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The acute effects of adjuvant radiation and chemotherapy
on peripheral blood epigenetic age in early stage breast
cancer patients
Mary E. Sehl1,2,3✉, Judith E. Carroll3,4,5, Steve Horvath 6,7 and Julienne E. Bower3,4,5,8

Survival has increased in early stage breast cancer (BC), and the late effects of treatment persist for decades. Molecular mechanisms
underlying the acceleration of age-related diseases after chemotherapy and radiotherapy are poorly understood. We examined
epigenetic changes in peripheral whole blood cells in early stage BC patients undergoing surgery followed by adjuvant
radiotherapy, or surgery followed by adjuvant chemotherapy and radiotherapy. DNA methylation experiments were performed on
whole blood samples collected before and after adjuvant therapy. Methylation profiles were used to estimate four measures of
epigenetic age acceleration—intrinsic, extrinsic, phenotypic, and Grim—and cell counts. We found significant increases in extrinsic,
phenotypic, and Grim epigenetic age acceleration and in estimated proportions of senescent T lymphocytes from pre- to post-
treatment. When examining differential effects by treatment category, most of these increases were significant only in women
undergoing radiation alone. Further studies are needed to examine whether these effects are related to the risk of cognitive and
functional decline in BC survivors.

npj Breast Cancer            (2020) 6:23 ; https://doi.org/10.1038/s41523-020-0161-3

While multimodality cancer treatments prolong life in early stage
breast cancer (BC) patients, they increase the risk for age-related
health problems1–6, functional decline, and fatigue that pro-
foundly impact the quality of life7,8. These secondary problems
may be a consequence of accelerated biological aging by
exposure to cancer therapies. However, although animal studies
demonstrate that chemotherapy and radiation therapy induce
cellular senescence9–13, relatively few studies have examined
these effects in clinical cohorts14–18, and none have examined
effects on epigenetic aging markers.
A promising biomarker of organism aging, the epigenetic clock,

measures tissue age based on methylation levels of CpGs co-
locating with genes underlying pathways associated with cell
survival and self-renewal19,20. Estimated epigenetic age is tightly
correlated with chronologic age, accelerated in disease states, and
predictive of frailty and mortality21–30. Here we examine whether
markers of epigenetic age acceleration increase following two
common treatment regimens for women with early-stage BC:
radiation and chemotherapy.
Patients were recruited from oncology practices in Los Angeles

to participate in a longitudinal study of cancer-related fatigue31.
Women were eligible for the parent study if they had been
recently diagnosed with Stage 0–IIIA BC and had not yet started
adjuvant or neoadjuvant therapy with radiation, chemotherapy, or
endocrine therapy. Assessments were conducted before the onset
of adjuvant therapy, after completion of radiation and/or
chemotherapy, and over an 18-month follow-up (see Supplemen-
tary Fig. 1). The current analysis focuses on a subset of women
(n= 72) who had blood samples available for epigenetic analyses
at baseline and post-treatment. We selected women treated with

radiation alone (n= 37) and women treated with chemotherapy
followed by radiation (n= 35) to evaluate individual and
combined effects of those treatment exposures. All women had
completed surgery prior to the baseline assessment.
We examined four measures of epigenetic age acceleration:

intrinsic (IEAA), extrinsic (EEAA), phenotypic (PEAA), and Grim
(GEAA), based on weighted averages of methylation levels at 353,
71, 513, and 1030 CpGs, respectively, with adjustment for
chronologic age. Details of the epigenetic clock, DNA extraction/
methylation experiments, and statistical analyses are provided in
refs. 19,20,25,26,32 and Supplementary Methods. Briefly, while IEAA
captures epigenetic age acceleration independent of changes in
cell distribution that occur with advancing age, both EEAA and
PEAA capture the functional decline of the immune system and
exhibit negative and positive correlations with naive and late
differentiated/senescent cytotoxic T lymphocytes, respectively.
PEAA is also highly correlated with age-related phenotypes32. GEAA
is strongly predictive of lifespan33. We estimated blood cell
proportions using the advanced analysis option of the epigenetic
clock software19 available online (http://dnamage.genetics.ucla.edu),
which estimates the percentage of late differentiated CD8+ T cells
(CD8+CD28−CD45RA−) and the number (count) of naive T cells
(CD8+CD45RA+CCR7+). We examine changes in each of these
measures from pre- to post-treatment, adjusting for ethnicity, body
mass index (BMI), and tumor characteristics (ER, PR, and HER2 status,
and stage), given links with epigenetic aging markers21,34.
Table 1 shows patient demographic, tumor, and treatment

