states occur more 

frequently in networks with low connectivity and depend on three parameters. While entry into 

these states is initiated by a long transcriptional burst that also triggers entry of other genes, the 

exit occurs through independent inactivation of individual genes. Together, we demonstrate that 
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established principles of gene regulation are sufficient to describe this behavior and argue for its 

more general existence. A record of this paper’s Transparent Peer Review process is included in 

the Supplemental Information.

Graphical Abstract

eTOC Blurb

Non-genetic transcriptional variability, characterized by transient and coordinated high expression 

of several genes in rare cancer cells, can drive resistance to targeted therapy. Schuh et al use a 

combination of theory and network modeling to demonstrate that established principles of 

transcription and gene regulation are sufficient to describe the origins of this behavior.
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INTRODUCTION

Cellular heterogeneity has been reported to arise from non-genetic transcriptional variability, 

even in clonal, genetically homogeneous cells grown in identical conditions (Spencer et al., 

2009; Sharma et al., 2010, 2018; Gupta et al., 2011; Pisco and Huang, 2015; Fallahi-Sichani 

et al., 2017; Shaffer et al., 2017; Su et al., 2017). Cells exhibiting these non-genetic 

Schuh et al. Page 2

Cell Syst. Author manuscript; available in PMC 2021 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



deviations are resistant to anti-cancer drugs (e.g., Ras pathway inhibitors) and may lead to 

relapse in patients. For example, in a drug naive melanoma population, a small fraction (~1 

in 3000) of cells are pre-resistant, meaning they are able to survive targeted drug therapy, 

resulting in their uncontrolled cellular proliferation (Shaffer et al., 2017). These rare pre-

resistant cells are marked by transient and coordinated high expression of dozens of marker 

genes. In other words, several genes are highly expressed simultaneously in a rare subset of 

cells, while the rest of the population have low or zero counts of mRNAs for these genes, 

resulting in a distribution of steady state mRNA counts per cell that peaks at or close to zero 

and has heavy tails.

The rare cells in the tails, which transiently arise and disappear in the population by 

switching their gene expression state (Figure 1A), are much more likely to develop 

resistance to targeted therapies. The rare and coordinated large fluctuations in the expression 

of multiple genes persist for several generations. Classical probabilistic models of gene 

expression have predicted the possibility of various types of mRNA expression distributions 

across a population, including normal, log-normal, gamma, or heavy-tail distributions 

(Thattai and van Oudenaarden, 2001; Golding et al., 2005; Raj et al., 2006; Raj and van 

Oudenaarden, 2008; Iyer-Biswas, Hayot and Jayaprakash, 2009; So et al., 2011; Chen and 

Larson, 2016; Corrigan et al., 2016; Symmons and Raj, 2016; Antolović et al., 2017; Ham, 

Brackston and Stumpf, 2019; Ham et al., 2020). It is unclear if such models can recapitulate 

the non-genetic variability characterized by rare and transient high expression states for 

several genes simultaneously (from now on referred to as “rare coordinated high states”), 

and if so, under what conditions.

Might a stochastic system of interacting genes inside the cell facilitate transition in and out 

of the rare coordinated high state? One hypothesis is that only a rare set of unique (and 

perhaps complex) networks can facilitate reversible transitions into the rare coordinated high 

states. Alternatively, relatively generic gene regulatory networks may be capable of 

producing such behaviors, suggesting that a large ensemble of such networks may admit 

rare-cell formation. Both of these scenarios have different implications—for instance, the 

latter hypothesis suggests that this behavior could be more common in biological systems 

than hitherto appreciated. The alternatives described above can also be posed in terms of the 

nature of model parameters—whether the set of values that give rise to rare coordinated high 

states are constrained to lie within a narrow window of parameter space or whether such 

behavior may occur across broad swaths of parameter space. Yet another possibility is that 

stochastic gene expression alone fails to produce rare coordinated high states in the absence 

of additional regulation. In that case, one may argue that the reversible transition into the 

rare coordinated high state is driven by highly specialized processes (e.g. initiated by a 

master regulator) or other unknown mechanisms. Exploring these possibilities will provide 

potential transcriptional mechanisms that can recapitulate the occurrence of rare coordinated 

high states.

Here we describe a mathematical framework to test the hypotheses proposed above for the 

appearance and disappearance of rare coordinated high states (Box 1). Recent studies from 

our lab suggest that no particular molecular pathway is solely responsible for the formation 

of these rare cells (Shaffer et al., 2018; Torre et al., 2019). Specifically, in these rare cells, a 
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sequencing and imaging based scheme identified a collection of marker genes, which are 

targets of multiple signaling pathways ranging from type 1 interferon to PI3K-Akt signaling. 

The implication is that instead of a single signaling pathway leading to the observed 

behavior, a network of interacting genes appears to be responsible. Accordingly, we used 

network modeling to see whether genes interacting within a network were capable of 

producing transitions to coordinated high expression states. We systematically formulated 

and simulated networks of increasing size and complexity defined by a broad range for all 

independent parameters (Box 1 and 2; and STAR Methods, section Networks & section 

Parameters).

Computational screens on more than 96 million simulated cells reveal that many networks 

with interactions between genes are capable of producing rare coordinated high states. 

Critically, transcriptional bursting, a ubiquitous phenomenon in which genes flip between 

transcriptionally active and inactive states, is necessary to produce these rare coordinated 

high states within the context of our models. Subsequent quantitative analysis shows that 

rare coordinated high states occur across networks of all sizes investigated (up to 10 nodes), 

but that (i) they depend on three (out of seven) independent model parameters and (ii) their 

frequency of occurrence decreases monotonically with increasing network connectivity. The 

transition into the rare coordinated high state is initiated by a long transcriptional burst, 

which, in turn, triggers the entry of subsequent genes into the rare coordinated high state. In 

contrast, the transition out of rare coordinated high state is independent of the duration of 

transcriptional bursts, rather it happens through the independent inactivation of individual 

genes. We also confirm model predictions using experimental gene expression data (RNA 

FISH data) taken from melanoma cell lines. Together, we demonstrate that the standard 

model of stochastic gene regulation with transcriptional bursting is capable of producing rare 

coordinated high states in the absence of additional regulation.

RESULTS

Framework selection

Identifying the minimal network model generating rare coordinated high 
states—We focused on a network-based mathematical framework that models cell-intrinsic 

biochemical interactions and wondered what would be the minimal set of biochemical 

reactions that constitutes it. Since network models comprised of only constitutively 

expressed genes were not able to produce rare coordinated high states (Figure 1B and Figure 

S1A-B; STAR Methods, section Models), we use a leaky telegraph model as the building 

block of our framework. In terms of chemical reactions, a gene can reversibly switch 

between an active (ron) and inactive state (roff), where binding of the transcription factor at a 

gene locus controls the effective rate of gene production (Box 1; Figure 1C, STAR 

Methods). Specifically, when inactive (or unbound), the gene is transcribed as a Poisson 

process at a low basal rate (rprod); when active, the rate becomes higher (d x rprod, where d > 

1). We modeled degradation of the gene product as a Poisson process with degradation rate 

rdeg. The inter-node interaction parameter, radd, has a Hill-function-based dependency on the 

gene product amount (Hill coefficient n) of the respective regulating node to account for the 

multistep nature of the interaction (Figure 1C). In particular, we lump steps leading to 
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transcription by implementing the commonly used quasiequilibrium assumption (Phillips et 

al., 2019), where binding and unbinding occurs much faster as compared to mRNA 

transcription and degradation. The dissociation constant k of the Hill function is dependent 

on the parameters rprod, rdeg, and d, such that k(rprod, rdeg, d) = 0.95 ⋅ d ⋅
rprod
rdeg

. In total, the 

model has seven independent and one dependent model parameters, as outlined in Box 1. All 

chemical reactions, propensities, and model parameters are presented in STAR Methods. We 

used Gillespie’s Stochastic Simulation Algorithm (Gillespie, 1977) to systematically 

simulate networks of various sizes and architectures across a broad range of parameters 

(Box 1; STAR Methods, section Networks & section Parameters).

We limited our study to networks that are symmetric, i.e., networks without a hierarchical 

structure (Box 1; STAR Methods, section Networks, Figure S1C). We also excluded 

networks that are compositions of independent subnetworks (non weakly-connected 

networks) and networks that can be formed by structure-preserving bijections of other 

networks (isomorphic networks) (STAR Methods, section Networks, Box1). These choices 

reduce the testable space of unique networks by several orders of magnitude (Figure S1C) 

and allow for comparisons of parameters between networks of different sizes. They also are 

a conservative starting point for our analysis given experimental observations. In the 

frequency matrix for experimental RNA FISH data describing the rare high state in drug 

naïve melanoma, in which each entry corresponds to the fraction of cells with each gene-pair 

being highly expressed (Figure S1D) (Shaffer et al., 2017, 2018) (Shaffer et al., 2017, 2018), 

we do not observe a clear directionality of regulation or hierarchical structure within the 

highly expressed genes. While simulated symmetric networks can recapitulate this 

experimental observation, asymmetric networks can result in frequency matrices being 

highly asymmetric (Figure S1E-F). For these reasons, we restricted our initial analysis to 

symmetrical networks.

Characterization of the transcriptional bursting model—When genes are organized 

in the system described above and simulated over long intervals, the transcriptional bursting 

model produced a range of temporal profiles for gene products (Figure 1D-G and Figure 

S2A). The model was able to faithfully capture the qualitative features of experimental data, 

i.e., rare, transient, and coordinated high expression states (Figure 1G). We defined a set of 

rules to screen for the occurrence of different classes of states (Figure 1D-G and Figure 

S2A); these include stably low expression (class I), stably high expression (class II), 

uncoordinated transient high expression (class III), and rare transient coordinated high 

expression (class IV) (see STAR Methods, section Simulation classes), and used a heuristic 

approach to distinguish between these different classes (Boxes 1 and 2). For a detailed 

description of the rules and quantitative metrics used to define class IV, see Boxes 1 and 2; 

Figure S3 and Figure S4; and STAR Methods, section Simulation classes.

To better compare the computational results with the experimental data from static RNA 

FISH images, we split the entire simulation into non-overlapping time interval of 1000 time 

units, as justified by the ergodic theory (Box 2 and STAR Methods) (Van Kampen, 1992). 

We took snapshots of gene products at randomly selected time points in these time-intervals 

and noted the number of simultaneously highly expressed genes as well as their gene 
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product counts, allowing us to represent the static states of a population of simulated cells 

(Figure 2A). For example, in a particular 8-node network, we found that the distribution 

qualitatively captures the experimental observations where most cells do not exhibit high 

expression states, while some cells are in a high state for one or more genes (Figure 2B). 

Similarly, when we selected a gene and plotted its product count for the randomly selected 

time points, we observed a heavy-tailed distribution (Figure 2C, right panel), similar to the 

experimental observations (Figure 2C, left panel). These observations, while shown for a 

particular 8-node network, also hold true for simulations of other 8-node networks as well as 

networks of other sizes (Figure S2B).

Note that the simulated distributions of gene product counts for each gene are qualitatively 

similar because each gene is equivalent within our symmetrical networks (Figure S2C). This 

is not biologically realistic; the experimental data in drug naive melanoma cells for mRNA 

counts display different degrees of skewness of the distribution for different genes (e.g. 

EGFR vs. Jun, Figure S3A) (Shaffer et al., 2017). These experimental observations can be 

recapitulated in the simulated networks by introducing asymmetries. For example, two 

asymmetric networks we tested were able to produce rare coordinated high states (Figure 

S2G-S4M) and distributions of gene product counts with different degrees of skewness 

(Figure S2M). When experimentally observed expression distributions (Figure S3A) are 

compared to simulated expression distributions using Gini coefficients, we observe that 

while the Gini coefficient is low for most of the simulations (99.2%, gray), it is much higher 

for the simulations that produce rare coordinated high states (red) and overlaps with 

experimental Gini coefficients observed for individual genes (Figure 2D). In total, these 

observations suggest that a simple transcriptional bursting model is able to produce states 

which recapitulate key aspects of rare coordinated high states observed in drug naive 

melanoma.

Rare coordinated high states depend on network topologies and model parameters

Since the rare coordinated high states occur in <1% of all simulations (Figure S2A), we 

wondered whether their occurrence depends on the network topologies and/or model 

parameters. Specifically, what are the features of the topologies and parameters that facilitate 

the occurrence of rare coordinated high states? For the simulations that produced rare 

coordinated high states, we extracted and quantitatively analyzed the corresponding 

networks. We found that the rare coordinated high states occur ubiquitously in networks 

with different numbers of nodes analyzed (up to 10 nodes) (Figure 2E and Figure S2B-F, 

Figure S5A-B). Within a particular network size, the ability to produce rare coordinated high 

states decreases monotonically with increasing network connectivity (Figure 2F and Figure 

S5C-D). Consistently, the fraction of networks per network size (normalized by either 

network size or total networks per network size) exhibiting rare coordinated high states 

decreases with increasing size (Figure S5A-B) as a larger fraction of high connectivity 

networks exist in bigger networks (Figure S5D).

