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Abstract

Computer-aided diagnosis (CAD) has been a major field of research for the past few decades. 

CAD uses machine learning methods to analyze imaging and/or non-imaging patient data and 

make assessment of the patient’s condition, which can then be used to assist clinicians in their 

decision making process. The recent success of the deep learning technology in machine learning 

spurs new research and development efforts to improve CAD performance and to develop CAD 

for many other complex clinical tasks. In this paper, we discuss the potential and challenges in 

developing CAD tools using deep learning technology or artificial intelligence (AI) in general, the 

pitfalls and lessons learned from CAD in screening mammography and considerations needed for 

future implementation of CAD or AI in clinical use. It is hoped that the past experiences and the 

deep learning technology will lead to successful advancement and lasting growth in this new era of 

CAD, thereby enabling CAD to deliver intelligent aids to improve health care.
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I. Introduction

In computer-aided diagnosis (CAD), machine learning methods are utilized to analyze 

imaging and non-imaging data from past case samples of a patient population and develop a 

model to associate the extracted information with certain disease outcome. The developed 

model is expected to predict the outcome of a new unknown case when data from a new case 

are input. If properly trained and validated, the CAD prediction may be used as a second 

opinion or supporting information in a clinician’s decision making process. The approach of 

using machine learning technology to analyze patient data for decision support is applicable 

to any patient care process, such as disease or lesion detection, characterization, cancer 

staging, treatment planning, treatment response assessment, recurrence monitoring, and 

prognosis prediction. More often than not, imaging data play a major role in each of these 

stages and thus image analysis is a main component in CAD.
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Prior to the 1980’s, a few studies had attempted to develop computerized methods for 

automated lesion detection in radiologic images; these studies did not attract strong interest, 

probably due to the limitations in computational power and in accessing high-quality 

digitized or digital images. Systematic research and development of CAD methods for 

various diseases started in the early 1980’s in the Kurt Rossmann Laboratory at the 

University of Chicago1. Chan et al. developed a computer-aided detection (CADe) system 

for clustered microcalcifications on digitized mammograms2 and conducted the first 

observer study3 to demonstrate the potential that CADe as a second opinion to radiologists 

can improve their performance. In 1998, the U. S. Food and Drug Administration (FDA) 

approved the first commercial CADe system for use as a second reader to assist in the 

detection of breast cancer in screening mammography. Research in various areas of CAD 

has been increasing over the years4–8. Although the majority of the work is directed at 

detection and characterization of various types of diseases on images, there are increasing 

interests and efforts in applying CAD methods to the quantitative image analysis of tumor 

heterogeneity, correlation of image phenotypes with underlying genetic and biological 

processes, differentiation of cancer subtypes, cancer staging, treatment planning and 

response assessment. The CAD area of quantitative analysis of image features in these 

applications has been called radiomics in recent years.

II. Machine Learning/Artificial Intelligence in Computer-Aided Diagnosis 

(CAD)

Machine learning is a broad field in computer science with applications to many areas such 

as face recognition, text and speech recognition, robotics, satellite imagery analysis, and 

target detection and characterization in military or civilian use. Machine learning makes use 

of knowledge and techniques from multidisciplinary fields to analyze the input imaging or 

non-imaging data or a combination of both and extract relevant information to interpret the 

data or predict the outcome for a given task. For example, mathematics and statistics are 

important tools to develop new machine learning methods and build predictive models from 

the data, understanding of biological pathways and genetics are critical to guide the analysis 

of radiomics and genomics associations, and domain knowledge of a specific type of 

diseases and how they manifest in a given medical imaging modality is needed to guide 

feature design and extraction. With deep learning that does not require hand-engineered 

features, domain knowledge is even more important for understanding whether the machine 

has learned relevant features, interpreting the output and correlating it with the clinical 

condition of the patients.

To develop a robust machine learning system for a given task, one has to collect a 

sufficiently large and representative set of sample data of each class from the population of 

interest so that the machine learning algorithm can correctly model the statistical properties 

of the population and assess any new unknown case from the same population. For robust 

training, the proportion of the classes ideally should be balanced, and thus classes of rare 

events will require even more effort to collect. Machine learning technology has been 

evolving over time from so-called conventional methods to the recent deep learning 

methods. In a conventional approach of supervised machine learning, the features to be 
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extracted from the input data are usually designed by human developers based on expert 

domain knowledge, and the best features and their relationships (or predictive model) are 

chosen statistically with the guidance by the predictive performance in a training set of 

labeled case samples. In unsupervised learning the case samples are not labeled and the 

machine analysis is expected to discover the underlying characteristics and the relationships 

among the case samples, which generally requires a much larger set of training samples.