characteristics. A large percentage of women undergoing radio-
therapy alone had ER+ and PR+ tumors and underwent
lumpectomy rather than mastectomy. Women undergoing
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chemotherapy and radiotherapy had higher stage disease. There
were no significant group differences in age, ethnicity, or BMI.
Predicted epigenetic age (DNAm age) was significantly corre-

lated with chronologic age for IEAA (r= 0.85, p < 0.00001), EEAA
(r= 0.8, p < 0.00001), PEAA (r= 0.8, p < 0.00001), and GEAA (r=
0.89, p < 0.00001) in pre-treatment samples from the full cohort.
Corresponding age acceleration measures for each of these
epigenetic biomarkers are defined as the residuals from regressing
DNAm age on chronologic age, and are measured in years.
Figure 1 shows box pots of age acceleration measures from pre-

to post-treatment for the full sample; plots for the two treatment
groups are shown in Supplementary Fig. 2.
In the full sample receiving adjuvant treatment, repeated

measures analysis of variance showed a significant increase in
EEAA (F(1,71)= 10.2, p= 0.0021), PEAA (F(1,71)= 6.22, p= 0.015),
and GEAA (F(1,71)= 25.6, p= 3.2 × 10−6) from pre- to post-
treatment, adjusting for ethnicity, BMI, stage, and ER/PR/
HER2 status. Amongst patients receiving radiotherapy alone, EEAA
(F(1,36)= 16.0, p= 3.0 × 10−4), PEAA (F(1,36)= 5.94, p= 0.020),
and GEAA (F(1,36)= 11.7, p= 0.0015) were significantly increased,
but not IEAA. Patients receiving both chemotherapy and radiation
exhibited a significant increase in GEAA (F(1,34)= 13.6, p= 8.0 ×

10−4), and non-significant increases in EEAA (F(1,34)= 0.66, p= 0.42)
and PEAA (F(1,34)= 0.87, p= 0.36). There was a notable decrease (of
borderline significance) from pre- to post-treatment in IEAA in the
group receiving both chemotherapy and radiotherapy (F= 3.68, p=
0.064), and this finding is consistent with a recent report of
decreased DNAm age with G-CSF administration35.
The proportion of late differentiated/senescent T lymphocytes

increased after treatment in the full sample (Fig. 1e) (F(1,71)= 4.5,
p= 0.038), and in the group treated with radiotherapy alone
(Supplementary Fig. 2e) (F(1,36)= 7.7, p= 0.0077). There was an
accompanying decrease in naive T lymphocytes in the full sample
(F(1,71)= 20.7, p= 2.2 × 10−5) (Fig. 1f), and in both treatment
groups (F(1,36)= 14.8, p= 4.5 × 10−4) for radiotherapy alone; (F
(1,34)= 6.1, p= 0.019 for chemotherapy plus radiotherapy)
(Supplementary Fig. 2f).
Because epigenetic biomarkers are not independent, we

adjusted for multiple testing using a Bonferroni correction of
0.05/2. Using this criterion we find that increases in EEAA, PEAA,
and GEAA, and the decrease in estimated naive T lymphocytes
remained significant in the full sample and in the group receiving
radiotherapy alone, while the increase in estimated senescent T
lymphocytes remained significant only in the group receiving

Table 1. Characteristics of the study sample.

Radiation therapy alone (N= 37) Chemotherapy and radiotherapy (N= 35) Total (N= 72) p-Valuea

Demographic characteristics

Age (years), mean ± SD 57.3 ± 9.3 56.1 ± 11.2 56.7 ± 10.2 0.44

Ethnicity, N (%)

Hispanic 5 (14) 2 (6) 7 (10) 0.47

Non-Hispanic 32 (86) 33 (94) 65 (90)

Education, N (%)

HS degree 8 (22) 8 (23) 16 (22) 0.41

College degree 12 (43) 16 (46) 28 (39)

Postgraduate degree 17 (46) 11 (31) 28 (39)

Body mass index, mean ± SD 25.6 ± 5.3 25.7 ± 6.7 25.7 (6.0) 0.96

Tobacco smoking, N (%)

Current 1 (3) 1 (3) 2 (3) 0.59

Former 11 (30) 7 (20) 18 (25)

Never 24 (65) 27 (77) 51 (71)

Menopausal status, N (%)

Pre-menopausal 8 (22) 9 (26) 17 (24) 0.64

Peri-menopausal 1 (3) 3 (8) 4 (5)

Post-menopausal 26 (70) 22 (63) 48 (67)

Hysterectomy 2 (5) 1 (3) 3 (4)

