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A B S T R A C T

PM2.5 and PM10 could increase the risk for cardiovascular and respiratory diseases in the general public and
severely limit the sustainable development in urban areas. Land use regression models are effective in predicting
the spatial distribution of atmospheric pollutants, and have been widely used in many cities in Europe, North
America and China. To reveal the spatial distribution characteristics of PM2.5 and PM10 in Xi'an during the
heating seasons, the authors established two regression prediction models using PM2.5 and PM10 concentrations
from 181 monitoring stations and 87 independent variables. The model results are as follows: for PM2.5, R2 =
0.713 and RMSE = 8.355 μg/m3; for PM10, R2 = 0.681 and RMSE = 14.842 μg/m3. In addition to the tradi-
tional independent variables such as area of green space and road length, the models also include the numbers of
pollutant discharging enterprises, restaurants, and bus stations. The prediction results reveal the spatial dis-
tribution characteristics of PM2.5 and PM10 in the heating seasons of Xi’an. These results also indicate that the
spatial distribution of pollutants is closely related to the layout of industrial land and the location of enterprises
that generate air pollution emissions. Green space can mitigate pollution, and the contribution of traffic emission
is less than that of industrial emission. To our knowledge, this study is the first to apply land use regression
models to the Fenwei Plain, a heavily polluted area in China. It provides a scientific foundation for urban
planning, land use regulation, air pollution control, and public health policy making. It also establishes a basic
model for population exposure assessment, and promotes the sustainability of urban environments.

1. Introduction

The rapid economic development and accelerated urbanization
process in China have been accompanied by high energy consumption
and excessive pollutant emission, this has caused serious air pollution
issues and hindered the sustainable development of urban areas (Liu,
Sun, & Feng, 2020; Ortolani & Vitale, 2016). As main air pollutants,
PM2.5 and PM10 are the most harmful to human health and thus, of the
most concern to the general public. They are the focus of smog control
in China at the current stage. The concentrations of PM2.5 and PM10 are
impacted by urban space morphology, land use layout, and adverse
meteorological factors and are thereby likely to accumulate in cities
(Jin et al., 2019). Long-term exposure to contaminated atmosphere
increases the risk of cardiovascular and respiratory diseases (Barzeghar,
Sarbakhsh, Hassanvand, Faridi, & Gholampour, 2020; Berman,
Burkhardt, Bayham, Carter, & Wilson, 2019; Feng, Gao, Liao, Zhou, &
Wang, 2016), Properly planned commuting routes can reduce human

exposure to pollution (Ahmed, Adnan, Janssens, & Wets, 2020; Pilla &
Broderick, 2015; Qiu et al., 2017). The variations in spatial distribution
of urban air pollutants have become a widespread concern in several
fields such as urban and rural planning, environmental science, and
medicine (Son et al., 2018; Yang et al., 2020; Yuan, Song, Huang, Shen,
& Li, 2019; Zou, Wilson, Zhan, & Zeng, 2009).
Land use regression (LUR) models have proven to be an effective

method for predicting the spatial distribution of pollutants (Jerrett
et al., 2005). LUR models work using pollutant concentration data
collected at a limited number of monitoring stations in conjunction
with characteristic variables such as land use information to evaluate
pollutant concentrations in areas that lack monitoring stations. A main
feature of LUR models is the correlation of land use characteristics to
the concentrations of target pollutants, which can be used to determine
the relationship between air pollutant concentrations and other geo-
graphic variables to simulate the spatial distribution of air pollutants in
urban areas and identify the causes of pollutants to a certain extent
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(Henderson, Beckerman, Jerrett, & Brauer, 2007; Hoek et al., 2008).
The interpretation of the relationship can guide urban land use ad-
justment. By adjusting the layout of industrial land, intensive land use is
achieved to reduce pollutant emission, and ultimately accomplish sus-
tainable urban land use.
One of the earliest LUR models was developed by Briggs et al.

(1997) to predict NO2 concentrations in three European cities and plot
pollution maps. Owing to the simplicity of model construction and ease
of data acquisition as well as improvement in the modeling technology
and content and higher diversity in the allowed variable types, LUR
models have also been applied to the prediction of air pollutants such as
NO2, PM10, and PM2.5 in Europe and North America (Allen, Amram,
Wheeler, & Brauer, 2011; Briggs et al., 2000; Eeftens et al., 2012;
Moore, Jerrett, Mack, & Kunzli, 2007; Song, Jia, Li, Tang, & Wang,
2019). Two early studies in 2010 (Chen, Bai et al., 2010, 2010b) pre-
dicted the concentrations of PM10, NO2, and SO2 in two Chinese cities
(Tianjin and Jinan) and plotted pollutant distribution maps. Since
2013, China has begun to gradually establish and improve its air quality
monitoring network, an action accompanied by a growing body of LUR-
model-based studies investigating the spatial distribution of air pollu-
tants in Chinese cities such as Chengdu, Changsha, Beijing, and
Shanghai, with a particularly large number of studies in the latter two
cities (Ji, Wang, & Zhuang, 2019; Liu et al., 2015; Meng et al., 2015,
2016; Wu et al., 2015; Xiao, Wang, Wu, Fu, & Zhu, 2018). Compared
with the research results of other cities, this study is the first to apply
land use regression models to the Fenwei Plain, a region in China with

severe air pollution. The number of monitoring stations used in this
study is the greatest so far. The dependent variables are selected spe-
cifically during the heating seasons. It explains the reasoning behind
the selection of buffer zones. It applies comprehensively all aspects of
regression model diagnosis, cross-validation and verification of LUR
applicability in different heating seasons. Hence, to a certain extent, it
has enriched the application of land use regression models in the pre-
diction of the spatial distribution of atmospheric pollutants.
Xi’an is an important western Chinese city located on the west of the