Deep learning has emerged as the state-of-the-art machine learning method9. Deep learning 

learns multiple levels of representations from the training data by iteratively adjusting the 

layers of weights in a deep neural network architecture. It has found success in many fields 

such as speech and text recognition, natural language understanding and translation, object 

detection and classification. At present, convolutional neural networks (CNN) are most 

commonly used in deep learning for computer vision and pattern recognition tasks in 

images. CNN is one type of artificial neural networks that could find its origin from the 

neocognitron proposed by Fukushima et al in the early 1980’s10. LeCun11 adapted the 

method and demonstrated its application in recognition of handwritten digits. CNN is 

different from other pattern classification methods in that it is a type of representation 

learning that discovers useful features from the input data without the need of manually 

designed features. To achieve high discriminative power for complex patterns, relatively 

large number of training samples is required. In 1993, Lo et al.12,13 first introduced CNN 

into medical image analysis and applied it to lung cancer detection in chest radiographs. 

Chan et al.14–16 applied CNN to the classification of true and false microcalcifications in a 

CADe system for mammography in 1993 and trained another CNN for classification of true 

and false masses in 199417–21. Zhang et al.22 applied a similar shift-invariant neural network 

for detection of clustered microcalcifications in 1994. Due to the limited computational 

power of computers, the limited training data available, and the vanishing gradient 

problem23, the early CNNs contained very few convolutional layers and very few kernels in 

each layer, which limit the learning capacity of the CNN. Nonetheless, these studies 

demonstrated the potential of applying CNN to pattern recognition in medical imaging.

A number of factors spur the advancement of machine learning techniques in the past 

decade. The popularity of social media and personal devices drives the Information 

Technology industry to develop automated and interactive functionalities for various 

applications. The need to reduce manual costs in various industries also stimulates the 

growth of automation and computer-assisted technologies. In addition, the availability of 

low-cost graphical processing units (GPUs) and memory from the video gaming industry 

makes it possible to use CNN with large number of layers and kernels. The fast internet and 

cloud facilitate the collection of large data samples for training. More importantly, effective 

network training strategies for deep architectures have been developed over time,9,24 such as 

layer-wise unsupervised pretraining followed by supervised fine-tuning25–27, replacing 

sigmoid-type activation functions with rectified linear unit (ReLU)28,29, and regularization 

with dropout30. These new techniques reduce the risk of vanishing gradient and overfitting 

and increase training convergence speed, thus enabling deep neural networks containing 

millions of weights to be trained. In 2012, Krizhevsky et al31 showed that a “deep” CNN 

(DCNN) with five convolutional layers for feature extraction and 3 fully connected layers 

(known as the AlexNet) could outperform other methods in an ImageNet Large Scale Visual 
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Recognition Challenge (ILSVRC)32 that required the classification of over 1000 classes of 

objects. Since the AlexNet, another important technique, batch normalization33, was 

proposed as a regularizer for network training, which reduces the internal covariate shift, 

allows higher learning rate, and reduces overfitting, thus facilitating training deeper and 

deeper CNN structures. It has been shown that the errors for complex classification tasks 

decreased with the depth of CNN34. The ImageNet data set provided by the ILSVRC 

contains over 1.2 million images but studies indicated that the classification accuracy can 

further increase by using DCNNs with deeper architecture and greater learning capacity if 

even larger training set is available35.

The success of deep learning in pattern recognition and its adaptation to various applications 

such as self-driving vehicles, face recognition, voice recognition, chess and Go games, and 

personal assistants, etc. bring strong interests in applying deep learning to the CAD field in 

medicine. DCNN has been applied to medical image analysis for various CAD tasks despite 

the lack of sufficiently large medical data set compared to non-medical imaging data21,36,37. 

Most of the DCNNs in CAD to-date are trained for differentiation of abnormal images with 

disease patterns from images with normal or benign patterns for a given imaging 

examination. Application of DCNN to other CAD tasks such as segmentation of organs and 

tumors, detection of changes in tumor size or texture patterns in response to treatment, 

classification of image patterns associated with the risk of recurrence or prognosis, and 

differentiation of image patterns that may be predictive of high risk or low risk of developing 

a certain disease or evolving into invasive disease in the future, are also being explored. 

Similar CAD tasks are also applicable to optical coherence tomography image analysis for 

eye diseases38 or histopathological image analysis at the cellular level39. The potential of 

DCNN in improving the accuracy and performance of computer-assisted decision support 

systems has created a lot of excitement in the medical imaging community. Even though 

most of the current deep learning applications are still far from exhibiting the characteristics 

of “intelligence” that are expected of humans, both the developers and users are contented 

with labeling the computer-assisted technologies as “Artificial Intelligence (AI)”.