Tumor characteristics

ER positive, N (%) 36 (97) 26 (74) 62 (86) 0.013

PR positive, N (%) 32 (86) 21 (60) 53 (7) 0.023

HER2 amplified, N (%) 2 (5) 2 (6) 4 (5) 0.95

Stage, N (%)

0 5 (13) 0 (0) 5 (7) 0.00015

1 25 (68) 11 (31) 36 (50)

2 7 (19) 18 (51) 25 (35)

3 0 (0) 5 (14) 5 (7)

Type of surgery

Lumpectomy 35 (94) 27 (77) 62 (86) 0.032

Mastectomy 2 (5) 8 (23) 10 (14)

ap-Value comparing treatment groups.
p-values were in bold if < 0.05.
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radiotherapy alone, and GEAA and the decrease in estimated
naive T lymphocytes remained significant in the group receiving
chemotherapy and radiotherapy.
Using a biomarker of biologic aging in whole blood, we found

evidence of accelerating aging and immunosenescence after
adjuvant therapy in women with early stage BC. To contrast these
changes with “normal” aging, we examined age acceleration
patterns in women of similar age but without cancer using
published longitudinal data on DNA methylation studies of
peripheral blood mononuclear cells of healthy women36. All
women in the healthy cohort had at least two assessments, and
the length of time between first and second visits ranged from 2
to 7 years. In this group, we found no significant changes from
baseline to follow up in EEAA (mean 0.37 to −0.091, p= 0.35),
IEAA (mean 0.0124–0.0115, p= 0.99), PEAA (0.90 to −0.30, p=
0.051), or GEAA (−0.063 to 0.018, p= 0.29). We also considered
the possibility that changes in aging markers in the women
undergoing cancer therapy might be driven by stress associated
with a cancer diagnosis and treatment, but controlling for scores
on the Perceived Stress Scale (PSS) yielded comparable results.

Examination of specific treatment exposures in our sample
suggests a specific role of radiation in accelerating aging, although
additional work is needed to confirm differential treatment effects
and investigate mechanisms underlying these effects. Our findings
are consistent with reports showing that adjuvant treatment for early
stage BC accelerates biologic aging, as measured by p16INK4A

expression in T lymphocytes14 and lower telomerase activity15.
Because epigenetic aging biomarkers predict frailty and mortality23,32,
our results raise concerns about treatment as a potential accelerator
of these processes and highlight the importance of identifying
strategies to prevent accelerated aging in cancer survivors.
Limitations of our study include the small sample size, and the

inability to directly examine the effects of chemotherapy alone on
epigenetic age. Further studies are needed to examine the acute
effects of chemotherapy alone and to examine whether accelera-
tions in DNAm age persist in the years following recovery from
surgery, chemotherapy, and radiotherapy. Another important
limitation of our study is our inability to disentangle the relative
contributions of cancer diagnosis and surgery from the presumed
effects of adjuvant therapies. Women undergoing surgery alone
after early stage breast cancer diagnosis do not provide an
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Fig. 1 Full distributions for measures of age acceleration in peripheral blood from pre- to post-treatment. In addition to intrinsic (IEAA, a),
extrinsic (EEAA, b), phenotypic (PEAA, c), and Grim (GEAA, d) measures of age-acceleration, age-adjusted estimates of senescent cytotoxic T
lymphocytes (e) and naive T lymphocytes (f) are shown for the full sample. Our repeated measures ANOVA analysis revealed significant
increases in EEAA (p= 0.0021), PEAA (p= 0.015), GEAA (P= 3.2 × 10−6), and age-adjusted estimates of senescent cytotoxic T lymphocytes (p=
0.038). Age-adjusted estimates of naive T lymphocytes decreased after treatment (p= 2.2 × 10−5). There was no significant change in IEAA
with treatment (p= 0.83). Supplementary Fig. 2 reveals boxplots for each of these age acceleration measures and estimated cell counts,
separated by treatment type.
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adequate comparison group, as these patients tend to carry a
Stage 0 (ductal carcinoma in situ) diagnosis, and undergo
mastectomy more frequently. Future work will examine global
methylation changes associated with radiation and/or chemother-
apy, particularly within pathways related to DNA repair. However,
we would not expect global hypo- or hyper-methylation to
influence our finding of age-related methylation patterns, as these
are based on weighted averages of a specific subset of CpGs. Our
results raise questions about whether the observed acceleration in
epigenetic age is associated with adverse outcomes and toxicities
associated with combined treatment modalities in early stage
breast cancer, and further work should test the predictive utility of
the epigenetic clock for adverse late effects in longitudinal
research designs. Ultimately this information could be used to
estimate risks of late effects due to accelerated aging after
treatment of early stage breast cancer.