We next wondered whether gene auto-activation (networks with self-loops) have any effect 

on a networks ability to produce the rare coordinated high states. We found that adding self-

loops on otherwise identical networks reduced the occurrence number of simulations with 
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rare coordinated high states (Figure 2G). We also analyzed network topologies based on 

characteristic distance, defined as the average shortest path length between pairs of nodes of 

the network (see STAR Methods, Box 1). Characteristic distance recapitulates the effects of 

not only network connectivity (inversely correlated with characteristic distance), but also 

differentiates topologies with the same connectivity (Figure 2H), for example networks with 

or without auto-activation. Using this metric across networks of all sizes, we found that 

higher numbers of simulations exhibit rare coordinated high states for larger characteristic 

distances. Together, we demonstrate that the occurrence of rare coordinated high states 

depends on network topologies.

Since the transcriptional bursting model has seven independent parameters (ron, roff, rprod, 

radd, radd, d, and n; see Box 1 for details), we asked whether specific parameter combinations 

preferentially give rise to the rare coordinated high states, and if so, what features of such 

combinations facilitate it. The subsequent analysis is motivated by the initial observation 

that occurence of different classes of temporal gene product profiles across different network 

sizes and connectivities appear to also depend on the parameter sets (Figure 2I). Specifically, 

if a parameter set gave a specific expression profile (e.g. rare coordinated high or stably 

high) for one network, it displayed a higher propensity to display the same profile for other 

networks as well (Figure 2I and Figure S3D), implying that parameters indeed play a major 

role in the occurrence of rare coordinated high states. To avoid biases in the parameter sets 

investigated, all 1,000 parameter sets were sampled from a broad range for each parameter 

using a Latin Hypercube Sampling algorithm (Table S1; STAR Methods, section 

Parameters).

We first measured the percentage of simulations per parameter set that gave rise to the rare 

coordinated high states. Out of the 1,000 parameter sets, eight parameter sets, from now on 

called rare coordinated high parameter sets (Box 2), clustered together at the tail-end of the 

distribution (orange, Figure 3A), meaning they generated simulations with frequent 

occurrence of rare coordinated high states in at least 20% of all networks tested (Figure 3A). 

Furthermore, these eight parameter sets robustly generated rare coordinated high states 

across all network sizes and architectures (Figure S6A). Therefore, we wondered if these 

eight parameter sets have any special or distinguishing features compared to the remaining 

992 parameter sets.

We used a decision tree algorithm (Breiman et al., 1984) (see STAR Methods, section 

Decision tree optimization and generalized linear models) to identify the differentiating 

features of the rare coordinated high parameter sets from the rest. The decision tree analysis 

revealed that only three (ron, roff, and radd) of the seven independent parameters showed a 

strong correlation with the rare coordinated high parameter sets (Figure 3B). We validated 

these findings with complementary analysis using generalized linear models (STAR 

Methods, section Decision tree optimization and generalized linear models) where we found 

precisely these three specific parameters (ron, roff, and radd) to be critical to produce the rare 

coordinated high states with high statistical significance (p-values: ron = 0.003; roff = 0.005; 

radd = 0.014) (Figure S6B). These observations became readily evident when we plotted all 

the 1,000 parameter sets for ron, roff, and radd together and found the rare coordinated high 

parameters sets to occupy a narrow region of the parameter phase space (Figure 3C and 
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Figure S6C). These three parameters are related to transcriptional bursting and inter-

gene(node) regulation. Two of these parameters, ron and roff, define the transitioning 

between the active and inactive state of the DNA respectively. The third parameter is the 

gene activation rate, radd, which corresponds to the positive regulation of transcriptional 

bursting rate of a gene by the gene product of another interacting gene. Parameter sensitivity 

analysis across the parameter space also confirmed that these three parameters are indeed 

critical for producing the rare coordinated high states (Figure S6D). Too high values (> 0.31) 

of radd result in the disappearance of rare coordinated high states, as does a complete 

absence (radd = 0) of this term (Figure S6E-S6G). To confirm that these three parameters 

(ron, roff, and radd) and their corresponding range of values are indeed critical to producing 

simulations with rare coordinated high states, we sampled new 1,000 parameter sets from a 

constrained region containing all eight rare coordinated high parameter sets (Figure 3C, 

orange box, and STAR Methods) and ran simulations for two test networks, a 3-node and a 

5-node network. We found that the frequency of simulations with rare coordinated high 

states for the constrained region is ~14-fold and ~21-fold higher than that for the original 

parameter space, respectively (Figure 3D). We note that while parameter sets with 

parameters ron, roff, and radd within the identified critical parameter ranges give rise to 

simulations with rare coordinated high states much more frequently than other parameter 

sets, it is not 100% of the time.

Distinct mechanisms regulate the transition into and out of rare coordinated high states

We have identified the networks and parameter sets for which the transcriptional bursting 

model exhibits rare coordinated high states more frequently. Next, we dissected the features 

of the model that facilitate the occurrence of rare coordinated high states. Specifically, we 

identified the factors that 1) trigger the entry into the rare coordinated high states, 2) 

facilitate its maintenance, and 3) trigger the escape from it. We began by analyzing various 

features of transcriptional activity, since including transcriptional bursting was found to be 

critical for the model to display the rare coordinated high states. These include the burst 

fraction, length of transcriptional bursts (burst duration) and burst frequency. To measure 

these features, we defined four regions for each simulation: low expression state (baseline 

time-region), entry into the high expression state (entry time-point), the high expression state 

(high time-region), and exit from the high expression state (exit time-region) (Figure 4A, 

STAR Methods, section Entry and Exit mechanisms).

We found an increase in the transcriptional activity, as measured by the burst fraction, during 

the high expression time-region as compared to the baseline time-region (Figure 4B), 

suggesting that enhanced transcriptional activity facilitates the maintenance of rare 

coordinated high states. Increased burst fraction could be a result of (1) longer 

transcriptional bursts or (2) a higher burst frequency. The former is not possible as the 

duration of each burst is distributed exponentially according to exp(roff), which does not 

change between the baseline and high time-region. Indeed, we found an increase in the burst 

frequency in high time-region, thus establishing its role in the maintenance of the rare 

coordinated high state (Figure 4C). The increased transcriptional bursting seen in the models 

capable of generating rare coordinated high states is consistent with the experimental 

observations that the transcriptional activity occurred in frequent bursts in cells high for a 
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marker gene (Shaffer et al., 2018). Next we wondered whether burst frequency increases 

with the interactions of genes within the network. We compared two networks of the same 

size (3 nodes), where one is comprised out of single unconnected (orphan) nodes and the 

other of an interdependent structure (network 3.2). We found that for any parameter set 

(screened for all 26 parameter sets giving simulations with rare coordinated high states in the 

previous analysis for network 3.2, Table S1), the system with a connected network has (1) 

more high expression states and (2) prolonged time in high expression states, as compared to 

unconnected nodes (Figure 4D). Together, we find that the maintenance in the high state is 

because of increased burst frequency.

Next, we wanted to identify the factors triggering the entry into the rare coordinated high 

states. We found that for any gene in the network, the transcriptional burst duration right 

before/during the entry into a rare coordinated high state was significantly higher (two-

sample Kolmogorov-Smirnov test) than that in the baseline time-region (i.e., regular bursting 

kinetics). In the example shown in Figure 4E, the average time of transcriptional burst at the 

entry time-point is 84.82 (time units) as compared to only 15.08 (time units) in the baseline 

time-region. Therefore, prolonged transcriptional bursts play a role in driving the cell to a 

coordinated high expression state. Conversely, we asked if the opposite is true at the exit 

time-region, such that transcriptional bursts for the exit time-region are shorter than for the 

high time-region. We found no statistical difference in the distributions of burst durations 

between the high and the exit time-regions, as demonstrated by the example in Figure 4F, 

suggesting that the exit from high expression state occurs independently of the burst 

durations. Both of these conclusions hold true when measured for all simulations with rare 

coordinated high states (Figure 4G). Together, unlike the entry into the high time-region, the 

exit from it is not dependent on the transcriptional burst duration.

We also wondered if the entry into the high expression state of one gene influences the entry 

of other genes, or that the genes enter the high expression state independently of each other. 

We reasoned that if the time duration between two successive genes (tent, Figure 4A) 

entering the high expression state is exponentially distributed, it would imply that the genes 

enter the high expression state independent of each other. Instead, we found that the 

distributions of entry time intervals rejected the null-hypothesis of the Lilliefors’ test for 

most of the simulations (84%), meaning they are not exponentially distributed (Figure 4H). 

The remaining 16% of cases were found to be largely falsely identified as exponentially 

distributed due to limited data (see a representative example in Figure S7A). Similarly, we 

tested if the exit for successive genes from the high expression state occurs independent of 

each other. Contrary to the situation during the entry into the high expression state, many 

distributions of exit time intervals satisfied the null-hypothesis of the Lilliefors’ test, 

implying they are indistinguishable from exponential distributions (Figure 4I). The 

simulations that did not satisfy the stringent Lilliefors’ test mainly appear to be 

exponentially distributed nevertheless; a representative example is shown in Figure S7B. 

Together, the entry into and exit from the rare coordinated high state occur through 

fundamentally different mechanisms—the entry of one gene into the high expression state 

affects entry of the next gene, while they exit from it largely independently of each other. 

The exit from the high state could be a result of weak strength of coupling (as reflected by 

the moderate values of parameter radd) between nodes for the simulations that produce these 
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states. Consistently, we found that too high values of radd results in the disappearance of rare 

coordinated high states, giving way to stable high states. In other words, the network can 

transition into the high expression state but loses the ability to come out of it (Figure S6 E-

G).

Increasing network connectivity leads to transcriptionally stable states

So far, we have used the transcriptional bursting model to understand the potential origins of 

rare pre-resistant states in drug naive melanoma cells. Upon treatment with anti-cancer 

drugs, the transient pre-resistant cells reprogram and acquire resistance resulting in their 

uncontrolled proliferation. The resistant cells are characterized by the stabilization of the 

high expression of the marker genes which were transiently high in the drug naive pre-

resistant cells (Figure 5A) (Shaffer et al., 2017). Studies using network inference of gene 

expression data have suggested that the genetic networks undergo considerable 

rearrangements upon cellular transitions or reprogramming (Moignard et al., 2015; Schlauch 

et al., 2017). We wondered if the transcriptional bursting model can explain how the 

transient high expression in drug naive cells might become permanent upon treatment with 

anti-cancer drugs. The modeling framework produces a range of gene expression profiles, 

depending on the network properties and model parameters (Figure 1D-G). Increasing the 

network connectivity (for fixed parameter sets) is one way to shift from a rare transient 

coordinated high expression state to stably high expression state (Figure 5B-E). As an 

example, for a fixed network size (five) and associated parameters, increasing the network 

connectivity from one to five resulted in a shift from transient coordinated to stably high 

expression states (Figure 5D and Figure 5E, respectively). The shift from transient 

coordinated to stably high expression states is also reflected by the bimodal distribution of 

genes product counts for in the highly connected network (Figure 5F and Figure 5G), where 

genes stay permanently in the high state once they leave the low expression state. These 

results mimic the experimentally measured mRNA expression states of the drug-induced 

reprogrammed melanoma cells.

To test if the computational prediction holds true in melanoma, we performed network 

inference using φ-mixing coefficient-based (Ibragimov, 1962) Phixer algorithm (Singh et al., 

2018) on the experimental data (Box 2; STAR Methods, section Comparative Network 

Inference; Table S2). Specifically, we used the Phixer algorithm on the mRNA counts 

obtained from fluorescent in situ hybridization (FISH) imaging data of marker genes in drug 

naive cells and the resistant colonies that emerge post-drug treatment to infer the underlying 

network. Consistent with the model prediction, we found that the number of edge 

connections (for a range of edge weight thresholds) between marker genes increased 

substantially for 6/7 resistant colonies compared to the drug-naive cells (Figure 5H). To 

control for biases from subsampling of the experimental data and nature of the Phixer 

algorithm itself (see STAR Methods, section Comparative Network Inference), we ran the 

entire network inference analysis 1,000 times. Again, in all 1,000 runs, we saw a higher 

number of total edges for 6/7 resistant colonies compared to the drug-naive cells (Figure 5I, 

Figure S8A and Figure S8C).
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Besides the dependence on networks, our framework predicts that for a given network, 

stronger interactions between nodes (defined by the interaction parameter radd) can also 

result in stable gene expression profiles (Figure S6E-S6G). It is possible that reprogramming 

results from a combination of increased edge connectivity as well as the enhanced 

interactions (given by parameter radd) between existing edges. Biologically, it would 

translate into stronger and increased number of interactions between genes and associated 

transcription factors during reprogramming. Together, network inference of the experimental 

data is consistent with model findings about the cellular progression from a transient 

coordinated high expression state to a stably high expression state.