rift basin of the Fenwei Plain, encompassing 11 cities; a plain subjected
to smog in large areas and considered one of the most atmospherically
polluted areas in China. The national air quality report released by the
Ministry of Ecology and Environment of China revealed that between
January and December 2018, Xi’an ranked 158 out of 169 cities in
terms of air quality and was under severe air pollution. Xi’an has special
natural conditions (i.e., unique topography and unfavorable meteor-
ological conditions) with a special land use status, economic develop-
ment level, and industrial layout. Thus, the air pollution is further ex-
acerbated (Huang, Zhang, Tang, & Liu, 2015; Song et al., 2015).
Therefore, a deep insight into the spatial distribution characteristics of
the concentrations of PM2.5 and PM10 during the heating seasons of
Xi’an is the key to supporting air pollution control.
The purpose of this study is to establish a regression prediction

model for PM2.5 and PM10 in the heating seasons of Xi'an to test the
applicability of the land use regression models, and to reveal the spatial
distribution characteristics of these pollutants. Further, it aims to

Fig. 1. Study area and distribution of monitoring stations.
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analyze the relationship between the spatial distributions of PM2.5 and
PM10 and land use characteristics and therefore provides a scientific
foundation for urban planning, land use regulation, air pollution con-
trol, and public health policy-making. It also establishes a basic model
for population exposure assessment. The application of the land use
regression models to areas requiring heating in winter and heavily
polluted areas plays a positive role in achieving sustainable urban en-
vironment and promoting sustainable development in urban environ-
ments.

2. Materials and methods

The air quality data used in this study were the daily mean con-
centrations of PM2.5 and PM10 at 181 air quality monitoring stations
under the Xi’an Ecology and Environment Bureau. The concentration
measurements were conducted during the winter heating season from
November 15, 2018 to March 15, 2019, and the period-averaged con-
centrations of PM2.5 and PM10 obtained from each monitoring station
were used as the dependent variables, as depicted in Fig. 1. A total of 86
factors in the five categories of land use, road traffic facilities, socio-
economic development, emission source, and geospatial information
were considered as independent variable candidates. For a particular
monitoring station, independent variable candidates were extracted in
two ways: (1) with the monitoring station as the center, circular buffer
zones at various distances were delineated using GIS, and the in-
dependent variable candidates were the length, number, or area within
the buffer zones, Fig. 2 shows the length of the roads in the 3000 m
buffer zone around the New Software City station; (2) the independent
variable candidates were the distances from the monitoring stations to
notable objects or the characteristic values of monitoring stations, Fig. 3
displays the distance from the New Software City station to the nearest
highways. After the extraction of variables, correlation analysis was
performed between the independent and dependent variables using
SPSS software. Variable screening was performed based on the mag-
nitude of the Pearson correlation coefficients, and the selected in-
dependent variables were included in multiple stepwise regression
analyses using R software. The established models were subjected to
cross-validation to test their generalizability using R software. The
procedure followed in this study is depicted in Fig. 4.

2.1. Study area and its characteristics

Xi’an, the capital of Shaanxi Province and an important central city
in western China, is located in the Guan zhong Basin in the middle of
Yellow River watershed and has the largest variations in elevation

within its administrative areas among all Chinese cities. Xi’an is com-
posed of 11 districts with two counties and has been entrusted the
administration of the Xi Xian New District, having a total area of 10,752
km2, approximately 204 km long in the east-west direction and ap-
proximately 116 km wide in the south-north direction. By the end of
2018, the resident population had reached 10,003,700, and the city’s
GDP in 2018 was 834.986 billion Chinese RMB. The prevailing winds in
Xi’an are the northeasterly winds with low speed in Fig. 5. Thus, the
meteorological conditions are not favorable for the diffusion of pollu-
tants. A stagnation zone of anticyclonic airflow is prone to form owing
to obstruction by mountains and the sinking of the leeward airflow.
When pollution occurs, the pollutants accumulate mostly near the
surface, where diffusion is difficult. The Fenwei Plain is located in a
valley region, and any city in the plain is under the direct impact of
pollutant emissions from other cities. In terms of the energy con-
sumption structure, coal consumption accounts for a relatively high
proportion of total energy consumption in the Fenwei Plain. Shaanxi
and Shanxi Provinces are large coal producers as well as consumers. In
particular, coal consumption is more centralized in the Fenwei Plain,
accounting for nearly 90 % of its total energy consumption, far greater
than the national average of 60 %.

2.2. Dependent variables

The daily mean concentrations of PM2.5 and PM10 obtained from
181 air quality monitoring stations of Xi’an Ecology and Environment
Bureau were used in this study, which were measured during the winter
heating season from November 15, 2018 to March 15, 2019, with
period-averaged concentrations at each station used as the dependent
variables. As illustrated in Figs. 6 and 7, the concentrations of PM2.5
and PM10 from the 181 stations display a normal distribution. The ean
is the average value of the concentrations, and Std. Dev. is the standard
deviation of the concentrations. Xi'an has cold weather in winter, and
the local government implements central a heating system, which re-
quires combustion of a substantial amount of coal and natural gas. This
aggravates the PM2.5 and PM10 pollution in the city. In addition, due to
frequent calm days in winter plus the adverse terrain in Xi’an for pol-
lution dispersion, the occurrence of heavy pollution is concentrated
during this period, causing great harm to human health. Considering
these factors, the authors select the PM2.5 and PM10 concentration data
of the heating season from November 15, 2018 to March 15, 2019.