III. Deep learning approach to CAD

III.A. Data collection

DCNN certainly brings strong promise in advancing CAD as routine clinical decision 

support tools in health care and there is even prediction that AI will replace radiologists in 

the near future40. However, unrealistic expectations may not sustain long-term growth. 

Extensive research effort and resources are needed to overcome many of the hurdles in 

developing and integrating CAD tools into clinical workflow. One of the major challenges in 

developing an accurate and generalizable DCNN for a given task is a large well-curated data 

set for training. The data set has to cover the variabilities in patient population, imaging 

devices and acquisition protocols in real world clinical settings for which the DCNN is 

intended to be used. Collecting such a data set is costly, especially that the labeling and 

annotation often require the effort of more than a single expert clinician due to the inter- and 

intra-reader variabilities in image interpretation and disease assessment. Researchers have 

attempted to use data mining and natural language processing of the electronic health record 
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(EHR) and the picture archiving and communication system (PACS) for extracting clinical 

data and diagnosis from the physicians’ and pathology reports41. The accuracy of the 

retrieved labels depends on the methods used42. It has been shown that automatically mined 

disease labels or annotations can contain substantial noise43. The challenge from mining the 

EHR may be attributed to many factors, such as the non-standardized reporting and 

formatting in the clinical reports to date, the errors by the data mining tools in the correlation 

and interpretation of the various stages of diagnosis and patient management in complicated 

cases, and incomplete prior or follow-up information due to patient referral and transfer 

between different health systems. It has also been reported that information from the 

DICOM header of images can also be inaccurate with as much as over 15% error in labeling 

body parts44, thereby introducing noise into automatically retrieved DICOM data for DCNN 

training or testing. Collaborative efforts by the vendors and users to standardize the reporting 

among the various data archiving systems are needed to facilitate mining big data for CAD 

development. Furthermore, if secure electronic communication of patient records can be 

established among different health systems, it may not only improve patient care by 

transferring clinical data more efficiently and accurately during patient referral, but also 

increase the accuracy of data mining of these cases.

Training with mislabeled data reduces the accuracy and generalizability of the trained 

DCNN. Samala et al.45 conducted a simulation study of training a DCNN for the 

classification of malignant and benign breast masses on mammograms using a training set 

with corrupted labels over a range of 0% to 50% of the training samples. It was shown that 

the classification performance could reach 100% on the training set but decreased on 

unknown test cases as the amount of training label corruption increased. Methods have been 

proposed for training DCNN with noisy labels46,47. In case a small training set with clean 

labels can be constructed or is available, one approach is to first train the DCNN using the 

large training set with noisy labels and then fine-tune the DCNN using the data set with 

clean labels. A recent study48 proposed a multi-task network that jointly learned to clean 

noisy labels in the large data set and fine-tuned the network using both the small clean data 

set and the large data set with reduced label noise. Another study49 proposed a loss 

correction technique that used a small data set with trusted labels to estimate the noise 

distribution of the label noise and showed that the method could improve the robustness of 

the deep networks for several vision and natural language processing tasks. Whether these 

methods can reduce the effort in labeling large data set of medical images remains to be 

studied.

III.B. Transfer learning

To alleviate the problems of limited data available for training of DCNN in medical imaging, 

a common approach is to use transfer learning. In transfer learning, a DCNN that has been 

trained with data for a task in a source domain, is adapted to a new target task by further 

training it with data from the target domain. Since a DCNN works as an automatic feature 

extractor and many image features are composed of common basic elements, a DCNN 

having its weights pre-trained to extract features for an imaging domain will make it easier 

to be re-trained for a new imaging domain than to train from randomly initialized weights. If 

the available training data in the source domain is abundant while the training data in the 
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target domain is scarce, transfer learning will enable a DCNN to learn the target task with 

the limited data set which may be impossible otherwise. Most of the DCNN models in 

medical imaging to-date were trained by transfer learning using models pre-trained with the 

large ImageNet data set32.

