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Convolutional-neural-network-
based diagnosis of appendicitis 
via CT scans in patients with acute 
abdominal pain presenting in the 
emergency department
Jin Joo Park1, Kyung Ah Kim1 ✉, Yoonho Nam2, Moon Hyung Choi3, Sun Young Choi4 & 
Jeongbae Rhie5

Acute appendicitis is one of the most common causes of abdominal emergencies. We investigated 
the feasibility of a neural-network-based diagnosis algorithm of appendicitis by using computed 
tomography (CT) for patients with acute abdominal pain visiting the emergency room (ER). A neural-
network-based diagnostic algorithm of appendicitis was developed and validated using CT data from 
three institutions who visited the ER with abdominal pain and underwent abdominopelvic CT. For input 
data, 3D isotropic cubes including the appendix were manually extracted and labeled as appendicitis or 
a normal appendix. A 3D convolutional neural network (CNN) was trained to binary classification on the 
input. For model development and testing, 8-fold cross validation was conducted for internal validation 
and an ensemble model was used for external validation. Diagnostic performance was excellent in 
both the internal and external validation with an accuracy larger than 90%. The CNN-based diagnosis 
algorithm may be feasible in diagnosing acute appendicitis using the CT data of patients visiting the ER 
with acute abdominal pain.

Acute appendicitis is one of the most common causes of abdominal emergencies involving abdominal pain1–3. 
The surgical procedure is still a representative treatment, although nonoperative management with antibiotics has 
been considered as an alternative treatment for uncomplicated appendicitis4. The diagnosis of acute appendicitis 
is still challenging, although many studies have been performed. Misdiagnosis or delayed diagnosis increases 
the incidence of perforation, peritonitis and negative laparotomy, which are associated with morbidity and mor-
tality1. Therefore, a quick and accurate diagnosis of acute appendicitis is necessary for efficient clinical care of 
acute abdominal pain. However, diagnostic errors are common because symptoms are frequently unspecified and 
overlap with other diseases. The diagnosis of acute appendicitis is difficult even after physical examination by an 
expert and with laboratory findings1. To improve the diagnostic performance, clinical scoring systems such as the 
Alvarado score, pediatric appendicitis score, appendicitis inflammatory response score and RIPASA score have 
been proposed to stratify patients with suspected appendicitis based on specific symptoms, signs, and laboratory 
data5–7. These score systems are helpful in the decision process, but their use as an independent diagnostic tool 
is controversial8. Therefore, imaging modalities such as ultrasound (US) and computed tomography (CT) have 
played an important role in diagnosing acute appendicitis9. US is a widely used diagnostic technique. However, 
US studies might be limited, with various diagnostic accuracies due to many causes, such as poor operator skill, 
abundant bowel gas, obesity, and anatomic variation, and limitations in exploring patients with previous laparot-
omies10. CT is considered the gold standard for evaluating acute appendicitis3. It is an objective study technique, 
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compared with US, that is operator dependent, but experts trained on radiologic imaging are necessary for proper 
interpretation.

Currently, deep learning methods have been developed and validated for medical image classifications that 
allow a machine to receive image data as input and to automatically discover the image representations needed for 
detection or classification11. If a deep-learning-based algorithm is capable of interpreting CT images at the radi-
ologist level, it can compensate for the absence of the radiologist without delayed diagnosis or misinterpretation, 
especially in an emergency.

In this study, we investigate the feasibility of a convolutional neural network (CNN)-based diagnosis algo-
rithm of acute appendicitis using abdominopelvic CT for patients with acute abdominal pain who visited the 
emergency room (ER).

Methods
This study was performed in accordance with the Declaration of Helsinki. The institutional review boards of 
the three institutions (St. Vincent’s Hospital, Eunpyeong St. Mary’s Hospital, Ewha Womans University Medical 
Center) considered here approved this study. Informed consent was waived due to the retrospective nature of this 
study.