Fig. 2. Length of the roads in the 3000 m buffer zone around the New Software
City station.

Fig. 3. Distance from the New Software City station to the nearest highways.
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2.3. Independent variables

2.3.1. Land use information
The land use data used in this study were derived from the remote

sensing monitoring data of China’s land use, built by the Chinese
Academy of Sciences. The Landsat TM/ETM/OLI remote sensing images
are the main data source. After going through processes such as image
fusion, geometric correction, image enhancement and stitching etc., the
land use types were classified into 6 first-level categories, 25 second-
level categories and certain third-level categories according to the land
use/cover classification system in China, via human-computer

interactive visual interpretation. In this study, five types of land-use
data were extracted, namely, those from farmland (paddy fields + dry
land), green land (forest land + grassland), waterbodies (waterways +
lakes + reservoirs + ponds), industrial and mining land (factories and
mines + industrial areas + airports), and construction land (urban
land + rural residential areas). The shape and size selection of a buffer
zone was based on the diffusion range of the pollutants in the atmo-
sphere and the impact of geographical elements on the pollutants.
However, because of the complexity and uncertainty of atmospheric
pollution diffusion, previous research results were usually referenced
when determining a new buffer zone. In this study, the correlation

Fig. 4. Research flow chart.
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coefficients of most independent variables increased with respect to
pollutant concentrations as the buffer zones increased in size until the
distance of 5000 m, a limiting distance beyond which the correlation

coefficients would not increase. Thus, the maximum distance of buffer
zones was set to 5000 m. GIS software was employed to establish sta-
tion-centered circular buffer zones for each of the 181 monitoring sta-
tions at successive distances of 100, 300, 500, 1000, 2000, 3000, 4000,
and 5000 m and then to extract the length or area data associated with
each type of land use in each buffer zone.

2.3.2. Road traffic facility information
Road traffic facility information referred to road networks, parking

lots, and bus stops. In this study, five types of road network data were
extracted from OpenStreetMap, namely, motorways, primary roads,
secondary roads, tertiary roads, and trunk lines. The road network data
in a buffer zone were extracted using two metrics: extraction of the
length of motorways in the buffer zone or extraction of the total length
of the five types of roads in the buffer zone. The parking lot data and
bus stop data were obtained from Gaode map, i.e., the number of
parking lots and bus stops in each buffer zone were calculated.

2.3.3. Socioeconomic information
The socioeconomic information consisted of GDP and population

data. The GDP data came from the kilogram grid dataset of the spatial
distribution of China's GDP (GDP Grid China) constructed by the
Chinese Academy of Sciences. It has a raster data form, with each raster
representing the total GDP output value within the grid range (1 square
kilometer) in the unit of ten thousand yuan/km2. The GDP value of each
grid with a monitoring site was extracted from GIS data. The population
data were derived from the sixth national census and used to calculate
the population of each abovementioned sub-district or town.

2.3.4. Emission source information
The emission sources consisted of air-polluting enterprises, restau-

rants, and motorways. Air-polluting enterprise information was ob-
tained from the Monitoring Information Release Platform of Key
Pollutant-discharging Enterprises in Shaanxi Province and the List of
Key Pollutant-discharging Units released by Xi’an Ecology and
Environment Bureau. There were 37 pollutant-discharging enterprises.
The distance between each monitoring station and the nearest pollu-
tant-discharging enterprise from it was calculated. Also the number of
pollutant-discharging enterprises in each buffer zone was counted.
Restaurant data were obtained from Gaode map by calculating the
number of restaurants in each buffer zone. Motorway data were ob-
tained by calculating the distance from each monitoring station to its
nearest motorway.

2.3.5. Geospatial information
Geospatial information consisted of the elevation of each mon-

itoring station and its distance to a water surface. Elevation data were
obtained by extracting Digital Elevation Model (DEM) topographic data
with a precision of 30 m. Considering the effect of water–land breeze on
atmospheric pollution transport, the distance from each monitoring
station to the nearest water bodies was calculated.

2.4. Model construction

A total of 87 independent variables were extracted. Bivariate cor-
relation analysis was performed among the 87 independent variables
and the dependent variables PM2.5 and PM10 using SPSS 17.0 to obtain
the Pearson correlation coefficients of each independent variable with
respect to PM2.5 and PM10. Independent variables that are significantly
correlated to the dependent variables (P< 0.05) were selected. In each
category of independent variables, the variables with the largest
Pearson correlation coefficient were selected, which led to the selection
of 13 independent variables for PM2.5(Table 1) and 14 for PM10
(Table 2). Multiple stepwise regression of PM2.5 and PM10 was sepa-
rately performed on these independent variables using R software to
remove independent variables with a p-value> 0.01 while performing

Fig. 5. Wind Rose of Gaoling Station from November 15, 2018 to March 15,
2019.

Fig. 6. Histogram of PM2.5 concentration frequency distribution.

Fig. 7. Histogram of PM10 concentration frequency distribution.
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collinearity diagnostics to remove independent variables with Variance
Inflation Factor (VIF)> 4.

2.5. Model diagnostics

The models were subjected to regression diagnostics using R soft-
ware. For regression diagnostics, the results of model fitting were pre-
sented in four plots: (1) a Residual-versus-Fitted plot to test the as-
sumption that the independent variable in question was linearly
correlated to the dependent variable in question; (2) a Normal Q-Q plot
to test the normality of residuals; (3) a Scale-Location plot, intended to
test the homoscedasticity assumption; and (4) a Residual-versus-
Leverage plot to identify outliers, high-impact points, and high-leverage
points.