Although transfer learning may reduce the requirement of training sample size in the target 

domain to a certain extent, the performance of the transfer-trained DCNN for the target task 

still depends on the training sample size. Samala et al.50 studied the effect of training sample 

size on transfer learning for the task of classifying breast masses as malignant and benign in 

digital breast tomosynthesis (DBT). Because DBT data was limited, they collected a 

relatively large data set of mammograms in addition to the small set of DBTs from different 

patients. The classification of masses on mammograms is a similar but still different task 

than that in DBT. From the mammography set, 2242 unique views with 2454 regions of 

interest (ROIs) containing breast masses were extracted. From the DBT set, 324 unique 

views with 1585 ROIs were extracted and partitioned into a training set of 1140 ROIs and an 

independent test set of 445 ROIs. Several transfer learning strategies were compared. The 

AlexNet that was pre-trained with the ImageNet data was modified by adding two fully 

connected layers to adapt it to a two-class classification task. The AlexNet was then transfer-

trained either in a single stage with the mammography or DBT data alone, or in two stages 

with mammography data followed by DBT data. A range of training sample size ranging 

from 1% to 100% of the original set was simulated by randomly sampling a subset from the 

entire mammography data or the DBT training set. In addition, the effectiveness of transfer 

learning was also studied by freezing either the first convolution layer (C1) alone or the C1-

to-4th fully connected layers (C1-to-F4) of the AlexNet. The transfer learning strategies were 

compared in terms of the area under the receiver operating characteristic curve (AUC) on the 

independent DBT test set. Fig. 1 and Fig. 2 summarize the results: (1) the classification 

performance increases steadily as the training sample size in either stage 1 or stage 2 

increases, indicating that the training sample size has a strong impact on the robustness of 

the transfer-trained DCNN even if the DCNN has been pre-trained with millions of samples 

from the source domain, i.e., the non-medical image data from ImageNet (see Fig. 1 and Fig. 

2), (2) when the available data set in the target domain (DBT) is small, another stage of pre-

training using data from a similar domain (mammography) can improve the robustness of 

the trained DCNN, in comparison to transfer learning with the DBT training set alone (see A 

vs B in Fig. 1 and B vs D in Fig. 2), and (3) if too many layers of the pre-trained DCNN are 

frozen during transfer learning, the learning capacity of the DCNN is restricted and not able 

to fully learn the information available in the training set (see B vs C in Fig. 1). On the other 

hand, if the training sample size of the target domain is too small, allowing too many layers 

to be re-trained can degrade the performance compared to re-training with fewer layers (see 

B vs C in Fig. 2). This study demonstrates that the performance of a transfer-trained DCNN 

depends on the training sample size of the target task and the potential usefulness of multi-

stage transfer learning.

III.C. Data augmentation

For DCNN training in medical imaging, a commonly used method to alleviate the limited 

data problem is to increase training sample size via data augmentation, i.e., to generate 
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multiple slightly different versions of images from each image in the original set. Data 

augmentation can be implemented off-line or on-line, and each of which may be 

implemented in many different ways. For off-line data augmentation, for example, all 

augmented versions of each image are usually pre-generated and mixed with the original 

data set before being input to the DCNN, which then uses the data set in randomized mini-

batches for training. The augmentation techniques may include rotating the image within a 

range of angles (Na), scaling the image size over a range of factors (Ns), translating and 

flipping the image in various directions (Nt), cropping the image (Nc), and generating shape- 

and/or intensity-transformed images with different methods (Nd). If all techniques are 

applied in combinations, the original sample size of No can be apparently increased to N = 

No × Na × Ns × Nt × Nd. For on-line augmentation, a common approach is to implement the 

operations (e.g., rotating, scaling, translating, flipping, cropping, transformation) as a part of 

the DCNN pipeline and the user selects the range and the probability of each type of 

augmentation as input parameters. The original training set is used as input and each image 

in a mini-batch is randomly altered according to the probabilities. By properly choosing the 

parameters and the number of epochs for training, the augmented training set can be made 

statistically similar between on-line and off-line augmentation. The major difference is that 

in on-line augmentation an augmented image is unlikely to repeat itself because each type of 

operation (except for flipping) is usually set up to randomly select a value within a 

continuous range, whereas in off-line augmentation the augmented training set is repeatedly 

used except that the mini-batches are randomly regrouped for each epoch. Off-line 

augmentation requires more memory space and on-line augmentation costs more 

computation time. Typically, the choice between off-line and on-line augmentation depends 

on the size of the data set; off-line augmentation is preferred for small data sets and on-line 

augmentation is preferred for large data sets especially if the augmentation can be 

implemented on the GPU. Data augmentation has been shown to reduce the risk of 

overfitting to a small training set and improve generalizability by introducing some 

variations or jittering to the original data31,51,52. Thus, data augmentation is a type of 

regularization-by-data approach, which in general also includes other types such as dropout 

and data normalization53. However, the augmented images are highly correlated and the 