DISCUSSION

We developed a computational framework to model rare cell behaviors in the context of a 

drug naive melanoma population where a rare subpopulation of cells displays transient and 

coordinated high gene expression states. We found that a relatively parsimonious stochastic 

model consisting of transcriptional bursting and stochastic interactions between genes in a 

network is capable of producing rare coordinated high states that mimic the experimental 

observations. To systematically investigate their origins, we screened networks of increasing 

sizes and connectivities for a broad range of parameter values. Our study revealed that they 

occur more frequently for networks with low connectivity and depend on 3 of the 7 

independent model parameters. Furthermore, we showed that the mechanisms that lead to 

the transition into- and out of- the rare coordinated high state are fundamentally different 

from each other. Collectively, our framework provides an excellent basis for further 

mechanistic and quantitative studies of the origins of rare, transient, and coordinated high 

expression states.

Given the relative generality of the networks that produce rare coordinated high states, the 

transcriptional bursting model predicts that every cell type is capable of entering the rare 

coordinated high state. Furthermore, we show that canonical modes of transcription alone, 

namely the binding of the transcription factor at gene locus to produce mRNA via 

recruitment of RNA Polymerase II, can lead to these states without requiring other complex 

mechanisms such as DNA methylation, histone modifications, or phase separation. While 

such other mechanisms may still be operational in these cells to regulate their entry to or exit 

from these states, we posit that in principle, any set of genes interacting via traditional gene 

regulatory mechanisms are capable of exhibiting these rare coordinated high states, as long 

as they are interacting in a certain manner (e.g. sparsely connected) with appropriate kinetic 

parameters. In the case of drug naive melanoma cells, the transient state is characterized by 

an increased ability to survive drug therapy leading to uncontrolled proliferation of the 

resulting resistant cells. It is possible that these rare transient behaviors may exist across 

many sets of interacting genes which may or may not manifest into phenotypic 

consequences. Another possibility the transcriptional bursting model predicts is that even 

within the same cell, distinct modules of interacting genes can lead to distinct sets of rare 

coordinated high states that each can affect the cellular function and outcomes differently. 

These possibilities can be tested for by using increasingly accessible single cell RNA 

sequencing techniques on clonal population of cells.
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One limitation of the transcriptional bursting model is that we have performed quantitative 

analysis only on symmetric networks with positive interactions between nodes. While the 

preliminary analysis on two cases of randomly selected asymmetric networks shows that 

they do exhibit the rare coordinated high states (Figure S2G-S4M), it remains to be seen 

whether these findings hold more generally for asymmetric networks. Inhibitory interactions 

between nodes is a separate and perhaps more interesting point. In principle, the model can 

be adapted to include inhibitory interactions. These inhibitory interactions may lead to non-

monotonic effects of network connectivity on the occurrence of rare states, as positive and 

negative interactions can compete in non-linear ways. Similarly, a network with both 

negative and positive interactions may be more prone to instability, even for relatively 

smaller networks. Furthermore, inclusion of these interactions might also make the exit of 

genes from the high expression state dependent on one another, which occurs independently 

in the transcriptional bursting current model. We also highlight that unlike the experimental 

data, the model simulations do not have non-zero values for a larger number of genes in the 

high expression states (Figure 2B). The absence of non-zero values may be because the 

network underlying the experimental data contains a much larger set of interacting genes, 

thereby increasing the likelihood of non-zero values for higher number of expressed genes. 

Larger gene networks can be explored in the future studies.

While we have focused on rare, transient, and coordinated high expression states in 

melanoma, our study provides conceptual insights into other biological contexts such as 

stem cell reprogramming. Particularly, there is increasing evidence to suggest that stem cell 

reprogramming to desired cellular states proceeds via non-genetic mechanisms in a very rare 

subset of cells (Hanna et al., 2009; Pour et al., 2015; Takahashi and Yamanaka, 2016). The 

transcriptional bursting model may explain the origins and transient nature of this type of 

rare cell variability. In sum, we have established the plausibility that a relatively 

parsimonious model comprising of transcriptional bursting and stochastic interactions of 

genes organized within a network can give rise to a new class of biological heterogeneities. 

Therefore, we believe that established principles of transcription and gene expression 

dynamics may be sufficient to explain the extreme heterogeneities that are being reported 

increasingly in a variety of biological contexts.

Key Changes Prompted by Reviewer Comments

In response to the reviewers’ comments, we made the introductory paragraph concise, added 

Box 1 which provides detailed description and associated assumptions of the model, and 

added Box 2 which provides definitions of metrics used to quantify the rare coordinated high 

states. We also relaxed the model assumptions (Figure S4A-E and STAR Methods) to 

explore the effect of a) including translation and b) using a multiplicative mode of gene 

interaction. Additionally, we performed extensive mechanistic analysis of the model features 

that initiate the transition into rare coordinated high states and those that enable maintenance 

of these states. Findings from this analysis are presented in Figure 4 and Results section. 

Furthermore, we analyzed additional network topologies (Figure 2 and Figure S5), tested the 

model on a bigger network size (10 nodes) (Figure S2D), and performed sensitivity analysis 

on the parameter space (Figure S6D). We also performed comparative analysis between 

experimental data for multiple genes and computational data using two metrics (1) Gini 
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coefficient measuring entropy (Figure 2D) and (2) fitting exponentials to analyse for sub-

exponentiality (Figure S3C). For context, the complete Transparent Peer Review Record is 

included within the Supplemental Information.

STAR METHODS

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Yogesh Goyal (yogesh.goyal0308@gmail.com). This study 

did not generate any new materials.

METHOD DETAILS

Networks—In our framework, the nodes in the network represent genes, where the 

expression of a gene is regulated by the expression of other genes. Gene regulation is 

represented by directed edges in the network, e.g. if the expression of gene Y is regulated by 

the expression of gene X, then the network contains an edge from node X to node Y. These 

networks can be defined by adjacency matrices given by:

Aij = 1, if there is an edge from node i to j
0, else .

Any node in a network of size N can be connected with up to N-1 other nodes and in the 

case of self-loops, to N other nodes. Hence, the adjacency matrix A is of size N*N. This 

means that there are 2NxN possible adjacency matrices for a network of size N - each of the 

possible N*N matrix entries can take on one of the values of 0 (no edge) and 1 (edge). For 

example a network of size 3 has 2(3*3) = 512 possible networks.

Here, we focus on symmetric networks, where we assume a relational identity between all 

nodes in a network. Experimental data from Shaffer et al. (Shaffer et al., 2017) implies the 

absence of any obvious hierarchical structure within the genes, and that the driver genes may 

interact in a relatively non-hierarchical manner (Figure S1D). The structural embedding of a 

node in its network can increase or decrease its ability of being involved in coordinated 

overexpression. For example, a centered node within a star-shaped network is involved more 

frequently in coordinated overexpression than the other nodes within the same network 

(Figure S1E), which is inconsistent with the experimental observations. To ensure for non-

hierarchical behavior we define a set of symmetric networks (Figure S1F), where the 

number of in- and outgoing edges within a node and across nodes is identical and either all 

nodes in a network have a self-loop or not, leading to adjacency matrices of which the rows 

are cyclic permutations (to the right) with offset one of each other. We first compute all 

possible vectors {0,1}N, in total 2N vectors. From each of these resulting vectors, we create 

an NxN matrix by using the given (row) vector as template, and creating the other N-1 rows 

by cycling the prior row vector to the right by one step, where the right-most entry in the 

row vector is added to the (so far empty) left-most entry. By applying this permutation N-1 

times, all possible cyclic permutations are captured within a matrix, and each node in the 
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given network is completely relational identical. We make use of the circshift function in 

MATLAB to receive the possible cyclic permutations of the initial row vectors.

We further constrain the analysis to weakly-connected networks -- any node in a network 

has to be connected to at least one other node, without taking into account the directionality 

of the edges. In terms of the adjacency matrix:

∀i ∈ {1, …, N}: ∑
j ∈ {1, …, N}, j ≠ i

Aij + Aji ≥ 1 .

The above restriction allows us to exclude the consideration of compositions of smaller and 

unconnected networks, which could otherwise lead to double counting. These subnetworks 

of smaller sizes are analyzed in the sets of networks of respective node sizes. To perform this 

operation, we analyze all the previously constructed adjacency matrices using the MATLAB 

function conncomp(X,’Type’,’weak’), which assigns each node with a bin number according 

to the connected component of its underlying undirected graph. If all nodes of a network 

belong to the same bin number i.e. to the same connected component, the adjacency matrix 

encodes for a weakly-connected graph. Finally, we further restrict the analysis to non-

isomorphic networks. Two networks are called isomorphic if there exists a bijection from the 

edge space of one network to the other, such that any edge of one network is projected to a 

particular edge in the other network. Here, the labeling of the nodes (gene 1, gene 2, …) in 

the networks is arbitrary and hence relabeling of nodes in an adequate fashion leads to 

identical networks. To ensure that all the final networks analyzed are of a non-isomorphic set 

of networks, we test all networks with MATLAB’s function isisomorphic. We initiate the 

final set of networks with one adjacency matrix, and then sequentially test all other networks 

for isomorphism. If the given network is non-isomorphic to the current final set, it is added 

to the final set. Conversely, if the network is isomorphic to one of the networks in the final 

set, it is discarded.

By reducing the possible set to weakly-connected, non-isomorphic and symmetric networks, 

we greatly reduce the possible number of networks. For example, in the previous example, 

we had 512 possible networks for 3 nodes. By applying all the mentioned constraints 

(weakly-connected, non-isomorphic and symmetric), 4 networks remain (Figure S1C). We 

perform the analysis on networks of sizes 2, 3, 5 and 8 each consisting of 2, 4,10 and 80 

networks, respectively, adding up to a total of 96 networks (Figure S9). In principle, the 

transcriptional bursting model can easily be extended to larger network sizes without the loss 

of generality (Figure S2D-F).

Models

Model 2 - Transcriptional bursting model: The transcriptional bursting model is an 

expansion of the telegraph model, where DNA can take on one of the two states, active and 

inactive, e.g. based on the presence or absence of transcription factors (Figure 1C). The 

active and inactive state directly translates into high and low rates of production of gene 

products, respectively. We add interaction terms to the model, where the expression of a 

gene influences the rate of DNA activation of another gene depending on how they are 

organized in a respective network. Here we use the number of mRNA as a faithful proxy for 
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the number of proteins. In other words, we only model the number of mRNA counts and 

assume that any mRNA is immediately translated into one single functional protein after its 

translation. Therefore, the mRNA count determines the strength of the regulation. Here, we 

model the regulation of one gene by another using the Hill function, given by:

f(mRNAX) =
mRNAX

n

kn + mRNAX
n,

where mRNAX is the mRNA count of gene X, n is the Hill coefficient and k is the 

dissociation constant, n,k > 0. The Hill coefficient determines the steepness of the Hill 

function, i.e., the extremeness of its switch-like effect. The dissociation constant determines 

the half-maximal value, f(mRNAX) = 0.5.

The reversible transitions between the inactive and active states, as well as the mRNA 

synthesis and degradation, are modeled by chemical reactions. For each gene, we have three 

chemical species - the DNA inactive state, the DNA active state and mRNA. These three 

species interact with one another according to the following 5 chemical reactions:

I A
A I

I I + mRNA
A A + mRNA

mRNA ∅,

defining the corresponding stoichiometric matrix:

−1 1 0 0 0
1 −1 0 0 0
0 0 1 1 −1

.

The stoichiometric matrix encodes the net change in each chemical species resulting from 

any of the chemical reactions where the chemical reactions are assumed to occur 

stochastically. Under the assumptions of the law of mass action, the probability of a specific 

molecular collision to occur in the infinitesimal time interval [t, t + dt) is proportional to the 

product of the molecule counts of the educt chemical species. The reaction propensity aj(x) 

for a given chemical reaction Rj and state x, determines the probability density function such 

that aj(x)dt gives the probability of the chemical reaction Rj taking place in dt, for small dt. 

Examples of reaction propensities for so called elementary reactions are given here:

Reaction Reaction propensity

∅ → products k

Xi → products kxi

Xi + Xj → products kxixj

where k is called the reaction rate.
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The gene regulation influences the reaction rate of the DNA activating chemical reaction.

To explain the above-mentioned chemical reactions, we introduce eight rates/parameters:

Parameter Description

ron The rate at which DNA is activated.

roff The rate at which DNA is inactivated.

rprod Synthesis rate of mRNA.

rdeg Degradation rate of mRNA.

radd Parameter determining the contribution of the additional DNA activation rate upon gene regulation.

d Factor by which the mRNA synthesis rate is increased when in an active DNA state (in comparison to 
basal synthesis rate in DNA inactive state), >1.

k Dissociation constant of the Hill function.

n Hill coefficient.