2.6. Model cross-validation

The models were subjected to cross-validation using R software.
Model validation was performed using the 10-fold cross-validation
method aimed at testing the generalizability of the models. Thus, the
samples in question were divided into 10 equal-sized subsamples, of
which one subsample was retained as the validation group, whereas the
remaining nine subsamples were used as the training group; repeating
this process in turn for each subsample as the validation group finally
led to a total of 10 prediction equations, whose R2 values and RMSEs
were averaged. The equations for RMSE and R2 calculations are listed as
follows:
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i
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i
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( ) ( ) 2

= =

=
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In the RMSE equation, ytest
i( ) represents the monitoring concentration of

the i-th monitoring station in the test set, ŷ test
i( ) refers to the predicted

concentration of the i-th monitoring station in the test set, and m is the
number of monitoring stations in the test set. In the R2 equation, ŷ i( )

and y i( ) represent the predicted and monitoring concentrations of the i-
th monitoring station respectively in the training set, y represents the
average concentration of the training set, and m indicates the number
of monitoring stations in the training set.

2.7. Industrial land

The results section analyzed the relationship between the industrial
land layout of the study area and the Regulatory Management Zone
(RMZ) and the spatial distributions of PM2.5 and PM10 in the heating
seasons in Xi'an. The definition of industrial land in urban and rural
planning is applied here, which refers to land for production shops,
warehouses and auxiliary facilities of industrial and mining enterprises,
including land for special railways, docks and auxiliary roads, and
parking lots. The information of industrial land layout was from the
central urban area land use plan map from Xi’an’s Urban Master Plan
(2008–2020) and the remote sensing monitoring data of China's land
use.

Table 1
Independent variables for PM2.5 LUR models.

Category Sub-category Buffer zone Unit Code Mean Standard deviation Min Max

Land use
information

Green space 4000 m m2 GS-4000 5991739 9151113 0 45787914
Industrial and mining land 5000 m m2 IM-5000 1796676 2565877 0 12036045
Built-up area 1000 m m2 BA-1000 1639066 1146245 0 3141593

Road traffic information Major road 5000 m m MR-5000 186615 121895 6738 417015
Parking lot 5000 m Number PA-5000 1013 1548 0 5080
Bus stop 4000 m Number BS-4000 98 108 0 354

Socioeconomic information Population No Number PO 58588 46813 2264 223840
Emission source information Distance to the nearest

air-polluting enterprise
No m DIS-PE 8076 7920 245 44126

Distance to the nearest motorway No m DIS-MO 4528 5094 21 43354
Restaurant 5000 m Number RE-5000 3122 4489 0 14736
Air-polluting enterprise 5000 m Number PE-5000 0.91 1.14 0 5

Geospatial information Elevation No m EL 467 154 345 1124
Distance to nearest water bodies No m DIS-WA 2716 2209 17 8796

Table 2
Independent variables for PM10 LUR models.

Category Sub-category Buffer zone Unit Code Mean Standard deviation Min Max

Land use
information

Green space 5000 m m2 GS-5000 9814783 14460656 0 71238521
Industrial and mining land 5000 m m2 IM-5000 1796676 2565877 0 12036045
Built-up area 1000 m m2 BA-1000 1639066 1146245 0 3141593
Water bodies 5000 m m2 WA-5000 2119489 3060745 0 14499236

Road traffic information Motorway 5000 m m MO-5000 19906 21388 0 88843
Major road 5000 m m MR-5000 186615 121895 6738 417015
Bus stop 5000 m Number BS-5000 145 162 0 550

Socioeconomic information Population No Number PO 58588 46813 2264 223840
Emission source information Distance to nearest

air-polluting enterprise
No m DIS-PE 8076 7920 245 44126

Distance to nearest motorway No m DIS-MO 4528 5094 21 43354
Restaurant 5000 m Number RE-5000 3122 4489 0 14736
Air-polluting enterprise 5000 m Number PE-5000 0.91 1.14 0 5

Geospatial information Elevation No m EL 467 154 345 1124
Distance to nearest water bodies No m DIS-WA 2716 2209 17 8796
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3. Results

3.1. Significant independent variables

Bivariate correlation analysis indicated that 44 of the 87 in-
dependent variables were significantly correlated to PM2.5 and 42 to
PM10. Among these 44 and 42 independent variables, those with the
largest correlation coefficients in the respective categories were se-
lected, ultimately leading to 13 and 14 independent variables selected
for PM2.5 and PM10, respectively, which included 10 in common, as
presented in Tables 1 and 2.
The independent variables demonstrated positive correlation to the

concentration of PM2.5, except for four independent variables, which
demonstrated negative correlation, namely, GS-4000, reflective of the
area of green spaces in buffer zones at a distance of 4000 m; DIS-PE,
reflective of the distances from the stations to their respective nearest
air-polluting enterprises; DIS-MO, reflective of the distances from the
stations to their respective nearest motorways; and EL, reflective of the
elevation of the stations, as depicted in Fig. 8. Similarly, GS-5000, DIS-
PE, DIS-MO, and EL demonstrated negative correlation to the con-
centration of PM10, as depicted in Fig. 9. The negative correlation
coefficient r of GS-4000 with respect to PM2.5 was the largest among the
four negative correlation coefficients with respect to PM2.5. The nega-
tive correlation coefficient r of GS-5000 with respect to PM10 was
smaller than that of only EL, indicating that larger the green spaces in
buffer zones, smaller were the concentrations of PM2.5 and PM10 at the
stations. The negative correlation coefficient r of EL with respect to
PM2.5 and PM10 was the second largest (after that of GS-4000) and the
largest, respectively, which was attributed to the special terrain of
Xi’an, i.e., stations with higher EL had larger green spaces. The corre-
lation coefficient r of DIS-PE and DIS-MO with respect to the pollutants
was large and significantly negative, indicating that closer the air-pol-
luting enterprises and motorways, higher were the concentrations of
PM2.5 and PM10.