CNN learning is invariant to many of these small differences so that there is only limited 

knowledge the DCNN can learn from the augmented images. Furthermore, if the original 

training set lacks the representation of certain characteristics of the target lesion and the 

surrounding tissue in the population due to its limited size, these augmentation methods 

cannot create lesions with characteristics that do not exist in the original samples. For 

example, if the original set does not contain spiculated lesions, the augmentation techniques 

will not be able to generate realistic spiculated lesions. Investigators are also developing 

more complex augmentation methods that use DCNN such as generative adversarial 

networks (GANs) to generate altered images with mixed features learned from different 

images after training on the available sample images54, and methods to digitally generate 

artificial lesions for various purposes55,56. These methods require more computation time to 

generate each image and may not be practical to be used in on-line augmentation. Further 

investigation is needed, especially in medical imaging applications, to study issues such as 

how effective the augmented lesions or artificial lesions are compared to real independent 

sample of a similar size in training DCNN, whether they provide useful new features or 
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knowledge for the DCNN to learn, whether the tissue texture in the artificially generated 

images will improve or impede DCNN learning if texture is an important feature for a given 

CAD task, how effective the augmentation methods are compared to one another, and 

whether the effectiveness depends on the classification task.

IV. CAD in retrospect and looking ahead

IV.A. Pitfalls and lessons learned from CAD to-date

Although research and development of CAD in medicine encompasses a wide range of 

applications in the patient care process such as risk assessment, disease detection, treatment, 

prognosis prediction and recurrence monitoring, large scale clinical studies on the effect of 

CAD are mostly focused on CAD in screening mammography, probably because it was the 

first FDA-approved CAD system for use as a second reader and screening mammography 

was widely used. Nevertheless, the experience of CAD in screening mammography may 

provide some useful information to guide future CAD development and clinical 

implementation in general.

CAD was initially developed as an “aid”, and not as a pre-screener or primary decision 

maker. Given the limitations of the machine learning technology in the early days of CAD, 

CAD algorithms can achieve a sensitivity comparable to radiologists but at the expense of 

relatively high false positive rates. However, CAD may make different types of errors than 

human experts; the complementary use of CAD by clinicians can improve the overall 

accuracy as demonstrated in many observer studies1. CAD in screening mammography was 

therefore approved by FDA only as a second reader. As such, the radiologist is expected to 

read as vigilant as they should without CAD, and only uses CAD as a “spell checker” after 

their own reading. They also should not dismiss their own findings if there is no CAD mark 

at the suspected lesion that they have found in their own first reading. If CAD is used as it is 

intended and approved for, the disease detection sensitivity should increase or at least cannot 

be worse than radiologists reading alone. Since the sensitivity can be gained only if 

radiologists would review the CAD marks and recall some suspected lesions, the users 

should expect an increase in reading time and also an increase in recalls. The amount of 

increases would depend on a radiologist’s ability in distinguishing true from false positives 

on screening mammograms and experience in using CAD.

A number of prospective and retrospective studies have been conducted to compare breast 

cancer detection in screening mammography with and without CAD or to compare single 

reader with CAD and double reading57. Most prospective clinical studies use historical 

statistics of performance measures as controls such as cancer detection rate and recall rate 

collected over a period of time before CAD was implemented in the clinic, and compared 

similar data collected after CAD was implemented. These study designs involve a number of 

confounding factors such as changes in patient populations and radiologists’ experiences 

between the two periods of time that may contribute to differences in the performance 

statistics in addition to the use of CAD. Some studies used a matched design in which 

radiologists’ decision before and after seeing the CAD output were recorded, which would 

be more consistent with using CAD as a second opinion and eliminate the differences in the 

patient cohorts and radiologists’ experiences, but there were concerns that the reader could 
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be influenced and become either less vigilant or overly competitive against the computer aid. 

Gilbert et al.58 conducted a relatively well-controlled three-center prospective randomized 

clinical trial in the United Kingdom (CADET II) to compare single reading using CAD with 

double reading. Each of the three centers enrolled a comparable number of patients at over 