The full model description for one gene regulated by a single gene X is given below:

Chemical reaction Reaction rate Reaction propensity

I → A ron + radd ⋅
mRNAXn

kn + mRNAXn ron + radd ⋅
mRNAXn

kn + mRNAXn ⋅ I

A → I roff roff · A

I → I + mRNA rprod rprod · I

A → A + mRNA d · rprod d · rprod · A

mRNA → ∅ rdeg rdeg · mRNA

where I, A ∈ {0,1}, and I + A = 1, where I = 0 (A = 1) denotes that the DNA is in an active 

state and I = 1 (A = 0) denotes that the DNA is in an inactive state. mRNAX is the mRNA 

count of gene X at the given time, ron is the basal DNA activation rate, radd is the additional 

activation rate due to gene regulation, roff is the DNA inactivation rate, rprod is the basal 

mRNA synthesis rate in the DNA inactive state, d denotes the increase in the mRNA 

synthesis rate when the DNA is in the active state, where d > 1, and rdeg is the mRNA 

degradation rate. The chemical reactions are identical for all N nodes in a given network of 

size N. The reaction rate of activation (I → A), composed of terms with parameters ron and 

radd, is the only node-specific rate. It depends on the underlying network and has to be 

adapted accordingly for each node, where the in-going edges of a node determine which 

gene regulations are active. The addition of hill function-based activation terms corresponds 

to the adaptation of the standard telegraph model, highlighted in blue in the above rates. We 

model gene regulation additively: if there is more than one influencing gene, we add the Hill 

function terms of the respective genes. As an example, if the gene of interest is influenced 

not only by gene X, but by gene X and gene Y, the activation rate from above will expand to:
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ron + radd ⋅
mRNAX

n

kn + mRNAX
n +

mRNAY
n

kn + mRNAY
n .

We also tested for multiplicative regulation, i.e. regulation where we multiply the reaction 

rates (and consequently the reaction propensities) of the influencing genes (Figure S4C). In 

the example above the activation rate then expands to

ron + radd ⋅ 2 ⋅
mRNAX

n

kn + mRNAX
n ⋅

mRNAY
n

kn + mRNAY
n

instead. By definition the Hill function is restricted to values between 0 and 1. While a 

multiplication of two Hill functions results in a maximal value of 1, an addition results in a 

maximal value of 2. As the Hill function is an important factor in these simulations we 

hence add a scaling factor to the activation rate in case of multiplicative regulation. We show 

that for network 5.3, 97 out of 1000 simulations show rare coordinated high states in case of 

multiplicative regulation (Figure S2D-E). In comparison, 15 simulations show rare 

coordinated high states in case of additive regulation. 9 simulations show rare coordinated 

high states in both cases.

Additionally, we tested for translation events (Figure S4A). We added one state (P) and two 

rate parameters, a protein synthesis rate rprodP and a protein degradation rate rdegP, to the 

original transcriptional bursting model. The extended model description accounting for 

translation for one gene regulated by gene X is given below:

Chemical reaction Reaction rate Reaction propensity

I → A ron + radd ⋅
mRNAXn

kn + mRNAXn ron + radd ⋅
mRNAXn

kn + mRNAXn ⋅ I

A → I roff roff · A

I → I + mRNA rprod rprod · I

A → A + mRNA d · rprod d · rprod · A

mRNA → ∅ rdeg rdeg · mRNA

mRNA → mRNA + P rprodP rprodP · mRNA

P → ∅ rdegP rdeg · P

where we define k again as 0.95 of the high steady state, this time for the protein count:

k(rprodP, rdegP, d, rprod, rdeg) = 0.95 ⋅
rprodP
rdegP

⋅ d ⋅
rprod
rdeg

,

which itself is dependent on the high steady state of the mRNA (d * rprod/rdeg). Redefining 

rprodP = a * rprod and rdegP = b * rdeg gives
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k(rprod, rdeg, d) = 0.95 ⋅ d ⋅ a
b ⋅ rprod2 ⋅ rdeg2 .

We tested three different translation scenarios: protein synthesis and degradation being (1) 

faster than (2) same as and (3) slower than mRNA synthesis and degradation. For network 

5.3 and parameter set 968, giving rise to rare coordinated high states in the transcriptional 

bursting model without translation, we took a = b = 10 (faster), a = b = 1 (same) and a = b = 

0.1 (slower) as additional parameters. We find that protein synthesis and degradation with 

faster (Figure S4B) and same rates as mRNA degradation and synthesis, also allows for the 

formation of rare coordinated high states in the case of translation. Only slower protein 

synthesis and degradation rates did not show rare coordinated high states, likely because for 

faster protein rates, the system dynamics is determined largely by the transcriptional 

dynamics. In sum, we demonstrate that the rare coordinated high states can arise in the 

revised model that includes translation.

Model 1 - Constitutive model: Model 1 is a simple gene regulatory expression model, 

where mRNA can either be transcribed or degraded and the mRNA of a regulatory gene 

influences the transcription rate of a regulated gene (Figure 1B). Here again, we assume the 

number of mRNA to be a faithful proxy for the protein number and hence, only model the 

mRNA expression of a gene. The gene regulation is modeled according to the Hill function 

(STAR Methods, Model 2 - Transcriptional bursting model).

The synthesis and degradation are modeled by chemical reactions. For each gene, we have 

one chemical species, its mRNA, described by the following two chemical reactions:

∅ mRNA
mRNA ∅,

defining the corresponding stoichiometric matrix:

(1 − 1) .

The full model description for one gene regulated by a single gene X is given below:

Chemical reaction Reaction rate Reaction propensity

∅ → mRNA rprod + radd ⋅
mRNAXn

kn + mRNAXn rprod + radd ⋅
mRNAXn

kn + mRNAXn

mRNA → ∅ rdeg rdeg · mRNA

where rprod the basal mRNA synthesis rate, rdeg the mRNA degradation rate, radd the 

additional synthesis rate due to gene regulation and mRNAX the mRNA count of gene X at 

the given time.
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The chemical reactions are identical for all N nodes in a given network of size N. The 

synthesis rate is a node-specific rate (STAR Methods, Model 2 - Transcriptional bursting 

model). We model gene regulation additively (STAR Methods, Model 2 - Transcriptional 

bursting model). For k we tested two different definitions: one closer and one further away 

from the low expression taking into account the intrinsic stochasticity. We therefore first run 

a test simulation with a random k for 1,000 time units and determine the standard deviation 

of the expression of the node denoted as ‘node 1’. K is latin hypercube sampled with the rest 

of the parameters with lower and upper boundary 100 and 1000. We set k to be:

k =
rprod
rdeg

+ x ⋅ std,

where std is the standard deviation of the expression of the node denoted as ‘node 1’ and x ∈ 
{3,5}. We then re-initiate the simulation with the adapted k value.

Model selection: We decided to develop a network-based framework that models the cell-

intrinsic biochemical interactions. One of the first goals we had was to identify the minimal 

set of biochemical reactions that constitutes this network model. We asked whether a simple 

network model lacking gene activation step (Model1), i.e. with constitutive mode of gene 

expression, is sufficient to capture rare coordinated high states (Figure 1B; STAR Methods, 

section Model 1)? Or that we need to incorporate gene activation step via transcriptional 

bursting (Model 2) at each node, a phenomenon in which genes flip reversibly between 

transcriptionally active and inactive state regulated by the binding of a transcription factor(s) 

(Figure 1C; STAR Methods, section Model 2)?

In terms of chemical reactions, the critical difference between the two models is that, while 

in Model 1 the gene is transcribed as a Poisson process with a single rate, rprod (Figure 1B), 

in Model 2, a gene can reversibly switch between active (ron) and inactive state (roff), where 

binding of the transcription factor at a gene locus defines the effective rate of gene 

production (Figure 1C). Specifically, when inactive, the gene is transcribed as a Poisson 

process at a basal rate (rprod); when active, this rate becomes higher (d x rprod, where d > 1). 

For both the models, we modeled degradation of the gene product as a Poisson process with 

degradation rate rdeg. For both the models, the inter-node interaction parameter, radd, has a 

Hill-function-based dependency on the gene product amount (Hill coefficient n) of the 

respective regulating node to account for the multistep nature of the interaction (Figure 

1B,C). All chemical reactions, propensities, and model parameters are presented in STAR 

Methods. To test these two models, we used Gillespie’s next reaction method (Gillespie, 

1977) and simulated test cases of small networks (of two or three nodes) for a range of 

parameters.

For a vast majority of the networks and parameter combinations, Model 1 either produced 

always low or always high expression states (Figure S1A). In some cases, while Model 1 

could indeed produce a transition from low to high expression states, the transition happens 

for all gene products at the same time (Figure S1A). However, this model is not consistent 

with the experimental observations; in particular, if a cell is positive for one marker gene, 

then it is more likely to be positive for another marker gene, but not necessarily so (Figure 
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S1B) (Shaffer et al. 2017). Furthermore, this mode of transition resulted in bimodal 

distributions of cellular state as determined by the amount of gene product (Figure S1B), 

which is different from the rare nature of the transitions, as reflected by the heavy-tailed 

distributions of gene products observed in melanoma. Model 2, which incorporates 

transcriptional bursting-dependent activation of a node (gene), also produced a range of gene 

expression states (Figure 1C-1F). Importantly, this model was able to faithfully capture the 

qualitative features of the experimental data i.e. rare, transient, and coordinated high 

expression states (Figure 1F). In contrast to Model 1, Model 2 captures another property of 

the experimental data, i.e. if one gene is in the high expression state, the other genes in the 

network are likely to be in high expression state, but not always (Figure 2B and S2B). Based 

on these initial observations, we decided to pursue Model 2 systematically and simulated 

networks of different sizes and architectures across a broad range of model parameters.

Parameters—The goal of our study is to model the emergence of rare transient 

coordinated high expression of several genes. The theoretical idea behind the transcriptional 

bursting model is that each time the DNA is in an active state, corresponding to a 

transcriptional burst, the steady-state of the mRNA count is shifted from rprod/rdeg to 

d*rprod/rdeg. Accordingly, the mRNA attempts to reach its new steady-state which results in 

a rapid increase in their counts. Depending on the length of the transcriptional burst, which 

is exponentially distributed with rate parameter roff, the mRNA count is able to reach the 

new steady-state. We use the dynamical system behavior when modeling the rare 

coordinated overexpression. In principle, for most transcriptional bursts, the sudden mRNA 

increase should not initiate a DNA activation of its regulated genes; only in some rare cases, 

the transcriptional burst in one gene is long enough such that its mRNA count exceeds a 

certain threshold that may be able to affect the state of another gene locus on DNA. 

Exceeding of the mRNA threshold can lead to an increased probability of the DNA states of 

its regulated genes to be activated and hence to an increased mRNA synthesis in the 

respective genes. The increased mRNA synthesis of regulated genes may lead to positive 

feedback loops network-wide resulting in the transient coordinated overexpression of genes.

The threshold to be overcome by the mRNA count of a gene to make its gene regulation 

effective is given by the dissociation constant of the Hill function, k. k determines the 

‘switching point’ from (almost) no gene regulation to (almost) complete gene regulation. 

Therefore, we define k to be a function of rprod, rdeg and d as follows:

k(rprod, rdeg, d) = 0.95 ⋅ d ⋅
rprod
rdeg

,

where d*rprod/rdeg gives the steady-state mRNA count of the respective regulating gene in 

the DNA active state. Here, we arbitrarily determine the threshold k to 0.95 of its high-

expression steady-state to restrict the emergence of coordinated overexpression to being rare 

and for the system to demonstrate a considerable difference between the low and high gene 

expression state. The simulations and the analysis are all performed according to the above 

definition of k. We tested the robustness of this definition for a particular network 5.3 

(Figure S9) where we performed the same simulations (for 100 latin hypercube sampled 
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parameter sets (Table S1)) as for the final analysis as before using five different definitions 

of k:

k(rprod, rdeg, d) = x ⋅ d ⋅
rprod
rdeg

,

where x ∈ {0.75, 0.8, 0.85, 0.9, 1} (Table S1). Our analysis shows that for x = 0.75, none of 

the 100 simulations show rare coordinated high states: the threshold leading to an effective 

gene regulation is exceeded too often: the regulated DNA states are activated, the high state 

emerges and we lose the rareness of the coordinated high gene expression event. The 

number of simulations showing rare coordinated high states increases with increasing x, 

reaching its maximum for x = 0.95 (standard, 7 out of the 100 simulations show rare 

behavior). For x = 1 (high expression steady-state), we also see rare behavior in 7 out of 100 

simulations, showing overlapping results in 6 out of the 7 simulations.

Together, we are left with a set of seven parameters consisting of: ron, radd, n, roff, rprod, d, 

rdeg, which may be split into inter-gene (ron, roff, rprod, d, rdeg) and intra-gene (radd, n) 

parameters and the dependent parameter k. Potentially, these parameter sets are node-

dependent resulting in a N * 7-dimensional parameter space for a network of size N.

To emphasize the equality between the nodes, we use the same 7-dimensional parameter set 

for all nodes in a network. Hence, the nodes are relationally and parametrically identical, 

thereby also allowing us to directly compare the simulations of different network sizes, 

otherwise not possible, and to determine the effects of network size and architecture on the 

ability of forming the rare coordinated high state. Therefore, we latin-hypercube sample 

1000 parameter sets out of the parameter space with upper and lower boundaries (chosen 

arbitrarily, but typically spanning two orders of magnitude):

Parameter Lower boundary Upper boundary

rprod 0.01 1

rdeg 0.001 0.1

ron 0.001 0.1

roff 0.01 0.1

d 2 100

radd 0.1 1

n 0.1 10

by using the MATLAB function lhsdesign_modified (Khaled, N. Latin Hypercube (https://

de.mathworks.com/matlabcentral/fileexchange/45793-latin-hypercube), MATLAB Central 

File Exchange. Retrieved May 5, 2018.). The 1000 parameter sets are shown in the Table S1. 