3.2. LUR models

3.2.1. Multiple stepwise regression
Bivariate correlation analysis confirmed that three independent

variables, GS-4000, RE-5000, and PE-5000, should be included in the
PM2.5 LUR model. The regression coefficient was significant at the

p<0.05 level, and the adjusted R2 value (Adj-R2) was 0.713, indicating
that 71.3 % of the variance of the concentration of PM2.5 was accounted
for by the model. The model RMSE was 8.355 μg/m3 and the VIF of
each variable was less than 4, indicating that there was no multi-
collinearity among the three independent variables (Table 3). The ob-
served and predicted concentrations of PM2.5 were compared (Fig. 10).
For the PM10 LUR model, bivariate correlation analysis confirmed

that four independent variables, GS-5000, MO-5000, BS-5000, and PE-
5000, should be included in the model. The regression coefficient was
significant at the p<0.05 level, and the Adj-R2 was 0.681, indicating
that 68.1 % of the variance of the concentration of PM10 was accounted
for by the model. The model RMSE was 14.842 μg/m3, and the VIF of
each variable was less than 4, indicating that there was no multi-
collinearity among the four independent variables (Table 4). The ob-
served and predicted concentrations of PM10 were compared (Fig. 11).

3.2.2. Model evaluation
The model evaluation measures included regression diagnostics,

cross-validation, and the spatial autocorrelation test. Regression diag-
nostics were performed by checking four plots, namely, a residual-
versus-fitted plot, normal Q-Q plot, scale-location plot, and residual-
versus-leverage plot. Figs. 12a and 13 a depict that there was no cor-
relation between the residuals and fitted values, and the dependent and
independent variables were linearly correlated. In Figs. 12b and 13 b all
the data points of the plots fall on a straight line at an angle of 45°,
indicating the fulfillment of the normality assumption. Figs. 12c and 13
c present a random distribution of data points around the horizontal
line, indicating the fulfillment of the homoscedasticity assumption.
Fig. 12d depicts that the PM2.5 regression model was free of outliers,
highly influential points, and high-leverage points. Fig. 13d indicates
that for the PM10 model there was an outlier data point—sample 164,
but it was not advisable to delete this outlier. In the multivariate LUR
models for PM2.5 and PM10, the coefficient of multiple determination
(Mul-R2), Adj-R2, and RMSE were all less than the respective averages
in the 10-fold cross-validation, which indicated that there was no
overfitting and underfitting and the LUR models had good general-
izability. For the spatial autocorrelation test of PM2.5 residuals, the p-
value was greater than 0.05 (95 % confidence level) and the z-score was
above the threshold of -1.65, indicating that the PM2.5 residuals were
randomly distributed in space without spatial clustering. For the PM10
residuals, the p-value of the spatial autocorrelation test was greater

Fig. 8. The matrix diagram of variable correlation coefficient of PM2.5 LUR
model.

Fig. 9. The matrix diagram of variable correlation coefficient of PM10 LUR
model.
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than 0.05 (95 % confidence level) and the z-score did not exceed the
threshold of 1.65, indicating that the PM10 residuals were also ran-
domly distributed in space without spatial clustering (Table 5).

3.2.3. Model verification for different heating seasons
To verify the applicability of the land use regression models in

different heating seasons in Xi'an, the authors used the pollutant data
from the recent heating season from November 15, 2019 to January 24,
2020 for verification. To exclude the impact of the novel coronavirus
pandemic, only part of the data for the entire heating season of
November 15, 2019-March 15, 2020 was selected. Affected by the
pandemic, since Jan 24, 2020, most factories have been shut down,
road traffic has declined sharply, and restaurants have been closed. The
reduction in emission sources has a great impact on the distribution of
pollutants. Compared with the model for the previous heating season,
the independent variables of the PM2.5 regression model of the recent
heating season are the same as those of the previous heating season.
Adjustable R2 = 0.636, which is lower than the value of the previous
season at 0.713; RMSE =0.759 μg/m3 is, also lower than 8.355 μg/m3,

the value of the previous season, as shown in Table 6. Table 7 shows
that the independent variables of the PM10 regression model of the
recent heating season are the same as those of the previous heating
season. Adjustable R2 = 0.639, lower than 0.681, the value of the
previous heating season; RMSE = 12.704 μg /m3, also lower than the
value from the previous heating season at 14.842 μg/m3. The PM2.5 and
PM10 land use regression models for the recent heating season exhibit
reduced accuracy in fitting and smaller errors, but they still have good
prediction capabilities, proving the applicability of the land use re-
gression models in different heating seasons.

3.3. Spatial distribution of PM2.5 and PM10

Xi’an was divided into a grid of 10,525 cells using ArcGIS, each of 1
km × 1 km area, and regression mapping was performed using the
PM2.5 and PM10 regression models. During regression mapping, the
independent variables associated with a cell were extracted at the
centroid of the cell and then substituted in the PM2.5 and PM10 re-
gression models to predict the concentrations of PM2.5 and PM10 for the

Table 3
Results of multiple stepwise regression for PM2.5。.