9,000 with a total of over 28,000. Each patient’s screening mammogram was independently 

read in the two arms and the first readers in the double reading arm had experience matched 

to those of the single readers in the CAD arm. The results showed that the sensitivity of the 

two reading methods were comparable at 87.2% and 87.7%, respectively. The recall rates in 

two centers were similar in the two arms (3.7% vs 3.6% and 2.7% vs 2.7%) but the third 

center had significantly higher recall rates in single reading with CAD than in double 

reading (5.2% vs 3.8%), resulting in an overall recall rate averaged over all centers at 3.9% 

and 3.4%, respectively, for the two arms. Gromet et al.59 conducted a retrospective review in 

a single center to compare double reading before CAD implementation to single reading 

with CAD by the same group of high-volume radiologists. In their double reading setting, 

the result from the first reading, which could be considered a single reading, was also 

recorded as a reference. The additional positive by the second reader would be read by a 

third reader for a final decision on recall. They reported that the sensitivity and recall rate 

from the first reading were 81.4% and 10.2%, double reading were 88% and 11.9%, and 

single reading with CAD were 90.4% and 10.6%, respectively. Single reading with CAD 

therefore achieved 11% higher sensitivity than the first reading and comparable sensitivity 

with double reading, and 3.9% higher recall rate than the first reading but 12% lower than 

double reading. These studies indicate that single reading with CAD has the potential to 

improve cancer detection sensitivity to the level achieved by double reading but at the cost of 

a moderately increase in the recall rate compared to single reading without CAD if properly 

used as a second reader.

The review of studies in the literature by Taylor et al.57 shows that the outcomes of 

radiologists using CAD in screening mammography varied over a wide range. The change in 

cancer detection ranged from 0% to 19% with a weighted average of 4% and the increase in 

recall rate from 0% to 37% with a weighted average of 10%. In addition to the differences in 

the study designs, the clinical environments and the experience of the radiologists, the 

variations may be attributed partly to how the radiologists used CAD. Some users and 

promoters might have misunderstood the limitations and capabilities of CAD and ignore its 

intended use. Many users appeared to over-rely on using the CAD marks for recall decisions 

while others used CAD as pre-screener to reduce reading time and improve workflow during 

their readings. There have not been systematic studies to investigate these issues but the 

reported results and the discussions in some of these studies revealed that the problems may 

be prevalent. Fenton et al.60 observed a 30% increase in the recall rate and 4.5% gain in 

cancer detection sensitivity, although they found in a follow-up study61 that the increase in 

recall rate decreased to 6% after some time post CAD implementation but the gain in 

sensitivity also decreased to 1.8%. Fenton et al.61 noted that “radiologists with variable 

experience and expertise may use CAD in a nonstandardized idiosyncratic fashion”, and 

“Some community radiologists, for example, may decide not to recall women because of the 

absence of CAD marks on otherwise suspicious lesions”. Lehman et al.62 compared reading 

digital mammograms with and without CAD by 271 radiologists in 66 facilities of the Breast 
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Cancer Surveillance Consortium (BCSC). They reported that the average sensitivity 

decreased by 2.3% and the recall rate increased by 4.5% with the use of CAD. They 

acknowledged that “Prior reports have confirmed that not all cancers are marked by CAD 

and that cancers are overlooked more often if CAD fails to mark a visible lesion” and that 

“CAD might improve mammography performance when appropriate training is provided on 

how to use it to enhance performance”. Unfortunately, Lehman et al. simply concluded that 

insurers pay more for CAD with no established benefit to women instead of addressing the 

problems. These studies showed that the lack of understanding of the intended use and the 

limitations of CAD by users as well as the lack of post-market monitoring and regulation by 

FDA on the misleading promotion and off-label use of computer aids are significant factors 

that lead to improper use and CAD “failure” to-date. Furthermore, these experiences indicate 

that a mismatch of the performance levels of the available CAD systems with the 

expectation and the need of the clinicians will increase the risk of misuse and negative 

outcomes.

IV.B. Challenges and opportunities of CAD with deep learning

The success of deep learning in many machine learning tasks revives interests in research 

and development of various types of CAD. In the recent challenges of developing CAD 

methods for various classification tasks in medical imaging, all winning teams used deep 

learning approach63,64. Numerous studies have reported promising results and many showed 

significantly higher accuracy than radiologists or clinicians. Although the enthusiasm drives 

a positive change for the CAD field, the excessive optimism and high expectations should be 

viewed with cautions.

While many studies have shown that deep learning can be more accurate and robust than 

conventional machine learning approach in many CAD applications, these algorithms have 

not been extensively tested in routine clinical settings, where many seemingly ideal 

hardware and software tools could fail when factors such as real-life variabilities in patient 

population, data quality, user experiences, human-machine interaction, and workflow 

efficiency play crucial roles. Although some deep learning algorithms claimed to achieve 

near perfect AUC or better performance than expert clinicians in laboratory testing38,65,66, 

whether the performance can be reproduced in clinical practice is yet to be proven. In reality, 

no machine learning techniques can guarantee to be free of false negatives and false 

positives, which is true also even for the most experienced clinicians. Zech et al.67 reported 

large variabilities in the generalization performance of DCNNs when different combinations 

of training and test data collected from three clinical sites were used. They also 

demonstrated that DCNNs could learn information irrelevant to the patient’s medical 

conditions and used it effectively for disease classification. In their study, when a DCNN 

was trained with case cohorts of varying disease prevalence, it would learn to exploit the 

prevalence to make prediction, and thus generalized poorly to test cohorts that had very 

different prevalence than the training cohort. A DCNN could also learn subtle differences in 

the images, such as acquisition equipment and techniques, image processing, and data 

compression protocols, to distinguish images from different departments within a hospital or 

from different hospitals, and apparently associate the differences with disease prevalence. 