For some plots, we used a y-axis break function in MATLAB (Mike, C.F. Break Y Axis 

(https://www.mathworks.com/matlabcentral/fileexchange/45760-break-y-axis), MATLAB 

Central File Exchange. Retrieved December 21, 2018.)
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Simulations—We simulated model 2 for a total of 96 networks (for all weakly-connected, 

non-isomorphic, symmetric networks of sizes 2, 3, 5 and 8 with 2, 4, 10 and 80 networks, 

respectively)(Figure S9), each for 1,000 sampled parameter sets, resulting in a total of 

96,000 simulations across four different network sizes. The simulations were performed 

according to Gillespie’s next reaction method and were computed for 1,000,000 time units, 

which is critical for capturing rare behaviors. For all simulations, the DNA state was 

initiated (t = 0) to be in its inactive state and the mRNA count was arbitrarily set to 20 for all 

nodes. The mRNA counts quickly reach their low-expression steady state, such that we are 

certain that our analysis is not impaired by the given initial conditions. The simulations were 

implemented in MATLAB R2017a and R2018a. One single simulation of 1,000,000 time 

units took between 20 minutes and 9 hours depending on the parameter set and the network. 

The complete simulations took over 1.5 months to run, where we parallelised all 96 

networks and and let each of them run on four cores simultaneously.

Simulation classes—We analyzed all of the 96,000 simulations, and assign them to the 

following four classes, initially by visual inspection, and subsequently by defined criteria 

(see below):

I. stably low gene expression

II. stably high gene expression

III. uncoordinated transient high gene expression

IV. rare, transient coordinated high gene expression

Therefore we constructed three criteria, for which all the simulations were tested. We 

primarily focus on the rare, transient coordinated high gene expression states, as defined by 

the following criteria:

1. Coordinated high gene expression state. We call a simulation to show 

coordinated high expression, if at least once within the 1,000,000 time unit 

simulation more than half of the mRNA counts are above a specified threshold 

(e.g. for 5 nodes, at least once three or more mRNA counts have to be above a 

defined threshold; for 8 nodes, at least once 5 or more mRNA counts have to be 

above a defined threshold). Similar to the definition of the dissociation constant 

k, we set the threshold to

thres = 0.8 ⋅ d ⋅
rprod
rdeg

,

where d * rprod/rdeg gives the high-expression steady state. Again, we want to 

detect the rare occurrence of a large mRNA count deviation from the low-steady 

state and hence, set the threshold arbitrarily to 0.8 (see below for details on the 

choice of this value).

To compare the simulated results with the experimental data from a drug naive 

melanoma cell population, we split the 1,000,000 time unit simulations into 

1,000 time unit subsimulations, each accounting for a cell. Hence, we receive 
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simulations of 1,000 cells for 1,000 time units, a procedure justified by the 

ergodic theory. To show that sub-simulations of 1,000 time units are 

uncorrelated, we determine the autocorrelations for all 1,000 parameter sets of 

network 3.2 (Figure S9) for up to 1,000 lags (using the MATLAB autocorrelation 

function acf (Price, C. (2011). Autocorrelation function(ACF) (https://

www.mathworks.com/matlabcentral/fileexchange/30540-autocorrelation-

function-acf), MATLAB Central File Exchange. Retrieved June 13, 2019.). For 

each of these, we determine the first lag at which the autocorrelation is below the 

upper 95% confidence bound. For 88.2% of all simulations, the first lag below 

the upper 95% confidence bound occurs before 1,000 lags. For the 26 

simulations with rare coordinated high states, 23 show a first lag below the upper 

95% confidence bound before 1,000 lags. For the remaining three simulations the 

autocorrelation after 1,000 lags is at 0.0615, 0.0206 and 0.4363. Removing the 

simulation with high autocorrelation (0.4363) does not change the conclusions of 

our analysis.

2. Rareness/transience. To mimic the results given by RNA-FISH in a drug naive 

melanoma population, where we only see a snapshot of the mRNA counts within 

a melanoma cell, we randomly determine a time point trand, where trand ∈ [0,999] 

(uniformly distributed), at which we count the number of mRNA counts above 

the threshold (for each simulation t varies). We summarize the result of all 1,000 

cells in a histogram, for which we expect a decrease with increasing mRNA 

count above the threshold.

3. Heavy-tailed gene expression distributions. At the population level, the single 

mRNA distributions of marker genes show heavy-tails. We use the same time 

point t as sampled for criterion 2) and consider the mRNA counts of all genes. If 

we plot these in gene-dependent histograms, we expect to find right-skewed and 

unimodal distributions. Here, we use the MATLAB function skewness(X) for 

evaluating the right-skewness of the histogram, where skewness(X) > 0, denotes 

that the data is spread out more to the right of the mean. Skewness is defined as

skewness(X) = E (X − μ)3

σ3

where μ is the mean of X, Ϭis the standard deviation of X and E(.) the 

expectation. For determining unimodality, we test whether the maximum of the 

last quarter of histogram bins with bin width of one is less than the minimum of 

the first quarter of histogram bins. Although the definition above only 

characterizes a heavy-tailed distribution, we find it to be sufficient for our 

analysis.

Classes I and III, are both defined by criterion 1 only, where criterion 1 is not met in both 

cases. For class I, none of the genes in a network ever express above the given threshold. For 

class III, genes express above the given threshold but not once are more than half of the 

genes above the given threshold at any given time of the simulation. Only if a simulation is 
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able to fulfill all three criteria, will we call it a simulation of class IV - rare transient 

coordinated high gene expression. If a simulation fulfills criteria 1, but fails to meet both 

other criteria, we classify it into class II. To receive numbers of simulations in class IV - rare 

transient coordinated high expression - per network size, we randomly determine three 

different trand, where each trand ∈ [0,999] (uniformly distributed) and evaluate all 96000 

simulations for being in class IV at the respective snapshot (Figure 2A). Note that all these 

requirements are tested automatically using a script without manual/human intervention.

To show that criterion 3) is sufficient for defining heavy-tailed simulations in class IV in our 

analysis, we constrain criterion 3) further aiming to identify sub-exponentially decaying, 

heavy-tailed distributions more directly. We therefore reevaluate all simulations so far 

identified as class IV and compare their 99th percentiles of their expression distributions 

with those of fitted exponential distributions (Figure S3C, right panel). We expect most of 

the 99th percentile of the expression distributions to be larger than the 99th percentile of the 

fitted exponentials. Due to the symmetry of the networks and the resulting similarity 

between the expression distributions (Figure S2C), we only consider node one here, without 

the loss of generality. To avoid that the fitted exponentials account for the heavy-tails, we 

constrain the fits to have a maximal bin number (bin size of one) within ∓ 1 of the maximal 

bin number (bin size one) of the expression distributions. We do so by sequentially 

increasing/decreasing the exponential parameter μ by steps of 10, sampling 1000 times from 

the resulting exponential distribution with the MATLAB function exprnd(μ,1,1000) and 

comparing the maximal bin number of the resulting histograms. We repeat the above until 

the maximal bin number of the exponential distribution is within the predefined range of ∓ 
1. As expression distributions with a large maximum bin are more similar to lognormal 

distributions with small variances and less to exponentials, we restrict the analysis to 

expression distributions with a maximum bin of ≤ 15 (Figure S3B). The threshold of a 

maximum bin of 15 was determined by considering the simulations and their exponential 

fits. We additionally discard simulations for which the optimization takes more than 1000 

iterations or is producing non-positive parameter values.

Most (82%) of the 99th percentile of the simulated expression distributions are above the 

diagonal, hence larger than the 99th percentile of the fitted exponential distributions (Figure 

S3C, right panel). The 99th percentile of all the nine marker genes in Shaffer et al. also lie 

above the diagonal in the general vicinity of the points corresponding to simulations with 

rare coordinated high states (Figure S3C, left panel). We therefore conclude that criterion 3) 

sufficiently selects for sub-exponentially decaying heavy-tailed distributions.

We additionally, perform parts of the analysis again on two different levels of stricter 

stringency for criterion of heavy-tailed distributions (Figure S4F-M):

A. All simulations fulfilling criteria 1) - 3) which additionally comply to the above 

mentioned analysis (maximum bin ≤ 15, 99th percentile of expression 

distribution > 99th percentile of fitted exponential, <1000 iterations to reach a ∓ 
1 of the maximal bin number (bin size one) in the optimization for determining 

the exponential fit and producing non-positive parameter values) (Figure S4J-M).
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B. All simulations fulfilling criteria 1) - 3) which additionally comply to the above 

mentioned analysis or have a maximum bin > 15 (Figure S4F-I).

The results are qualitatively very similar to the results we receive if we perform the analysis 

only on criteria 1) - 3) (Figure 2, Figure 3 and Figure S4). The 6 and 7 rare coordinated high 

parameter sets identified by the more stringent analyses A) and B), respectively, are subsets 

of the original eight rare coordinated high parameter sets (Figure 3A, FigureS4H and S4L). 

Although the resulting optimized decision trees vary slightly, they still identify all three 

parameters, ron, radd and roff, controlling rare transient coordinated states, as in the original 

analysis. Together, we conclude that the simple characterization of heavy-tailed distributions 

is sufficient for further analysis.

The analysis above is a prerequisite for further findings and statements. Due to its 

importance, we tested its robustness with respect to the definition of the threshold, marking 

the mRNA count above which a gene is called to be in the high-gene expression state, and 

with respect to the number of mRNA counts required above the threshold to call it a 

coordinated high state (both determining criterion 1).

For the test network 5.3, we hence repeated the analysis for thresholds:

thres = x ⋅ d ⋅
rprod
rdeg

,

where x = 0.3 : 0.05 : 1 (here, for 100 latin hypercube sampled parameter sets (Table S1), 

and we only test for class IV). Decreasing the threshold down to 0.6 of the high-expression 

steady state does not change the set of simulations with rare behavior in comparison to the 

results for x = 0.8. Even a further decrease of the threshold (down to 0.3 of the high-

expression steady state) manifests in a similar result: half of the simulations identified 

previously to show rare behavior are still classified as such. Hence, we keep x = 0.8 for the 

rest of the analysis (Table S1).

Next, for network 5.3 and the 100 parameter sets (Table S1), we repeated the analysis 

requiring at least 1, 2, 4, and 5 mRNA counts to be above the threshold at least once, in 

order for the simulation to fulfill criterion 1. The lower the required mRNA count, the more 

simulations fulfill criterion 1 (peaking at a required mRNA count of at least 1 with 11 out of 

the 100 simulations showing rare behavior according to this definition). The above set of 

simulations entails the set of simulations fulfilling criterion 1 at the standard required mRNA 

count of at least 3 (7 out of 100 simulations). Hence, we keep the definition of coordinated 

overexpression to more than half the nodes being above the threshold.

Additionally, we computed the Gini indices for the gene expression distributions of both the 

simulations showing rare coordinated high states and the experimental data (Figure 2D and 

Figure S3A) (Jiang et al., 2016; Shaffer et al., 2017). A Gini coefficient of 0 implies perfect 

equality such that for a given gene, all cells within a population have the same number of 

mRNA molecules, whereas 1 implies perfect inequality such that one cell expresses all the 

mRNA molecules while others express none. We used the MATLAB function gini (Yvan 

Lengwiler (2019). Gini coefficient and the Lorentz curve (https://www.mathworks.com/
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matlabcentral/fileexchange/28080-gini-coefficient-and-the-lorentz-curve), MATLAB Central 

File Exchange. Retrieved October 24, 2019.) for the computations.

Network topologies

Connectivity: We define a measure for the connectivity of the networks, where

connectivity = number of ingoing edges for any node of the network,

where a self-loop is also considered to be an ingoing edge. As we constrain our analysis to 

symmetric networks (same number of in-going edges for all nodes in a network per 

definition), we are able to define one single connectivity per network. The constraints enable 

us to directly evaluate the impact of the connectivity of the network on the ability to form 

rare behavior.

Self-loops: A network with a direct auto-activation is called a network with a self-loop. Due 

to the restriction of symmetric networks, all networks can be classified as having self-loops 

for all nodes or not having self-loop for any node. Due to non-isomorphism, the set of 

networks contains for each network without self-loops an identical network with self-loops. 

We evaluate the ability of these different edge classes on the formation of rare coordinated 

high states (Figure 2G).

Characteristic distance: The characteristic distance of a network is defined as the average 

shortest path length for all pairs of nodes within a given network. To calculate this distance, 

we used the MATLAB function shortestpath on all pairs of nodes. We evaluated the ability 

of the characteristic distance normalized to the network size on the formation of rare 

coordinated high states (Figure S5F).