METHODS
Patients recruited to this longitudinal study provided informed written
consent. This study was approved by the UCLA Institutional Review Board.

Tissue acquisition and processing
Genomic DNA was extracted from buffy coats of peripheral blood samples
using the MIDI DNAEasy Blood and Tissue Kit for the QIASymphony
automated extractor (Qiagen). Purified DNA was placed into 96-well plates
and concentrated using a SpedVac, and suspended in AE buffer to a
minimum of 100 ng/μL. DNA was quantified using the Invitrogen Quant-iT
dsDNA Assay Kit, high sensitivity (Invitrogen).

DNA methylation data pre-processing
Bisulfite conversion using the Zymo EZ DNA Methylation Kit (ZymoR-
esearch, Orange, CA, USA) as well as subsequent hybridization of the
Human Methylation 850K EPIC chip (Illumina, San Diego, CA), and scanning
(iScan, Illumina) was performed by the UCLA Neuroscience Genomics Core
facilities according to the manufacturer’s protocols by applying standard
settings. DNA methylation levels (β values) were determined by calculating
the ratio of intensities between methylated (signal A) and un-methylated
(signal B) sites. Specifically, the β value was calculated from the intensity of
the methylated (M corresponding to signal A) and un-methylated (U
corresponding to signal B) sites, as the ratio of fluorescent signals β=max
(M,0)/[max(M,0)+max(U,0)+ 100]. Thus, β values range from 0 (comple-
tely un-methylated) to 1 (completely methylated). To impute missing β
values, we used a Euclidean metric to find k-nearest neighbors and impute
the missing elements by averaging non-missing elements of its neighbors,
using the impute.knn function in R37. Quantile normalization was applied
to the raw data, in order to detect and remove outliers, and with the goal
of making data comparable to the training data of the epigenetic clock.

Measures
Survey data were available from the RISE study on patients’ age, ethnicity,
and education. BMI was determined through measurement of height and
weight at the baseline assessment. Tumor characteristics and type of
treatments received were determined by medical record review.

Statistical methods and analysis
We used four well-established measures to estimate epigenetic age based
on weighted averages of CpGs: intrinsic (353 CpGs19,25), extrinsic (71
CpGs20,26), phenotypic (513 CpGs32), and grim (1030 CpGs33). Residuals
from linear regression of these measures on chronologic age are used to
define the age-adjusted age acceleration measures: IEAA, EEAA, PEAA, and
GEAA. Details of the epigenetic clock methodology are provided in the
online clock software and tutorial19,25. Briefly, IEAA adjusts for imputed
measures of blood cell counts and captures epigenetic age acceleration
independent of cell distribution, while EEAA employs a weighted
adjustment for the estimated blood cell counts from three blood cell
types that change with age: naive (CD45RA+CCR7+) cytotoxic T
lymphocytes (reflecting stem cell self-renewal), late differentiated/senes-
cent (CD28−CD45RA−) cytotoxic T lymphocytes, and plasma B lympho-
cytes. PEAA is highly correlated with age-related phenotypes. Unlike IEAA,

both EEAA and PEAA correlate with markers of immunosenescence, and
both exhibit negative and positive correlations with naive and late
differentiated/senescent cytotoxic T lymphocytes, respectively. Grim age is
calculated using DNA methylation-based surrogate biomarkers of smoking
pack-years and serum biomarkers known to be predictive of morbidity or
mortality33. After regressing time-to-death on these DNAm-based biomar-
kers, the mortality risk estimate is transformed into an age estimate (Grim
Age), and this age estimate is strongly predictive of lifespan33. We further
estimated proportions of cytotoxic T lymphocytes in naive and senescent
states using global methylation data, using the methods of Horvath25.
We used analysis of variance (ANOVA) with repeated measures to

examine changes in four measures of age acceleration (IEAA, EEAA, PEAA,
and GEAA) and estimated cell counts (naive and senescent cytotoxic T
lymphocytes) from pre- to post-treatment, first combining across the two
treatment groups, and subsequently examining each treatment group
individually in order to assess whether the addition of chemotherapy
further contributes to the effects of radiotherapy. All analyses were
adjusted for ethnicity and BMI, given their known associations with
epigenetic clock accelerations34,38. All analyses were also adjusted for
tumor characteristics, including stage, and ER, PR, and HER2 status.
Furthermore in order to examine for the effects of stress, we performed
additional analyses adjusting for the PSS.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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