Other studies also reported that the DCNNs would learn features irrelevant to the specific 
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abnormalities of interest but correlate them with the presence of the disease43. These studies 

highlight the importance to train and test the DCNNs properly with internal and external 

data sets as well as to analyze and understand what information the DCNN has learned for a 

given classification task. Researchers have developed methods to visualize the feature maps 

at each convolutional layer inside the deep learning structure68,69 and to highlight the target 

objects recognized by the DCNN with a class activation map70. Initial efforts have been 

made to use these tools to visualize the detected location of abnormalities67,71 or to visualize 

the characteristics of the deep features72 on medical images. These efforts are the first steps 

towards understanding the inner-workings of deep learning but they are still far from being 

able to present the network response to clinicians with more insightful medical 

interpretation, especially for more complex applications than detection. Unlocking the 

blackbox-like prediction from deep learning and discovering the correlation or causal 

relationship of the machine findings with other clinical data of the patient will be crucial 

areas of investigation to enable CAD to deliver interpretable diagnosis and reasoning to 

clinicians and advance CAD towards AI in medicine.

Besides proper training and testing to ensure the generalizability of a CAD tool, whether it 

can be successful will still be determined by how clinicians use the CAD tool and the overall 

value of implementing the tool in the clinic. Misunderstanding the limitations and 

capabilities of a CAD tool and lack of proper training for the users can lead to unrealistic 

expectation, misuse and disappointment. Similar to the use of medical devices or some 

medical procedures, it will be prudent to implement quality assurance monitoring of the 

performance of CAD over time and establish appropriate metrics to track the effectiveness 

and efficiency of CAD in clinical use. These outcome measures can provide useful evidence 

to encourage wider adoption of the CAD tool or, even if negative, can provide important data 

to guide further improvement. The FDA recently proposed to reclassify medical image 

analysis devices, including computer-aided detection devices, that are intended to direct the 

clinician’s attention to portions of an image that may reveal abnormalities during 

interpretation of patient’s radiology images by the clinician from class III (premarket 

approval) to class II (special controls), and proposed special controls that the Agency 

believes are necessary to provide a reasonable assurance of safety and effectiveness of the 

device. However, the special controls require the manufacturers to label the intended use of 

the device and user training, but no post-market monitoring and regulations are proposed to 

enforce that the specified requirements are followed during clinical use. The overhype on AI 

could incite misuse of the deep-learning-based CAD devices, sending these new generation 

of CAD devices down the same path as CAD in screening mammography. We have seen 

early warning signs from the sensational news on accidents by self-driving cars, whose 

drivers might have ignored the warning that they should be the hands-on drivers, or on 

machine recommending incorrect or unsafe cancer treatment after the initial excitement 

about its helpfulness. The AAPM CAD Subcommittee has published two opinion papers on 

the proper training and evaluation of CAD devices73, and the quality assurance and user 

training on CAD devices in clinical use74. The discussions have not attracted much attention 

previously but it will be timely to revisit these issues in view of the renewed interests in 

deep-learning-based CAD and computer-assisted quantitative image analysis, or AI in 
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medical imaging, under the leadership of organizations such as the AAPM, the American 

College of Radiology (ACR) and the Radiological Society of North America (RSNA).

In current clinical practice, workflow efficiency and costs are major considerations. 

Clinicians will not be receptive to a supplemental tool that requires additional time and/or 

costs without obvious clinical benefits. It is important for CAD researchers and developers 

to understand the preferred mode of assistance by clinicians for each type of clinical tasks, 

and design CAD tools and user interface appropriately by taking into consideration the 

practical issues in clinical settings. In radiology, clinicians may prefer to have CAD as a 

concurrent or first reader that can help identify abnormality more efficiently or reduce 

workload, or AI tools that can help manage workflow by automatically triaging cases to 

prioritize reading or treatment. A good example is the application of CAD in digital breast 

tomosynthesis (DBT) to generating synthetic mammograms (SM). DBT as an adjunct to 

mammogram has been shown to be effective in increasing sensitivity and reducing recalls in 

breast cancer screening but a major concern is that it adds significant reading time to each 

case. A synthetic mammogram is generated from each DBT volume in replace of the 2D 

mammogram to reduce radiation dose and to provide an overview of the volume. Due to the 

limited depth resolution of DBT, direct generation of a projected 2D mammogram from 

DBT cannot recover all information of a true 2D mammogram, especially the subtle lesions. 