Quantitative Analysis—For each of the 96,000 simulations showing rare coordinated 

high states we performed a quantitative analysis. First, we define a high expression region as 

a region which is initiated by the first mRNA count to exceed the threshold, terminated by 

the last mRNA count to drop below the threshold and requires to contain a coordinated high 

expression state (criterion 1: more than half the mRNA counts have to exceed the defined 

threshold) between the initiation and termination time points. Breaks of up to 50 time unit 

intervals are accepted due to the stochastic nature of the simulations. For example, in a 3 

node network, where we require at least 2 mRNA counts to exceed the threshold for a 

coordinated high state: the first mRNA count exceeds the threshold (initiation), then the 

second mRNA count exceeds the threshold (initiation of high state) but then drops below the 

threshold for 50 time units before exceeding the threshold again, is still counted as one high-

expression region. The length of 50 time units were defined arbitrarily. Due to the 

stochasticity of the system and the conservative definition of the threshold (located close to 

the high-expression steady state), we observe these temporary violations of criterion 1. In 

order to create sensible statistics on the quantitative behavior of the simulations, the 

temporary relaxation of criterion 1 is necessary.
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In the quantitative analysis we extract the total time spent in a high state (out of 1,000,000 

time units) from all simulations showing rare behavior (Figure S3D).

Decision tree optimization, generalized linear models and constrained 
simulations—We classify all parameter sets into two classes, rare coordinated high 

parameter sets and non-rare coordinated high parameter sets, according to the percentage of 

total simulations per parameter set (96 simulations) in which rare coordinated high states are 

observed. The threshold above which a parameter set is called a rare coordinated high 

parameter set is at 20%. More than 19 of the 96 simulations have to show rare behavior in 

order for a parameter set to be called a rare coordinated high parameter set. The threshold 

was set according to a summarizing histogram, in which we see a clear distinction between 

the two groups: the main body of the histogram being located below 20% and the few 

parameter sets deviating extremely from that main group (> 20%). According to this binary 

classification, we performed a decision tree optimization (MATLAB function fitctree).

To validate the results of the decision tree optimization, we used generalized linear models 

on all seven independent parameters ron, radd, n, roff, rprod, d and rdeg with the MATLAB 

function fitglm(X,Y,’Distribution’,’binomial’).

To validate that the parameter region determined by the decision tree optimization favors the 

formation of simulations with rare coordinated high states, we generate a new set of 

parameters constrained to values close to the minimal and maximal values of ron, radd and 

roff for the rare coordinated high parameter sets:

Parameter Lower boundary Upper boundary

rprod 0.01 1

rdeg 0.001 0.1

ron 0.001 0.025

roff 0.06 0.1

d 2 100

radd 0.15 0.36

n 0.1 10

We latin hypercube sample 1000 parameter sets from that constrained parameter space. For 

all 1000 parameter sets we simulate 1000000 time units by Gillespie’s next reaction method 

for networks 3.2 and 5.3 (Figure S9). Each of these simulations was evaluated for having 

rare coordinated high states according to the three criteria (STAR Methods, section 

Simulation classes).

Sensitivity Analysis—For each parameter, we tested its sensitivity across its 

corresponding parameter space (see STAR METHODS, section Parameters). Briefly, we 

take network 3.2 (Figure S9) for the detailed analysis as network 3.2 shows rare coordinated 

high states in all eight rare coordinated high parameter sets. For each of the seven 

independent parameters (ron, roff, rpod, rdeg, n, d, radd), we determine 10 equidistant points 

across its parameter space, and create new parameter sets by swapping these new parameters 
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one-by-one with ones from the eight rare coordinated high parameter sets, resulting in 

8*7*10 = 560 new parameter sets. We simulate 1,000,000 time units with Gillepsie’s next 

reaction method for these newly created parameter sets and evaluate all new simulations for 

showing rare coordinated high states. For each of the 10 newly sampled parameter values 

per parameter we receive 8 binary decisions where ‘1’ indicates that the simulation exhibits 

rare coordinated high states and ‘0’ that it does not. Our analysis confirmed that the three 

parameters (ron, roff, and radd) identified by the decision tree algorithm and generalized linear 

model are indeed critical for producing the rare coordinated high states (Figure S6D). We 

also found a moderate dependence on the Hill coefficient n, also confirmed by the low p-

value for n from generalized linear model analysis (Figure S6C).

Burst analysis: maintenance of rare coordinated high states—For all simulations 

showing rare coordinated high states, we determine the fraction and frequency of 

transcriptional bursts in both the high and baseline time-regions (Figure 4B-C). By fraction 

we mean the percentage of the total time the system is bursting. By frequency we mean the 

number of bursts per unit time. Additionally, we determine the number of high states and the 

total time spent in a high state for a network of size three (network 3.2, Figure S9) and three 

independent nodes for each of the parameter sets showing rare coordinated high states in the 

connected network (Figure 4D).

Entry and Exit mechanisms

Entering/Exiting of high expression region - Transcriptional bursts: For all of the 

simulations in class IV showing rare coordinated high states - we analyze whether the 

durations of transcriptional bursts are coordinated with the entering and exiting of high time-

regions (Figure 4A, STAR Methods, section Quantitative Analysis).

Entering high expression regions - For each of the defined high expression regions, we 

determine the entering gene - the gene corresponding to the gene count exceeding the 

threshold at the initial time point of the high expression region. We then extract all 

transcriptional bursts which do not start within a high expression region, determine their 

durations and classify them as either an entering burst or a non-entering burst. An entering 

burst is the last burst of a particular entering gene before or during its gene count exceeds the 

threshold. All other bursts are called non-entering bursts. We then perform a two-sample 

Kolmogorov-Smirnov test on the duration of the entering and non-entering bursts not in high 

expression regions with the MATLAB function kstest2 at the significance level 0.05.

Exiting high expression regions - For each of the determined high gene expression regions 

we define an exiting region - the region between the first gene in the last quarter of the high 

expression region permanently leaving the high state (permanently having its gene count 

below the threshold for the rest of the high expression region) to the last time point of the 

high expression region. We again determine all transcriptional bursts - within the high 

expression regions. To exclude potentially prolonged entering bursts, we only consider 

bursts which start within a high expression region. Also, for bursts exceeding the high 

expression region, we only account for their durations within the high expression region. If a 

burst overlaps with an exiting region for at least one time point we call the burst an exiting 
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burst. All other bursts which are not overlapping with an exiting region are called non-

exiting bursts. We apply the two-sample Kolmogorov-Smirnov test to the duration of the 

exiting and non-exiting bursts in high expression regions with the MATLAB function kstest2 
at the significance level 0.05.

Entering/Exiting of high expression region - Times: For all of the simulations showing 

rare transient coordinated high gene expression, we analyze the distributions of waiting 

times between genes entering and exiting the high expression region (see Quantitative 

Analysis).

Entering high expression regions - For all high expression regions, we determine the first 

time points at which the gene counts exceed the threshold (only for genes with a gene count 

exceeding the threshold during a particular high expression region at least once). We then 

consider the waiting times - the time interval between the ascending sorted time points of 

genes entering the high expression region. These distributions - at most N-1 distributions for 

a network of size N, one for each waiting time between the genes - are compared to 

exponential distributions by the Lilliefors test according to the MATLAB function 

lillietest(X, 'Distr', 'exp') at a significance level of 0.05.

Exiting high expression regions - For all high expression regions we determine the last time 

points at which the gene counts exceed the threshold (again, only for genes with a gene 

count exceeding the threshold during a particular high expression region at least once). We 

consider the waiting times and compare their distributions to exponential distributions by the 

Lilliefors test by applying the MATLAB function lillietest(X, 'Distr', 'exp') at a significance 

level of 0.05.

Comparative network inference—Here we describe the computational techniques we 

used to infer the gene interaction network structure of the pre-drug and post-drug cells. 

When studying regulatory interactions between genes in a network, it can be useful to 

abstract the problem into a graph theory framework. Let us assume a set of N genes, with the 

expression level of each gene represented by the random variable Xi, with i ∈ {1,…,N}. The 

network of interactions between genes can then be represented as a graph of N nodes. An 

edge Xi → Xj signifies a regulatory relationship in which Xi either upregulates or 

downregulates Xj (Singh et al., 2018).

The computational challenge of network inference is to uncover the true edges of the gene 

interaction network from statistical relationships between gene expression levels. Many 

different algorithms, often based on mutual information, conditional probability, or 

regression analysis, have been developed (Singh et al., 2018; Huynh-Thu and Sanguinetti, 

2019; Saint-Antoine and Singh, 2019). The output of an inference algorithm is a matrix of 

edge weights, which we will call W with dimensions NxN. In this matrix, the element wij is 

a measure of how confident we can be that the edge Xi → Xj exists in the network. A final 

network prediction will typically set a threshold for edge weights, and exclude any edges 

that fall below the threshold. Edges Xi → Xi, called “self-edges” are typically excluded for 

the final network prediction, except in cases when temporal data is being analyzed. Since we 

are using atemporal expression data here, self-edges will be excluded from the analysis.
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It is common to judge a network inference algorithm’s reliability by testing it on a “gold 

standard” dataset, for which the true structure of the network is already known, to see how 

well it can recover the real edges from the expression data (Huynh-Thu and Sanguinetti, 

2019). We have chosen to use the Phixer algorithm (Singh et al., 2018), based on its 

impressive performance when benchmarked on the DREAM5 Challenge gold standard 

datasets (weblink: http://dreamchallenges.org/project/dream-5-network-inference-

challenge/; last accessed: 05/06/2019).

Phixer: Phixer computes edge weights using the phi-mixing coefficient. For discrete random 

variables X and Y taking values in sets A and B, the phi-mixing coefficient φ(X∣Y) is 

defined as:

ϕ(Xi ∣ Xj) + maxS ⊆ A, T ⊆ B ∣ Pr{Xi ∈ S ∣ Xj ∈ T} − Pr{Xi ∈ S} ∣ . (1)

We then assign φ(Xi∣Xj) as the weight of the edge Xj → Xi. The phi-mixing coefficient is an 

asymmetric measure, so the weight of the edge Xi → Xj may be different (Singh et al., 

2018). The original Phixer algorithm includes a pruning step, which attempts to correct for 

false positives by minimizing redundancy in the network. For every possible triplet of nodes 

Xi, Xj, and Xk, the following inequality is checked:

φ(Xi ∣ Xk) ≤ min{φ(Xi ∣ Xj), φ(Xj ∣ Xk)} (2)

If Equation 2 holds, the edge Xk → Xi is eliminated. However, previous work has found that 

the pruning step, though theoretically sensible, typically reduces accuracy in practice (Saint-

Antoine and Singh, 2019), possibly due to the prevalence of redundant connections, such as 

feed forward loops in gene regulatory networks. So, we removed this part of the algorithm in 

order to achieve the highest possible level of accuracy.

The Phixer software is available online at the creator’s Github page: https://github.com/

nitinksingh/phixer/ (last accessed: 05/06/2019). We used the original C code, and kept the 

default parameter values the same, except for changing “NROW” to 19 and “TSAMPLE” to 

4000, to reflect the dimensions of the input data files. The original Phixer code includes, by 

default, 10 bootstrapping runs, as well as a built-in procedure for binning the raw data, 

which we did not alter. We removed the pruning step from the code, but otherwise left the 

edge weight calculation process unchanged.

Data description: The two pre-drug datasets are referred to as NoDrug1 and NoDrug2 in 

the supplementary data files (Table S2). The datasets containing clusters of resistant cells 

after four weeks of drug exposure are referred to as Fourweeks1-cluster1, Fourweeks1-

cluster2, etc. where we differentiate between Fourweeks1 with four clusters and Fourweeks2 

with three clusters. Details of how these datasets were acquired are presented in (Shaffer et 

al., 2017).

Bootstrapping controls: We found that the Phixer algorithm tends to predict more 

connections for larger sample sizes, even when the samples are taken from the same dataset. 
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To control for the differences in original sample sizes of various samples, we bootstrapped 

the original datasets into 4000-sample datasets before performing the Phixer analysis. The 

number 4000 was chosen arbitrarily; bootstrapped sample sizes of 1000, 2000, and 6000 

also appeared to produce similar results.

Randomized controls: For each size-controlled dataset to be analyzed, we created a 

randomized control consisting of permutations of each gene column from the original 

dataset (Table S2). We then performed the Phixer analysis on these randomized controls. 

The resulting edge weight distributions give us a baseline or control edge weight for Phixer 

that, in principle, reflects potential false positives. We found that in the controls, nearly all of 

the predicted edge weights were below 0.45 (Figure S8B). Therefore, we decided to choose 

0.45 as a threshold for the non-control analysis, thus eliminating edges that could have been 

predicted by chance alone.

Finally, since the analysis contains two stochastic elements (the bootstrapping to correct for 

the sample size issue and the bootstrapping step in the Phixer algorithm itself) we had to be 

sure that the observed differences in connectivity were not due to chance. For each dataset, 

we ran the entire analysis (including both the bootstrapping size correction and the Phixer 

algorithm) 1000 times, and provide the distributions of the number of edges with weight 

greater than 0.45 (Table S2).