Estimate Std error t value Pr (> |t|) VIF Result

Intercept 1.051e+02 1.074e+00 97.857 <2e-16*** Multiple R-squared:
0.718
Adjusted R-squared: 0.713
RMSE：8.355 μg/m3

GS-4000 −1.494e-06 7.444e-08 −20.073 <2e-16*** 1.17
RE-5000 −6.894e-04 1.590e-04 −4.336 2.44e-05*** 1.28
PE-5000 1.964e+00 5.975e-01 3.288 0.00122** 1.17

Note: ***, ** and * indicate significant levels of significance at 0, 0.001, and 0.01 respectively.

Fig. 10. Scatter plots showing observed and predicted PM2.5 using LUR model.

Table 4
Results of multiple stepwise regression for PM10。.

Estimate Std error t value Pr (> |t|) VIF Result

Intercept 1.606e+02 2.282e+00 70.364 <2e-16*** Multiple R-squared:
0.688
Adjusted R-squared: 0.681
RMSE:14.842 μg/m3

MO-5000 1.832e-04 5.352e-05 3.423 0.00077 *** 1.04
GS-5000 −1.520e-06 8.540e-08 −17.803 <2e-16*** 1.21
BS-5000 −3.309e-02 8.159e-03 −4.056 7.49e-05*** 1.39
PE-5000 3.635e+00 1.106e+00 3.286 0.00123** 1.26

Note: ***, ** and * indicate significant levels of significance at 0, 0.001, and 0.01 respectively.

Fig. 11. Scatter plots showing observed and predicted PM10 using LUR model.
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Fig. 12. Regression diagnostic plots of PM2.5 LUR model.

Fig. 13. Regression diagnostic plots of PM10 LUR model.

Table 5
Cross-validation of models and spatial autocorrelation test of residuals.

PM2.5 PM10

LUR Cross-
validation

Spatial
Autocorrelation

LUR Cross-
validation

Spatial
autocorrelation

Mul R2 0.718 0.719 Moran I: -0.129
z score: -0.216
p-value: 0.828

Mul R2 0.688 0.691 Moran I: 0.589
z Score: 1.043
p-value: 0.297

Adj R2 0.713 0.713 Adj R2 0.681 0.682
RMSE 8.355 8.660 RMSE 14.842 15.609

Table 6
Results of multiple stepwise regression for PM2.5 in the new heating season.

Estimate Std.Error t value Pr(> | t |) Vif Result

Intercept 7.566e+01 9.906e-01 76.381 < 2e-16 *** Muliple R-squared:
0.642
Adjusted R-squared:
0.636
Rmse:7.596 μg/m3

GS-5000 −7.405e-07 4.302e-08 −17.212 < 2e-16 *** 1.18
RE-5000 −6.666e-04 1.450e-04 −4.596 8.15e-06 *** 1.29
PE-5000 1.083e+00 5.433e-01 1.994 0.0477 * 1.17

Note: ***, ** and * indicate significant levels of significance at 0, 0.001, and 0.01 respectively.
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cell. The spatial distribution maps (Figs. 14 and 15) of the concentra-
tions of PM2.5 and PM10 in Xi’an were generated using the visualization
function of ArcGIS, which presented significant differences between the
spatial distributions of the concentrations of PM2.5 and PM10 in Xi’an.

4. Discussion

4.1. Comparison with other studies

The correlation coefficients of the green-space area with respect to
the concentrations of PM2.5 and PM10 were the largest in each buffer

zone, and the coefficients increased with the increase in the area of the
buffer zone, which indicated that with increase in green space, the
negative correlation between the pollutant concentrations and the
green spaces was more significant. The independent variable shared by
the PM2.5 and PM10 land use regression prediction models of Xi'an is the
number of polluting enterprises with a buffer area of 5000 m.
Moreover, the results indicated that while green-space area was the
most critical independent variable in both the models, it exerted its
largest impact at various buffer-zone distances. In addition to the green-
space area, the PM2.5 LUR model also included the number of restau-
rants in the 5000-m-distance buffer zone as an independent variable,

Table 7
Results of multiple stepwise regression for PM10 in the new heating season.

Estimate Std.Error t value Pr(> | t |) Vif Result

Intercept 1.195e+02 2.129e+00 56.368 < 2e-16 *** Muliple R-squared:
0.647
Adjusted R-squared:
0.639
Rmse:12.704 μg/m3

MO-5000 1.504e-04 5.483e-05 2.743 0.0067 ** 1.04
GS-5000 −1.220e-06 5.384e-08 −22.659 < 2e-16 *** 1.21
BS-5000 −2.935e-02 5.769e-03 −5.088 9.22e-07 *** 1.39
PE-5000 1.810e+00 7.489e-01 2.4167 0.0167 * 1.26

Note: ***, ** and * indicate significant levels of significance at 0, 0.001, and 0.01 respectively.