Patients and dataset.  For training and internal validation, a CT dataset with acute appendicitis find-
ings was collected from patients who visited the emergency department with acute abdominal pain between 
December 2018 and May 2019, underwent abdominopelvic CT during the medical care process in the ER and 
were diagnosed with acute appendicitis clinically, which was then confirmed as acute appendicitis pathologically 
through surgery. CT image sets showing a normal appendix were included for approximately twice the number of 
appendicitis cases among patients who visited the emergency department with acute abdominal pain during the 
same period and underwent abdominopelvic CT, though with no abnormalities found in the appendix. Patients 
who underwent surgical removal of the appendix and had a tumor in the appendix were excluded. Cases involv-
ing CT examination with image degradation beyond a moderate level due to artifacts introduced by motion or 
metal materials and cases with a urinary stone as the cause of abdominal pain were excluded. All CT images for 
training were obtained using a 64-slice CT scanner (Discovery CT 750 High Definition, GE Healthcare). CT 
examinations were performed in helical mode. A tube voltage of 100 kVp and an automatic tube current modula-
tion technique were used. The section thickness was 3.75 mm, and the section interval was 3.75 mm.

For external validation of a trained CNN-based algorithm, CT image sets obtained under the same clinical 
setting from two institutions between April 2019 and June 2019 were selected. CT images for external validation 
were acquired using two different CT scanners (Somatom Definition Edge, Siemens for institution 1; Somatom 
Perspective, Siemens for institution 2). For institution 1, CT examinations were performed in helical mode. A 
tube voltage of 100 kVp and an automatic tube current modulation technique were used. The section thickness 
was 5 mm, and the section interval was 5 mm. For institution 2, CT examinations were performed in helical 
mode. A tube voltage of 110 kVp and an automatic tube current modulation technique were used. The section 
thickness was 3 mm, and the section interval was 3 mm.

CNN-based algorithm.  For all CT image sets, 3D isotropic cubes (4 × 4 × 4 cm3) including the appen-
dix region were manually annotated and extracted using an open-source free software (ITK-SNAP, version 3.6; 
http://www.itksnap.org/pmwiki/pmwiki.php)12. For internal validation, manual extraction was performed by an 
abdominal radiologist with 12 years of experience. Each image set was labeled as acute appendicitis or a normal 
appendix. The deep CNN used in the algorithm was built with six convolutional layers, three max-pooling layers 
and two fully connected layers, as described in Fig. 1 (upper). After the two consecutive 3D convolutional layers 
(kernel size was 3 × 3 × 3), the rectified linear unit and 3D max-pooling (kernel size was 2 × 2 × 2) operation 
were applied to the output of convolution. The number of channels in all the convolutional layers was 16, 16, 32, 
32, 64, and 64, in that order. The numbers of nodes for the fully connected layers were 256, and 2. A 3D CNN was 
trained via a supervised localization approach as an annotated portion to perform binary classification on the 
input 3D images. In the training process, a cross-entropy function was used as the loss function of the network, 
and the kernel size was 3 for all convolutional layers. To reduce overfitting, several data augmentation processes, 
such as shifting, flipping, and adding random noises, were applied. A fully connected layer generated the output. 
The softmax function was applied to the output value, and two numerical values, of which the sum was 1, were 
calculated as the image-level probability of acute appendicitis. For assessment of the CNN algorithm perfor-
mance, 8-fold cross validation was conducted. The entire dataset used for internal validation was randomly sepa-
rated into 8 datasets. Hyperparameters such as the learning rate, the number of epochs, and the number of layers 
were determined during the first model training, and the same parameters were used to train the other 7 models. 
For each model, 7/8 of the data were used to update the network parameters with the same hyperparameters, and 
the remaining 1/8 of the data were tested using the trained network.

For external validation, CT image sets from two institutions were used. Manual annotation and extraction 
were performed in the same way by radiologists with 6 and 12 years of experience in abdominal radiology. The 8 
differently trained CNN models were applied to the external CT dataset without training. The final classification 
through a CNN algorithm was determined using the average of the network outputs from the 8 trained models 
as the image-level probability of acute appendicitis. The test procedures for the internal and external datasets are 
briefly summarized in Fig. 1 (lower). The CNNs were trained and tested using PyTorch on a system equipped with 
a single Nvidia GeForce GTX Titan RTX graphics processing unit13.

Statistical analysis.  With a 0.5 cut-off value of the image-level probability of acute appendicitis, true posi-
tives (TP), false positives (FP), true negatives (TN) and false negatives (FN) for the diagnosis of acute appendicitis 
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in patients with acute abdominal pain were calculated for datasets from three institutions. The diagnostic perfor-
mance of the algorithm for the CNN-based classification of acute appendicitis was evaluated on the basis of the 
sensitivity, specificity, and accuracy for each of the 8 test sets and for all subjects in the internal validation. For 
the external validation, the diagnostic performance of the algorithm for the CNN-based classification of acute 
appendicitis with the CT image sets from two institutions as the input was evaluated with regard to the sensitivity, 
specificity, and accuracy. To visualize the performance of the classification, an ROC curve analysis was performed. 
Statistical analysis was performed using Matlab 2018b (The Mathwork, Natick, MA, USA).