Asymmetric networks or parameter sets—To test the generality of the results, we 

generate asymmetric simulations. We introduce asymmetry in both network architectures 

and the parameter sets.

Asymmetric network: We randomly determine a weakly-connected but asymmetric five-

node network (Figure S2G). We simulate the network with 100 parameter sets which are 

latin hypercube sampled out of the same parameter space as the 1000 parameter sets of the 

main analysis. Out of these 100 simulations, two simulations are classified as showing rare, 

transient coordinated high gene expression (fulfills all three criteria in STAR Methods, 

section Simulation classes, Figure S2H-I).

Asymmetric parameter sets: For the main analysis, we use the same parameter set, 

consisting of seven independent parameters (STAR Methods, section Parameters), for all 

nodes in a network. We introduce asymmetry by assigning each node in a network a separate 

set of parameters. Hence, we latin-hypercube sample 100 parameter sets out of a 7 x N 

parameter space, where N is the number of nodes of the network, with the MATLAB 

function lhsdesign_modified. Due to the high dimensionality, we here confine the parameter 

space to:

Parameter Lower boundary Upper boundary

rprod 0.01 1

rdeg 0.001 0.1

ron 0.001 0.1
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Parameter Lower boundary Upper boundary

roff 0.001 0.1

d 2 100

radd 0.2 0.4

n 5 10

where the changes in the boundaries are highlighted in blue. We confine the parameter space 

according to the clustering of rare coordinated high parameter sets. In total, six parameter 

sets give rise to rare-states more frequently than others for all 96 networks. Only two out of 

the seven independent parameters, radd and n, show a strong correlation with the rare 

coordinated high state producing parameter sets as determined by a decision tree 

optimization. The boundaries in the table above are formed according to these decision tree 

boundaries in which five out of the six rare coordinated high state producing parameters lie 

(Table S1).

For these 100 parameter sets, we generated simulations for five-node network 5.3 (Figure 

S2J). Out of the resulting 100 simulations, we find two showing rare, transient coordinated 

high gene expression (fulfills all three criteria in STAR Methods, section Simulation classes, 

Figure S2K-M).

QUANTIFICATION AND STATISTICAL ANALYSIS

Figure 2E: Independent sampling of trand was performed 3 times. Boxplots show the median 

and 25th and 75th percentiles. Figure 4B, C, E and F: Two-sample Kolmogorov-Smirnov test 

tested for significance level 0.05. Figure 4H and I: Lilliefors test tested for significance level 

0.05. Figure S4F and J: Independent sampling of trand was performed 3 times. Boxplots 

show the median and 25th and 75th percentiles. Figure S5A and B: Independent sampling of 

trand was performed 3 times. Boxplots show the median and 25th and 75th percentiles. Figure 

S7A and B: Lilliefors test tested for significance level 0.05.

DATA AND CODE AVAILABILITY

Data—The data used and generated in this manuscript is available via Dropbox (https://

www.dropbox.com/sh/n94q45zkn5w54fe/AACC3cgts4kD6MWEE452pEgEa?dl=0).

Code—The MATLAB code used for the analysis of this manuscript is available on GitHub 

and the DOI is accessible via Zenodo (https://doi.org/10.5281/zenodo.3713697). The 

analysis was performed with MATLAB R2017a and R2018a.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Box 1.

Model description, assumptions, parameters, and definitions

Model description:

The transcriptional bursting model is comprised of single-gene expression modules 

described by the telegraph model: the DNA can take on an active and inactive state and 

transcribe mRNA at high and low rates (transcriptional bursting), respectively. These 

expression modules are coupled by an underlying network architecture, where regulation 

is modeled by a Hill function: the regulating gene influences the activation rate ron of the 

respective regulated gene. The chemical reactions and propensities are described below:

Chemical reaction Reaction propensity

I → A ron + radd ⋅
mRNAXn

kn + mRNAXn ⋅ I

A → I roff · A

I → I + mRNA rprod · I

A → A + mRNA d · rprod · A

mRNA → ∅ rdeg · mRNA

where I,A ∈ {0,1}, and I+A = 1, where I = 0 (A = 1) denotes that the DNA is in an active 

state and I = 1 (A = 0) denotes that the DNA is in an inactive state. mRNAX is the mRNA 

count of gene X at the given time. The model aims to recapitulate rare coordinated high 

states, where rare means that at the population level the expression distributions are 

unimodal and exhibit heavy tails; coordinated means that at least once throughout a 

simulation more than half the genes (nodes) show mRNA expressions above a specified 

threshold simultaneously; and high means that the mRNA expression of a gene exceeds a 

specified threshold (thres).

Model assumptions:

(1) mRNA is able to influence the gene expression of its regulated gene directly, hence 

we refer to it as gene product throughout this work; (2) all genes are relationally identical 

(weakly-connected, non-isomorphic and symmetric gene regulatory networks); (3) all 

genes share the same model parameters; (4) gene regulation is only considered to be 

activating; and (5) if regulation occurs from several genes, their effects are additive. We 

discuss and check the generality of our model by testing many of these assumptions on a 

subset of cases, as described in Box 2.

Parameters:

The model is described by 8 model parameters, as defined in the table below along with 

the corresponding ranges.
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parameters sampling range

independent model parameters

ron The rate at which DNA is activated. 0.001 - 0.1

roff The rate at which DNA is inactivated. 0.01 - 0.1

rprod Synthesis rate of gene product. 0.01 - 1

rdeg Degradation rate of gene product. 0.001 - 0.1

radd Parameter determining the contribution of the additional DNA activation rate upon 
gene regulation.

0.1 - 1

d Factor by which the mRNA synthesis rate is increased when in an active DNA state. d 
>1.

2 - 100

n Hill coefficient. 0.1 - 10

dependent model parameters

k* Dissociation constant of the Hill function, where 

k(rprod, rdeg, d) = 0.95 ⋅ d ⋅
rprod
rdeg

-

dependent classification parameters

thres** Threshold above which a gene is thought of being highly expressed, where

thres = 0.8 ⋅ d ⋅
rprod
rdeg

-

Here, rprod/rdeg is the steady state in the baseline expression state (when there is no 

transcriptional burst) and d * rprod/rdeg is the steady state in the high expression state (if 

the DNA would continuously be in the active state).

Model Definitions:

• weakly-connected network - a directed network that when replacing the 

directed edges by undirected ones produces a connected graph in which every 

pair of nodes is connected by a path.

• non-isomorphic - two graphs are called non-isomorphic if there exists no 

structure-preserving bijection between them.

• symmetric - within a graph the number of in- and outgoing edges of a node 

and across nodes is identical and either all nodes in a network have a self-loop 

or not.

• rare coordinated high state - (1) at least once within a simulation more than 

half the genes are highly expressed simultaneously, (2) the histogram of 

simultaneously highly expressed genes at the population level decreases and 

(3) the gene expression distributions at the population are heavy-tailed.

• connectivity - number of ingoing edges for any node of the network.

• characteristic distance- the average shortest path length between pairs of 

nodes of the network.

*The parameter k is dependent on the parameters rprod, rdeg, and d, such that: 

k(rprod, rdeg, d) = x ⋅ d ⋅
rprod
rdeg

, where x ∈ {0.75, 0.8, 0.85, 0.9, 0.95, 1}, which ensures a 
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consistent definition of k throughout the network architectures and parameter sets. Here x 

represents the fraction of the value corresponding to the steady state value in the high 

expression state. We showed that for x = 0.75, none of the 100 simulations show rare 

coordinated gene expression because the threshold resulting in an effective gene 

regulation is exceeded too often—the regulated DNA states are activated more frequently 

leading to the high gene expression states and loss of rareness of the coordinated high 

gene expression event (leading to bimodal distributions). For x > 0.75, there is an 

increase in the number of simulations showing rare behavior, peaking at x = 0.95. 

Furthermore, throughout different values of x, the same parameter sets give rise to rare 

coordinated high states. We take x = 0.95 to maximize the number of simulations positive 

for the rare coordinated high states.

**We test several values for the threshold above which a gene is highly expressed: 

thres = y ⋅ d ⋅
rprod
rdeg

, where y ∈ {0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 

0.85, 0.9, 0.95, 1}. For all y ≥ 0.6, the set of simulations showing rare coordinated high 

states largely remains the same. Even for y = 0.3, half of the simulations identified 

previously to show rare behavior are still classified as such. We chose x = 0.8. Though 

arbitrarily chosen, the choice of x = 0.8 will not change the conclusions of our analysis.

Schuh et al. Page 37

Cell Syst. Author manuscript; available in PMC 2021 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Relaxing model assumptions

Protein translation:

The original transcriptional bursting model does not include a step for translation and is 

assumed to be captured by the hill function term which not only greatly reduces the 

computational costs of long stochastic simulations but also allows for analyzing smaller 

set of parameters. To check if our model can produce rare coordinate high states even 

when the model includes the translation step, we focused on a particular network (5.3) 

and associated parameter values that give rise to these states in the original model. We 

show that for specific rates of translation and protein degradation (STAR Methods), the 

model including translation exhibits the rare coordinated high states.

Network architectures:

By reducing the network architectures to weakly-connected, non-isomorphic and 

symmetric networks, we systematically reduce the number of possible network 

architectures. The reduced space of networks is partly supported by experimental 

observations (Shaffer et al. 2017, 2018), reporting that (1) there is no obvious hierarchical 

relationship between the expressed genes; and (2) no particular signaling pathway 

appears to be solely responsible for the observed behavior (see also Figure S1D). 

Furthermore, these network architectures allows for direct comparisons between network 

sizes, connectivities and parameter sets (not a given for other topologies). Although the 

analysis here primarily focuses on the constrained set of network architectures, we show 

for a subset of cases (STAR Methods) that asymmetric network architectures can also 

exhibit rare coordinated high gene expression states (Figure S2G-I), paving the way for a 

more systematic analysis in the future studies.

Model parameters:

While we primarily focus on keeping the same parameter set for each node, we analyzed 

a subset of networks with asymmetric parameters (STAR Methods) such that each node 

had distinct underlying parameter sets. We show that a model with asymmetric parameter 

sets is also capable of producing rare coordinated high gene expression states (Figure 

S2J-M).

Multi-gene regulatory effects:

The joint regulatory effects experienced by a gene which is regulated by several other 

genes can be modeled using different approaches. While the majority of analysis here 

uses an additive model of joint-regulation, we performed a subset of simulations (STAR 

Methods) for cases where the regulation by multiple gene nodes is multiplicative (Figure 

S4C and E). We find that for network architecture 5.3, 15 and 97 out of 1000 parameter 

sets give rise to simulations with rare coordinated high states in the additive and 

multiplicative joint-regulation, respectively (Figure S4D). Nine simulations are found to 

show rare coordinated high states in both definitions of multi-gene regulation.

Defining model-output metrics

Schuh et al. Page 38

Cell Syst. Author manuscript; available in PMC 2021 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Population level—sub-simulation size to determine a single cell:

To qualitatively compare our results to experimental data, we convert the 1,000,000 time 

units long single-cell simulation to 1,000 single-cell sub-simulations of length 1,000 time 

units. We show that the simulations are largely (88.2%) uncorrelated after 1,000 time 

units, justifying our analysis (STAR Methods).

Heavy-tails:

We test different levels of stringency in our definition of heavy-tailed/sub-exponential 

distributions. The analysis in Figure 2 and Figure 3 is performed using the criteria 

described in STAR Methods, section Simulation classes. We perform further analysis 

similar to Figure 2 and Figure 3 by using more stringent definitions, i.e. fit exponentials 

and compare the 99th percentiles (Figure S3C). We demonstrate that these results and 

conclusions are similar to the ones obtained using less stringent criteria (Box 1) shown in 

Figure 2 and Figure 3 (see Figure S4F-M). For example, 6 and 7 out of 8 rare coordinated 

high parameter sets also appear in the two more stringent analyses (Figure S4H and L). 

We further validate that our model recapitulates the experimentally observed heavy-tails 

by comparing the Gini coefficients (Jiang et al. 2016) of experimental and model 

distributions (Figure 2D).

Number of nodes highly expressed to be called a ‘coordinated’ state:

We define a simulation to show coordinated high gene expression if at least once 

throughout the simulation more than half of the gene product counts exceed the 

threshold. Furthermore, we show that for different node counts (2, 3, 4, 5) the number of 

simulations showing rare coordinated high states does not vary significantly. As an 

example, for a count of 2, we get 6 out of 100 simulations showing rare behavior; for a 

count of 3, we get 7. Note that the sets of simulations were overlapping between different 

scenarios.

Definition of rare coordinated high parameter sets:

We define rare coordinated high parameter sets as parameter sets showing rare 

coordinated high expression in ≥ 20% of all 96 networks. The threshold was defined by 

inspecting the histogram (Figure 3A), where we see a separation at 20%. Notably, the 

same rare coordinated high parameter sets also appear in other analysis — they show 

increased frequencies of simulations with rare coordinated high states when considering 

the network sizes separately (Figure S6A). Additionally, stricter definitions for heavy-

tailed expression distributions result in similar rare coordinated high parameter sets 

(Figure S4H and L).