With CAD technology, an SM can be reconstructed with the CAD-detected suspected 

lesions enhanced on the SM but no CAD marks are explicitly shown. The CAD-detected 

lesions again include both true and false positives; however, the false positives on an SM 

without artificial markers seem to be less disturbing to radiologists. A recent study75 showed 

that, in comparison to reading DM alone, combo DM+DBT reading reduced recall rate 

without increasing sensitivity, but DM+SM significantly increased the sensitivity and further 

reduced recalls. Another recent observer study76 compared detection of breast cancer in 

DBT with and without deep-learning-based CAD as a concurrent reader that marked 

suspected lesions and the confidence of malignancy on the DBT slices. The results 

demonstrated that reading with the CAD tool could significantly reduce the average reading 

time by more than 50% for a DBT case, increase sensitivity and specificity, as well as reduce 

recall rate. The concurrent CAD had a case-based sensitivity of over 90% and a specificity 

of over 40%, which are higher than all of the CAD tools currently used in screening DM. 

These and other studies indicate that, in addition to improving the performance of CAD 

tools, designing smart interfaces to deliver CAD assistance or utilizing CAD to enhance 

visualization and navigation that can improve reading efficiency will also be areas of 

research interest to facilitate integration of CAD into clinical workflow.

V. Summary

CAD as a second reader has been shown to improve the detection of early stage breast 

cancer, but the accompanied increases in recall rate and reading time cause criticism. The 

use of CAD as a concurrent reader before it is validated results in no or little gain in cancer 

detection but can still increase the recall rate. These experiences are useful lessons to guide 

the evolution of CAD into practical clinical tools in the future. The deep learning technology 

has demonstrated strong potential to bring CAD to high performance levels, opening the 

opportunities of adapting CAD as concurrent reader or even first screener to improve both 
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accuracy and workflow, and more importantly, developing CAD for other complex clinical 

tasks in the patient care process. However, among the excessive hype and high expectations, 

CAD developers and users should be mindful of the importance of rigorous training, 

validation, and independent testing, as well as user training in clinical settings to ensure not 

only the generalizability of the standalone performance to the real world environment but 

also the effectiveness of clinicians using CAD in practice. With proper user training and 

understanding of the capability and limitations the deep learning technology, together with 

proper monitoring, objective assessments and constructive feedback to enable further 

research and development, it can be expected that CAD technology will continue to progress 

and reach the goal of providing truly intelligent aids to improve health care.
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Fig. 1. 
ROI-based area under the receiver operating characteristic curve (AUC) performance on the 

DBT test set while varying the simulated mammography sample size available for training. 

The data point and the upper and lower range show the mean and standard deviation of the 

test AUC resulting from ten random samplings of the training set of a given size from the 

original set. “A. Stage 1 (MAM:C1)” denotes single-stage training using mammography data 

and the C1-layer of the ImageNet pre-trained AlexNet frozen during transfer learning 

without stage 2. “B. Stage 2 (DBT:C1)” denotes stage 2 C1-frozen transfer learning at a fixed 

(100%) DBT training set size after stage 1 transfer learning (curve A). “C. Stage 2 (DBT:C1-
F4)” denotes stage 2 C1-to-F4-frozen transfer learning at a fixed (100%) DBT training set 

size after stage 1 transfer learning (curve A). [reprint with permission50]
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Fig. 2. 
ROI-based AUC performance on the DBT test set while varying the simulated DBT sample 

size available for training. The data point and the upper and lower range show the mean and 

standard deviation of the test AUC resulting from ten random samplings of the DBT training 

set of a given size from the original set. “D. Stage 1 (DBT:C1)” denotes single-stage training 

using DBT training set with the C1-layer of the ImageNet pre-trained AlexNet frozen during 

transfer learning without stage 2. “B. Stage 2 (DBT:C1)” denotes stage 2 C1-frozen transfer 

learning after stage 1 transfer learning with a fixed (100%) mammography training set. “C. 

Stage 2 (DBT:C1-F4)” denotes stage 2 C1-to-F4-frozen transfer learning after stage 1 transfer 

learning with a fixed (100%) mammography training set. [reprint with permission50]
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