Analysis of misjudgment.  Misinterpreted features for FP and FN were analyzed through a review of the 
original CT images and a heatmap generated by gradient-weighted class activation mapping (Grad-CAM), which 
allows the features focused on by the trained CNN to be visualized14. The two radiologists that performed the 
manual annotation and extraction and a scientist that built the CNN-based algorithm participated in the mis-
judgment analysis.

Results
For training and internal validation, 667 CT image sets from 215 patients with acute appendicitis and 452 
patients with a normal appendix were included (331 men and 336 women; mean age ± standard deviation (SD): 
45.6 ± 22.2 years). The CT image set of the portal phase included 629 images, and the CT image set without 
contrast enhancement included 38 images. For external validation, 60 CT image sets of 26 patients with acute 
appendicitis and 34 patients with a normal appendix were included (25 men and 35 women; mean age ± SD: 
45.9 ± 18.9 years) from institution 1. From institution 2, 40 CT image sets from 20 patients with acute appendi-
citis and 20 patients with a normal appendix were included (24 men and 16 women; mean age ± SD: 43.9 ± 20.8 
years). The confusion matrix for the diagnosis of acute appendicitis in patients with acute abdominal pain using 
the trained CNN is shown in Fig. 2 (upper). The ranges of the outputs generated by a fully connected layer were 
(−6.311, 11.918) for output1 and (−11.887, 6.863) for output 2. With a 0.5 cut-off value of the image-level proba-
bility of acute appendicitis after application of the softmax function to the output value, the test results of internal 
validation using 8-fold validation for each of the 8 models and for all of them together are described in Table 1. 
The accuracy of the CNN-based classification algorithm of acute appendicitis was 91. 5% for all image sets (range, 
86.9–94.7%). The diagnostic performance of the CNN-based algorithm for the diagnosis of acute appendicitis 
for all image sets was excellent: the sensitivity, and specificity were 90.2% (range, 85.2–96.3%), and 92.0% (range, 
87.7–96.5%), respectively. Table 2 shows the results of the external validation. The diagnostic performance of 
the CNN-based algorithm for the diagnosis of acute appendicitis for the external CT dataset was also good to 
excellent. Figure 2 (lower) shows each ROC curve analysis conducted to diagnose acute appendicitis in patients 

Figure 1.  Schematic overview of a deep convolutional neural network approach for the diagnosis of acute 
appendicitis (upper) and the validation process (lower). For internal validation, 8-fold cross validation was 
used. The dataset was randomly separated into 8 datasets. Hyperparameters such as the learning rate, the 
number of epochs, and the number of layers were determined during the first model training and then used to 
train the other 7 models. The remaining 1/8 of the data were used for a test. For external validation, a CT dataset 
acquired from two institutions was used for the 8 differently trained CNN models. The final classification of 
acute appendicitis through a CNN was determined using the average of the network outputs [drawn by ITK-
SNAP (version 3.6; http://www.itksnap.org/pmwiki/pmwiki.php) and Microsoft PowerPoint].
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Figure 2.  Confusion matrix (upper) used to diagnose acute appendicitis in the trained CNN using datasets for 
each of the three institutions and ROC curve analysis (lower) performed to diagnose acute appendicitis from a 
trained CNN using datasets from each of the three institutions considered (drawn by Microsoft PowerPoint and 
Matlab 2018b).

Model (image set 
number) TP TN FP FN Sensitivity Specificity Accuracy

1 (n = 84) 23 50 7 4 85.2 87.7 86.9

2 (n = 84) 26 54 3 1 96.3 94.7 94.7

3 (n = 84) 26 48 9 1 96.3 84.2 88.1

4 (n = 84) 24 55 2 3 88.9 96.5 94.1

5 (n = 84) 24 54 3 3 88.9 94.7 92.9

6 (n = 84) 23 55 2 4 85.2 96.5 92.9

7 (n = 84) 25 52 5 2 92.6 91.2 91.7

8 (n = 79) 23 48 5 3 88.5 90.6 89.9

Sum (n = 667) 194 416 36 21 90.2 92.0 91.5

Table 1.  Test results of the internal validation using 8-fold validation for each of the 8 training models. TP, true 
positive; TN, true negative; FP, false positive; FN, false negative.