Bootstrapping controls in Phixer algorithm:

As the number of connections predicted by the Phixer algorithm can depend on the 

sample size, we bootstrapped the original data set into 4000-sample datasets. The number 

4000 was chosen arbitrarily; bootstrapped sample sizes of 1000, 2000, and 6000 also 

produced qualitatively similar results.
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Edge weight in Phixer algorithm:

We created a randomized control consisting of permutations of each gene column from 

the original dataset. We then performed the Phixer analysis on these randomized controls. 

The resulting edge weight distributions give us a baseline or control edge weight for 

Phixer that, in principle, reflects potential false positives. We found that in the controls, 

nearly all of the predicted edge weights were below 0.45 (Figure S8B). Therefore, we 

decided to choose 0.45 as a threshold for our non-control analysis, thus eliminating edges 

that could have been predicted by chance alone.
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Highlights

1. Rare coordinated high expression states in cancer cells can drive therapy 

resistance

2. Gene networks with transcriptional bursting recapitulate these transcriptional 

states

3. Networks with low connectivity favourably give rise to these states

4. Parameters affecting transcriptional bursting are critical to produce these 

states
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Figure 1. A transcriptional bursting model is able to mimic the rare coordinated high states 
observed in drug naive melanoma.
(A) Drug naive melanoma cells exist in low (white cells) as well as rare coordinated high 

(blue cells) states. Cells in the rare coordinated high state characterize the pre-resistant state 

observed in drug naive melanoma. A schematic of the corresponding expression pattern is 

shown in the panel below. The cells in a high expression state are more likely to survive and 

acquire resistance upon drug administration.

(B) Schematic of the constitutive model for two nodes. Gene product is either produced at 

rate rprod or degraded with rate rdeg. Gene regulation is modeled by a Hill function, where 

the gene product count of the regulating gene A increases the production rate of the gene 

product of the regulated gene B.

(C) Schematic of the transcriptional bursting model for two nodes. DNA is either in an 

inactive (off) or active (on) state. Transitions take place with rates ron and roff, where gene 

product is synthesized with rates rpod and d*rprod, respectively, d>1. Gene product degrades 

with rate rdeg. Gene regulation is modeled by a Hill function, where the gene expression of 

the regulating gene A increases the activation of the DNA of the regulated gene B.

(D-G) Depending on the network and the parameters of the transcriptional bursting model, 

we observe stably low expression (D), stably high expression (E), uncoordinated transient 

high expression (F) and rare transient coordinated high expression (G).

See also Figure S1.
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Figure 2. Simulations of the transcriptional bursting model show similar behavior at the 
population level as the drug naive melanoma cells.
(A) Frame of simulation showing rare coordinated high state (shaded area). The 1,000,000 

time unit simulation is split into frames of 1,000 time units to create a simulated cell 

population (shown for cell N). For a randomly determined time-point trand, the number of 

simultaneously highly expressed genes and the gene count per gene per cell are evaluated. 

The network of the corresponding simulation is given in the top left corner.

(B,C) The simulated number of simultaneously highly expressed genes and expression 

distribution at the population level are qualitatively similar to experimental data from a drug 

naive melanoma population (data from (Shaffer et al., 2017)). The percentages are indicated 

above the histogram (in B). The network and parameter set as well as the particular node (in 

C) used for comparison are shown in the right panel.

(D) The Gini indices of simulations of rare coordinated high states are substantially higher 

than of simulations not showing rare coordinated high states. The experimentally measured 

expression distributions have similar Gini indices than simulations with rare coordinated 

high states.

(E) Total number of rare coordinated high states were extracted for simulations of different 

networks sizes, containing either 2, 3, 5, or 8 nodes to see if they occur across networks of 

different sizes. Rare coordinated high states were found to exist ubiquitously across all 
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possible networks of all analyzed network sizes. The measurements were performed via 
three independent and randomly sampled trand (median, 25th and 75th percentiles).

(F) The frequency of rare coordinated high states depends on the network connectivity, 

which is defined as number of ingoing edges for any node of the network. Shown here is the 

dependence for all 5-node networks, such that increasing connectivity within all 5-node 

networks leads to a decrease in the number of simulations with rare coordinated high states. 

Each dot represents a particular network topology within the possible space of 5-node 

networks.

(G) Effect of adding auto-activation (self-loop) to networks on the number of simulations 

with rare coordinated high states. Networks with auto-activation exhibit simulations with 

rare coordinated high states less frequently than the same networks without auto-activation. 

Fold-change is calculated by dividing the number of simulations with rare coordinated high 

states for networks containing auto-activation with the number of simulations with rare 

coordinated high states for the same networks without auto-activation. Each dot represents 

one of the 96/2 = 46 direct network comparisons. Network comparisons where one of the 

networks did not give rise to simulations with rare coordinated high states were discarded.

(H) The frequency of simulations with rare coordinated high states depends on the 

characteristic distance, defined as the average shortest path length between pairs of nodes of 

the network. With increasing characteristic distance (normalized to network size), more 

simulations show rare coordinated high states. Each dot represents the characteristic distance 

of one of the 96 networks. Each network size is represented by a unique color.

(I) The frequency of occurrence of simulations with rare coordinated high states is 

dependent on the choice of model parameters. Specifically, simulations of a particular 

parameter set across different networks and sizes show largely the same class of gene 

expression profiles. Each row corresponds to specific parameter sets within the space of all 

parameter sets analyzed. Each column name corresponds to a particular network, and the 

underlying network is drawn below the column name.

See also Figure S2, Figure S3, Figure S4 and Figure S5.
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Figure 3. Transcriptional bursting rates influence the formation of rare coordinated high states.
(A) Histogram of the percentage of simulations with rare coordinated high states per 

parameter set to identify the parameter sets that favourably give rise to simulations with rare 

coordinated high states. Each of the 96 networks is simulated for every single of the 1000 

parameter sets, where not all 96 of these simulations give rise to rare coordinated high states. 

The eight rare coordinated high parameter sets, marked in orange, produce rare coordinated 

high states in more than 20% (more than 19 out of the 96 simulations) of simulations and lie 

at the tail of the histogram. The cut-off (dashed line) marks the 20%.

(B) Decision tree optimization was performed to identify differentiating features of the rare 

coordinated high parameter sets (orange in Figure 3A) from the rest (gray in Figure 3A). 

Decision tree analysis revealed that only three out of seven parameters, ron, roff, and radd, 

show a strong correlation with the rare coordinated high parameter sets. Each arm represents 

a decision, where the decision is marked on top, and each colored dot represents a final 

class.

(C) Three dimensional representation of all tested 1000 parameter sets for ron, roff, and radd 

show that the rare coordinated high parameter sets are narrowly constrained in the 3D space 

(orange dots). The orange box indicates the constrained parameter space enclosing all rare 

coordinated high parameter sets used for analysis in (D).

(D) Comparison between the original 1000 parameter sets and new 1000 parameter sets 

sampled from the constrained region (orange box in Figure 3C) containing all eight rare 

coordinated high parameter sets. As compared to the original parameter sets, constrained 

region parameter sets strongly favor the formation of rare coordinated high states for both of 

Schuh et al. Page 45

Cell Syst. Author manuscript; available in PMC 2021 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the networks tested (3.2 and 5.3). 3.2 and 5.3 correspond to particular networks (outlined 

below each bar) of network size three and five, respectively.

See also Figure S4 and Figure S6.
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Figure 4. Rare coordinated high state is initiated by a long transcriptional burst, maintained by 
an increase in burst frequency and terminated according to a random process.
(A) An exemplary high region, with a baseline time-region, entry time-point, high time-

region and an exit time-region. The time intervals for an additional gene to enter and exit the 

high region are marked by tent and texit, respectively. The bursts below the exemplary 

simulation are representative schematics.

(B) Burst fraction, defined as the number of time points the system is in a burst divided by 

the total number of time points, was calculated for baseline time-region and high time-region 

for all (n = 594) simulations that produce rare coordinated high states and compared them 

using violin plots. The burst fraction is significantly higher in the high time-region as 

compared to the baseline time-region (two-sample Kolmogorov-Smirnov test, p-value < 

0.001), implying that enhanced transcriptional activity facilitates the maintenance of rare 

coordinated high states.

(C) Burst frequency, defined as the number of bursts divided by the total number of time 

points, was calculated for baseline time-region and high time-region for all (n = 594) 

simulations that produce rare coordinated high states and compared them using violin plots. 

The frequency of transcriptional bursts is increased in the high time-region (two-sample 
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Kolmogorov-Smirnov test, p-value < 0.001), implying that enhanced transcriptional activity 

is caused by more frequent bursts rather than prolonged bursts.

(D) Violin plots of the fold change in number of high states and total time spent in high 

states for network 3.2 and its unconnected graph. Positive regulatory interactions between 

the connected nodes (network) leads to an increased number of and total time in high states 

in comparison to independent nodes. Fold-change is calculated by dividing the number of 

high states (total time spent in high states) for network 3.2 with the number of high states 

(total time spent in high states) for the unconnected graph. Each dot represents one of the 26 

simulations showing rare coordinated high states for network 3.2.

(E) Distributions of burst duration in the baseline time-region (black) and those coincident 

with entry time-point (gray) (see Figure 4A). The bursts coincident with entry time-points 

are significantly longer than bursts in the baseline time-region (two-sample Kolmogorov-

Smirnov test, p-value < 0.001).

(F) Distributions of burst duration in the high time-region but not the exit time-region ((high-

exit) time-region) (light gray) and those in the exit time-region (dark gray) (see Figure 4A). 

There is no statistically significant difference between the distributions underlying the 

duration of bursts in the high time-region and the exit time-region (two-sample Kolmogorov-

Smirnov test, p-value > 0.05).

(G) Violin plots of the mean burst duration ratios for entry and exit (nentry= nexit = 594), 

where mean burst ratio represents the difference in means of the burst duration distributions 

(see FigureE-F) per simulation for all simulations with rare coordinated high states. Ratio 

close to 1 suggests no difference between the two regions. While the mean (and median) 

burst duration ratio between entry time-point and baseline time-region is considerably 

increased, the mean (and median) burst duration ratio between bursts in the exit time-region 

and in the rest of the high time-region are comparable for all simulations with rare 

coordinated high states.

(H,I) Distributions of the time intervals between genes entering (H) and exiting (I) the high 

time-region, denoted by tent and texit respectively in Figure 4A, are distributed differently for 

two representative simulations. While the time intervals for entering (tent) the high time-

region are not exponentially distributed (H) (and hence not random), the time intervals for 

exiting (texit) the high time-region are exponentially distributed (I) (Lilliefors test, p-value < 

0.001 and > 0.05, respectively).

See also Figure S7.
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Figure 5. Increased connectivity of a network leads to stable high expression which is also 
observed in emerging resistant colonies post-drug treatment.
(A) Upon drug treatment, the surviving cells acquire stable resistance. A schematic gene 

expression pattern is shown below.

(B,C) Networks of size 5 with low (B) (1) and high (C) (5) connectivity and corresponding 

(D,E) simulations.

(F,G) The expression distributions are determined by taking the counts of simulated gene 

products per 1000 time units (see Figure 2A) of simulations (D,E) corresponding to the 

lowly (B) and highly (C) connected networks. The gene expression distribution of the highly 
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connected network (G) does not exhibit heavy-tails while the simulation of the lowly 

connected network (F) exhibits heavy-tails.

(H) Comparison of the connectedness of the underlying inferred gene regulatory networks of 

drug naive cells and resistant colonies (post drug treatment) using the Phixer algorithm for 

network inference analysis. Total number of edges is calculated for different edge weight 

thresholds, defined as the threshold at which an inferred edge is assumed to be present in the 

inferred gene regulatory network. For all the edge weights investigated, six out of seven 

resistant colonies have inferred gene regulatory networks with higher numbers of edges than 

drug naive cells, suggesting that the gene regulatory networks underlying resistant colonies 

are more strongly connected.

(I) Applying the network inference analysis 1000 times for a fixed edge weight threshold of 

0.45 gives distributions for the number of edges in the inferred gene regulatory networks for 

both drug naive cells (red) and resistant colonies (black) (distributions shown for one 

example each). The distribution of number of edges in the inferred gene regulatory network 

is considerably increased for the resistant colony.

See also Figure S8.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

RNA-FISH data – marker genes Shaffer et al., 2017 https://www.dropbox.com/sh/g9c84n2torx7nuk/
AABZei_vVpcfTUNL7buAp8z-a?dl=0

RNA-FISH data – network inference 
(resistant colonies)

Shaffer et al., 2017 https://www.dropbox.com/sh/g9c84n2torx7nuk/
AABZei_vVpcfTUNL7buAp8z-a?dl=0

Data – Model simulations This paper https://www.dropbox.com/sh/n94q45zkn5w54fe/
AACC3cgts4kD6MWEE452pEgEa?dl=0

Software and Algorithms

MATLAB R2017a and R2018a Mathworks https://www.mathworks.com

Phixer Singh et al., 2018 https://github.com/nitinksingh/phixer/

Code – Model simulations This paper https://doi.org/10.5281/zenodo.3713697
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