Fig. 14. Spatial distribution map of PM2.5 in urban areas of Xi’an and regulatory management zone.
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whereas the PM10 LUR model included the number of bus stops and the
length of motorways in the 5000-m-distance buffer zone as two in-
dependent variables. The reason green-space area was the most critical
independent variable in both models was that Xi’an has a unique terrain
and urban morphology. That is to say, the forest coverage of Xi’an is as
high as 48 %, with a large area of green spaces and vegetation in the
Qinling and Li Mountains. There is a strong negative correlation be-
tween the concentration of pollutants and the green-space area of the
buffer zone and a significant positive correlation between the green-
space area of the buffer zone and its elevation with a correlation
coefficient of 0.86. The green-space area in a buffer zone around a
station with a high elevation tends to be big. It indirectly reflects the
strong negative correlation between the elevation of the monitoring
station and the concentration of pollutants. Comparison with the stu-
dies of other cities in Table 8 indicates that there are similarities among
Beijing, Czech-Poland and Xi'an in that a great number of mountains
and green-space areas exist in the territories of these study areas. These
researches also contain the independent variable of green-space area,
which shows that the pollutant distributions are all impacted by the
mountains and green space (Bitta, Pavlíková, Svozilík, & Jančík, 2018;
Ji et al., 2019; Wu et al., 2015). Those studies, except for that in Beijing
by Wu et al. (2015) did not include industry-related independent

variables. Other studies included the independent variable of pollution
emission or industrial land area. In this study, two industry-related
independent variables were selected, namely the area of industrial land
and the distance from air-polluting enterprise, and the distance from
air-polluting enterprises was finally included in the model. Moreover,
studies in Beijing and the other Chinese cities of Shanghai and Tianjin
also included road length as an independent variable (Chen, Bai et al.,
2010; Liu, Henderson, Wang, Yang, & Peng, 2016; Meng et al., 2016;
Wu et al., 2015), consistent with the present study. The Adj-R2 values of
the PM2.5 and PM10 LUR models of Xi’an were 0.713 and 0.681, re-
spectively, lower than the Adj-R2 values of 0.877 and 0.81, respectively,
obtained in LUR models of Shanghai (Liu et al., 2016) and Beijing (Ji
et al., 2019) but higher than 0.43–0.65 and 0.54, respectively, for
Beijing in another study (Wu et al., 2015) and Hong Kong (Lee et al.,
2017). Therefore, the Adj-R2 value obtained in this study was con-
sidered to represent a moderate level compared with other reports. This
study used data observed at 181 monitoring stations—the largest
number and density of monitoring stations among studies of this type.
However, the higher density of monitoring stations in this study did not
lead to improvement in fitting accuracy compared with other studies,
suggesting that fitting accuracy may not be simply dependent on the
number and density of monitoring stations.

Fig. 15. Spatial distribution map of PM10 in urban areas of Xi’an and regulatory management zone.
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4.2. Spatial distribution characteristics of pollutants in Xi’an

The concentrations of PM2.5 and PM10 had a strong correlation, with
the Pearson correlation coefficient as high as 0.864. Accordingly, the
concentrations of PM2.5 and PM10 in Xi’an presented basically the same
trend in spatial distribution except for in some local regions and each
pollutant demonstrated an overall decreasing trend of concentration
from the north to the south. The concentrations of PM2.5 and PM10 in
the Qinling Mountains south of Xi’an and Li Mountains east of Xi’an
were significantly lower than those in other areas, which was attributed
to the fact that the reduction of pollutant emission sources and increase
in vegetation have a mitigating effect on the concentrations of PM2.5
and PM10. You et al. (2016) performed the MODIS aerosol inversion to
derive the spatial distribution of the concentration of PM10 in Xi’an
during 2011–2013, finding a high concentration of PM10 accumulated
in the west and northeast of the main urban district of Xi’an, consistent
with the results of this study. However, You et al. (2016) did not ob-
serve the accumulation of high-concentration PM10 in the High-tech
Industry Development Zone (HIDZ) southwest of the main urban dis-
trict of Xi’an but observed it in the area east of the main urban district,
which is significantly different from the observations in this study. This
inconsistency may be attributed to the various data acquisition times
and data types used by You et al. (2016), i.e., MODIS AOD data,
compared with those used this study.
Outside the Qinling and Li Mountains, the concentrations of PM2.5

and PM10 were closely related to the layout of industrial land use and
the locations of air-polluting enterprises. Fig. 16 presents the layout of
industrial land use and the locations of air-polluting enterprises in
Xi’an. In particular, a large amount of industrial land existed in the
HIDZ southwest of the main urban district and the Huyi District (HYD)
and Caotang Science & Technology Zone (CSTZ) southwest of the reg-
ulatory management zone (RMZ), and a large number of industrial
enterprises were present in the Fengdong New City (FDNC) west of the
RMZ, leading to significantly higher concentrations of PM2.5 and PM10
in these areas compared with other areas. The Lintong District (LTD),
Gaoling District (GLD), and Yanliang District (YLD) in the northeast of
the RMZ were home to the Lintong District of Modern Industry
(LTDMI), Gaoling District of Equipment Industry (GLDEI), and Yanliang
District of Aviation Industry (YLDAI), respectively, with significantly
higher concentrations of PM2.5 and PM10 compared with other areas.
Huang et al. (2015) confirmed that the accumulation of PM2.5 in Xi’an
was closely related to industrial production. Wang et al. (2014) re-
ported that as high as 58 % of the concentrations of PM2.5 in Xi’an in the
heavy pollution months were caused by industrial activities. Song et al.
(2015) revealed that transportation and industrial emissions were the
main sources of PM2.5 in Xi’an. However, the correlation coefficients
between the areas of industrial and mining land use and the con-
centrations of PM2.5 and PM10 were quite small, and the correlation was
not statistically significant, which may be attributed to the possibility
that the information collected on industrial and mining land use was
not truly reflective of the actual situation.