Model

Institution 1 (n = 60) Institution 2 (n = 40)

Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

1 88.5 91.2 90.0 90.0 90.0 90.0

2 88.5 91.2 90.0 95.0 80.0 87.5

3 92.3 88.2 90.0 95.0 100.0 97.5

4 80.8 91.2 86.7 95.0 95.0 95.0

5 88.5 94.1 92.0 95.0 95.0 95.0

6 88.5 88.2 88.3 90.0 95.0 92.5

7 88.5 88.2 88.3 90.0 90.0 90.0

8 88.5 91.2 90.0 90.0 90.0 90.0

Average 88.5 91.2 90.0 95.0 100.0 97.5

Table 2.  Results of the external validation using CT data sets from two institutions for each of the 8 training 
models.
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with acute abdominal pain visiting the ER in each of the three institutions. The AUC was similarly high among 
the three institutions.

Figures 3 and 4 are heatmaps for each true negative and true positive case. According to an analysis of the 
misinterpreted features, the CNN-based algorithm mainly misjudged a collapsed ileum containing small air as a 
normal appendix in cases of FN (Table 3) (Fig. 5). For FP, the CNN incorrectly identified ileum with wall thick-
ening or bowel dilatation as an inflamed appendix. Secondary changes caused by other inflammatory conditions 
except acute appendicitis, such as bowel wall thickening, severe fat stranding, fluid and peritoneal thickening, 
were features that were identified by the CNN-based algorithm and led to misinterpretation as FP (Fig. 6).

Figure 3.  A 44-year-old woman who visited the ER with abdominal pain and a normal appendix. Original CT 
images within extracted 3D isotropic cubes show a normal appendix as an air-filled tubular structure (left side). 
Corresponding heatmap overlay using Grad-CAM highlights a normal appendix that is correctly recognized by 
the trained CNN (true negative) (right side).

Figure 4.  A 62-year-old woman who visited the ER with abdominal pain and was diagnosed with acute 
appendicitis. Original CT images within the extracted 3D isotropic cubes show a dilated appendix with 
wall thickening and appendicolith, compatible with acute appendicitis (left side). An inflamed appendix is 
highlighted on the heatmap overlay using Grad-CAM, which means the algorithm detected the appendix 
properly and diagnosed acute appendicitis accurately by assigning a given weight to the image location 
corresponding to the appendix (true positive) (right side).
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Discussion
The use of CT in the diagnostic workup of abdominal pain has become widespread15,16. CT is the primary and 
most appropriate imaging modality for evaluating patients with right lower quadrant pain and suspected appen-
dicitis17. CT has shown high accuracy in detecting acute appendicitis and reduced negative appendectomies18–20. 
The high performance of CT can be achieved with an examination based on an appropriate CT protocol and 
accurate interpretation.

The appendix is a structure attached to the base of the cecum3. A normal appendix is not conspicuous and 
appears with a tubular, linear or curvilinear structure in radiologic imaging21. The position of the appendix is 
variable, with descending, pelvic, retroperitoneal, subcecal, preileal, postileal, and subhepatic locations21. Diverse 
conditions such as unusual appendix locations, scanty intraabdominal fat, prominent cecal wall thickening and 
pericecal fat stranding, small bowel dilatation, abscess formation adjacent to the right adnexa, and diseases that 
mimic appendicitis cause difficulty in detecting the appendix and diagnosing appendicitis22. Therefore, the 
detection and diagnosis of a normal appendix or an inflamed appendix are not easy for a clinician to carry out. 
However, radiologists are often not available during off hours, for example, at night in ERs. An alternative method 
that could carry out the roles of radiologists on their days off, introduce efficiencies to the risk prediction of acute 
appendicitis and provide decision support for clinical care of patients with abdominal pain in the ER would be 
very helpful. The deep learning method is used for this purpose.

The deep learning method is a class of machine learning algorithms using a representation-learning method 
with multiple levels of representation. Representation learning is a set of methods that allows a machine to be 
fed with raw data and to automatically discover the representations needed for detection or classification23,24. 
Therefore, deep learning allows the discovery of complicated structures in high-dimensional data with the 
requirement of very little engineering by human hands24. However, not so long ago, deep learning approaches 
were not extensively evaluated for the medical field, with challenges related to the sparse, noisy, heterogeneous, 
and time-dependent characteristics of medical data25. For the diagnosis of appendicitis, ANNs have been investi-
gated in several studies26–30. In those studies, the diagnostic performance of the ANN was excellent in comparison 
with that of a clinical diagnosis, but only simple clinical data were used as inputs for the ANN.

With the rapid development of powerful parallel computing hardware, the availability of large quantities of 
labeled data and improved training techniques and architectures have enhanced large neural network training23. 
The ANN can handle vast amounts of radiologic imaging data. We applied artificial intelligence in the interpre-
tation of CT data. As far as we know, radiologic imaging itself (CT) has not been used as the input for a CNN to 
diagnose acute appendicitis.

In this study, we evaluated the feasibility of a neural-network-based diagnosis algorithm of acute appendicitis 
using abdominopelvic CT for patients with acute abdominal pain visiting the ER as a specific circumstance with 
typical emergent conditions. We focused on the feasibility of early and accurate decisions regarding whether 
patients with acute abdominal pain had acute appendicitis or not without the intervening of human interpreta-
tion. Acute appendicitis could be differentiated from a normal appendix without expert radiologists for patients 
with acute abdominal pain visiting the ER.

False positive and false negative cases occurred in the diagnosis of appendicitis using a CNN-based diagnostic 
algorithm. Some cases of FN were abstruse because evidence of acute appendicitis was definite on the CT images 
and trained humans never misinterpreted these cases as normal (Fig. 6). Uncertainty exists regarding why the 
CNN-based algorithm misinterpreted the data as negative, but we cannot recognize which representations were 
adopted by the CNN directly. To determine misjudgment, we used Grad-CAM, which allowed visualization of 
the features focused on by the trained CNN, to be calculated in the last convolutional layers14. A heat map using 
a notable color was helpful in understanding the causes listed in Table 3.

Emphasized features n

False Positives Ileum Small mesenteric fat 11

Ileal wall thickening 3

Ileal dilatation by fluid 
or air 8

Normal 3

Secondary 
changes by 
inflammation

Diverticulitis 8

Duodenitis 1

Acute cholecystitis 1

Acute pyelonephritis 1

Pelvic inflammatory 
disease 1

Ischemic colitis 1

False Negatives Ileum Early acute appendicitis 15

Appendiceal perforation 
with abscess 1

Small mesenteric fat 4

Table 3.  Features emphasized by the CNN-based diagnosis algorithm causing misinterpretation of the data as 
either false positives or false negatives.
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The limitations of this study are as follows: We included a CT image set only for patients with a normal and 
an inflamed appendix. Patients who underwent surgical removal of the appendix and had a tumor in the appen-
dix were excluded. Second, we trained and then tested the trained network using the 4 cm3 data, including the 
appendix region, manually extracted by radiologists. For practical applications, an automatic localization of the 
appendix region is necessary. Therefore, a future study is needed to develop an automatic localization algorithm 
of the appendix regions, along with a classification algorithm.

Figure 5.  A 54-year-old woman who visited the ER with abdominal pain and was diagnosed with acute 
appendicitis. Original CT images within the extracted 3D isotropic cubes show an inflamed appendix with 
wall thickening and appendicolith, compatible with acute appendicitis (arrowhead) (left side). Corresponding 
heatmap overlay obtained using Grad-CAM showing that the terminal ileum (arrow) is incorrectly recognized 
by the trained CNN as a normal appendix (false negative) (right side).

Figure 6.  A 48-year-old man who visited the ER with abdominal pain and was diagnosed with cecal 
diverticulitis. Original CT images within the extracted 3D isotropic cubes show thick-walled diverticulum 
(arrow) in the cecum, fat stranding and peritoneal thickening for a normal appendix (arrowhead) (left side). 
Corresponding heatmap overlay obtained using Grad-CAM that represents an inflamed cecal diverticulum 
(arrow) that was recognized by the CNN as an inflamed appendix (false positive) (right side).
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In conclusion, the CNN-based diagnosis algorithm may be feasible in diagnosing acute appendicitis using the 
CT data of patients visiting the ER with acute abdominal pain.
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