4.3. Spatial distribution characteristics of pollutants in RMZ of Xi’an

The spatial distribution characteristics of PM2.5 and PM10 were in-
vestigated in the RMZ, which is larger than the main urban district.
Fig. 17 presents the layout of industrial land use, water systems, green
spaces, and roads, all of which were factors related to the distribution of
the concentrations of PM2.5 and PM10. The highest concentrations of
PM2.5 and PM10 were observed in the area named WREWTR, which lies
between the West Urban Ring Motorway and the West Third Ring Road,
and in the HIDZ area. Both of these areas and their adjacent spaces
contain a large industrial land and a large number of air-polluting en-
terprises, which also exist in the area north of the RMZ (NRMZ).
However, there was no accumulation of high concentrations of PM2.5
and PM10 in NRMZ, which may be attributed to the presence of largeTa
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Fig. 16. Layout of industrial land use and positions of air-polluting enterprises in Xi’an.

Fig. 17. Layout of industrial land use, water systems, green spaces, and ring roads in RMZ of Xi’an.
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water bodies and green spaces around the area due to its proximity to
the Wei River. On one hand, the large water bodies can generate wa-
ter–land breeze through a mechanism similar to sea–land breeze
(Bouchlaghem, Mansour, & Elouragini, 2007; Zhu & Zhou, 2019),
which, coupled with the open terrain and low building density of
NRMZ, facilitates the diffusion of the pollutants. On the other hand,
vegetation, green spaces, and wetlands can improve the removal effi-
ciency of PM2.5 and PM10 (Amini Parsa, Salehi, Yavari, & van Bodegom,
2019; Feng, Zou, & Tang, 2017; Selmi et al., 2016; Zhu & Zeng, 2018).
As depicted in Fig. 12, another high-concentration area of PM2.5 and
PM10 was ERMZ, which lies on the east of RMZ, in close proximity to
the Hongqing Industrial Zone (HQIZ), which is home to a large number
of industrial enterprises. The concentrations of PM2.5 and PM10 in most
areas within the Second Ring Road were generally lower than those in
the surrounding areas. The southern part of the RMZ (SRMZ) and the
Qujiang New Zone (QJNZ) in the southeastern part also had sig-
nificantly lower concentrations of PM2.5 and PM10 than those in sur-
rounding areas.
Vehicular emissions serve as a substantial source of PM2.5, leading

to rapidly increasing concentration of PM2.5. A study by Dai et al.
(2018) demonstrated that motor vehicles provided a continuously
growing contribution to the concentrations of PM2.5 during 2006–2014
in Xi’an. However, except for the WREWTR and HIDZ most areas in the
RMZ did not demonstrate the accumulation of high concentrations of
PM2.5 and PM10, indicating that industrial emissions were still the main
contributor to the concentrations of PM2.5 and PM10 in Xi’an. Wang
et al. (2019) reported that motor vehicles accounted for 11.13 % of the
concentrations of PM2.5 in Xi’an in the winter of 2017, significantly
lower than the contribution of 51.02 % through the combustion of coal.

4.4. Limitations

Owing to the limited time available for data collection, this study
focused on the heating season of Xi’an for investigating the spatial
distribution of PM2.5 and PM10, thus being unable to address the dis-
tribution in other seasons and, thereby, making it impossible to un-
derstand inter-seasonal differences in the spatial distribution of PM2.5
and PM10. The land-use data employed in this study were mainly re-
trieved from remote sensing images as the main data source. However,
these images were generated in an earlier time period than the pollu-
tion data, and, therefore, a certain degree of inter-period differences
were noticed in land use, possibly introducing errors into the results of
correlation analysis between the independent and dependent variables.
Owing to the lack of corresponding meteorological monitoring data at
the monitoring stations, this study did not consider the impact of me-
teorological factors such as wind direction, wind speed, air tempera-
ture, and humidity on the concentrations of PM2.5 and PM10. Further,
the accuracy of model fitting can be improved using pollutant con-
centration data observed under lower wind speeds.

5. Conclusions

This study is the first to apply land use regression models to the
Fenwei Plain, a heavily polluted area in China, and analyzes 87 factors
from five categories of information including land use information,
road traffic facility information, socioeconomic information, geospatial
information, and emission source information in Xi’an. The correlation
between the factors and the PM2.5 and PM10 concentrations of 181
monitoring stations were investigated. Based on the correlation analysis
results of independent variables and dependent variables, the land use
regression prediction models of PM2.5 and PM10 in Xi'an were estab-
lished. Cross-validation confirms that the model exhibits good perfor-
mance in spatial prediction and generalization, and the verification
with various time periods proves the applicability of LUR models in
different heating seasons. The model successfully predicted the PM2.5
and PM10 concentrations in 10,525 grids, revealing the variations in the

spatial distribution of PM2.5 and PM10 concentrations in Xi'an.
Within the city limit of Xi’an, the PM2.5 and PM10 concentrations

generally show a trend with high values in the north and low values in
the south. The concentrations of PM2.5 and PM10 in the Qinling
Mountains in the south and Li Mountains in the east are significantly
lower than those in other regions. The spatial distribution of PM2.5 and
PM10 is closely related to layout of industrial land and the location of
polluting enterprises. The spatial distribution of PM2.5 and PM10 in the
Regulatory Management Zone (RMZ) further confirms that large area of
green space can effectively reduce the concentrations of PM2.5 and
PM10. The RMZ has large traffic flow however only a small part of the
zone seems to have high concentration of pollutants, indicating that
industrial emissions are the main source of PM2.5 and PM10 in Xi'an,
followed by traffic emissions. This study enriches the application of
land use regression models in the prediction of the spatial distribution
of atmospheric pollutants and provides a scientific foundation for urban
planning, land use regulation, air pollution control, and public health
policy making. It presents a basic model for population exposure as-
sessment and promotes the application of land use regression models in
areas requiring heating in winter and heavily polluted areas. It plays a
positive role in achieving sustainability of urban environment and
promoting sustainable development in urban areas.
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