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a b s t r a c t 

Nowadays, COVID-19 has put a significant responsibility on all of us around the world from its detection 

to its remediation. The globe suffer from lockdown due to COVID-19 pandemic. The researchers are doing 

their best to discover the nature of this pandemic and try to produce the possible plans to control it. One 

of the most effective method to understand and control the evolution of this pandemic is to model it via 

an efficient mathematical model. In this paper, we propose to model COVID-19 pandemic by fractional 

order SIDARTHE model which did not appear in the literature before. The existence of a stable solution of 

the fractional order COVID-19 SIDARTHE model is proved and the fractional order necessary conditions of 

four proposed control strategies are produced. The sensitivity of the fractional order COVID-19 SIDARTHE 

model to the fractional order and the infection rate parameters are displayed. All studies are numerically 

simulated using MATLAB software via fractional order differential equation solver. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

All the world states’ governments introduce a big effort and vi-

al measures to eliminate the outbreak of COVID-19 [22] . COVID-19

s a new progeny of coronavirus, SARS-CoV-2 and firstly detected in

uhan, China [ 52 , 57 ]. In the few months after discovering it, the

umber of patients were increasing exponentially. The taken mea-

ures against COVID-19 until the day of writing these words didn’t

revent the growth of infected cases around the globe. The World

ealth Organization situation report published in 25 May 2020

nformed that 5,304,772 cases as total cases and 342,029 deaths

round the globe [54] . 

Using mathematical model to predict the epidemics is very use-

ul in order to understand the nature of the epidemic and to design

n efficient strategies to control it [ 4 , 8 , 14 , 26 , 27 ]. 

It is common to study the humanitarian diffusion of epidemics

ia SIR or SEIR models [ 11 , 13 , 33 , 48 ]. Various models have been
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roposed to model and study COVID-19 pandemic. Taking into ac-

ount the risk understanding and the accumulative issue of cases,

OVID-19 pandemic has been modeled by Lin et al. via extend-

ng SEIR model [38] where S signifies the susceptible, E signifies

he exposed, I signifies the infected and R signifies the removed

ases. In [3] , Anastassopoulou et al. have suggested the SIR model

n the discrete time mode taking into account the dead cases. In

9] by Casella, SIR model is expanded to study the delays effect

nd to compare the policies of containment. In [56] by Wu et al.,

he COVID-19 severity has been estimated using the dynamics of

ransition. In [ 25 , 34 ], random transition models have been stud-

ed. In [12] , the general multi-group SEIRA model was represented

nd numerically tested for modeling the diffusion of COVID-19

etween a non-homogeneous population. The basic mathematical

ool used to model several epidemics is differential equations in

arious modes (ordinary, fractional, with delay, randomly detected

r partial) [27-29] . 

Many research efforts have been widely done to control the

utbreaks of epidemics via optimal control [ 20 , 44-47 ]. The optimal

https://doi.org/10.1016/j.chaos.2020.110007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2020.110007&domain=pdf
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Fig. 1. Eight phases of COVID-19 epidemic interactions digraph ( � �) where S, I, D, 

A, R, T, H and E signify the population fractions explained in Table 1 where the 

sub-phases SI, SD, SA, SR are appeared. 
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control idea is to look for the utmost powerful plan that decreases

the rate of infection to a possible minimum limit with optimal

minimum cost of circulating a treatment or preventative inocula-

tion [ 39 , 44-47 , 51 ]. These plans may include treatments, inoculation

with vaccines, social distances, educational programs [ 6 , 10 ]. 

Studying the epidemiological diseases mathematically become

very important [ 6 , 7 , 16 , 17 , 37 , 40 ]. The literature has several studies

to control for example models of HIV [24] , dengue fever [2] , tuber-

culosis [50] , delayed SIR [1] and delayed SIRS [ 29 , 58 ]. 

The fractional order differential equations add an extra dimen-

sions in the study of dynamics of epidemiological models. There-

fore the fractional version of many epidemical models have been

investigated as in [ 29-32 , 39 , 41 ] and [53] . 

Here, a new epidemiological fractional mathematical model for

the COVID-19 epidemic is proposed as an extension of the classical

SIR model, similar to that introduced by Gumel et al. for SARS in

[23] and as a generalization of SIDARTHE model proposed in [21] .

As explained in Section 3 , in SIDARTHE model, the infected cases

are classified into five different classes depending on the detection

and the appearance of symptoms [21] . 

In this work, we consider the fractional order SIDARTHE model

and then we derive the fractional order necessary conditions for

existence of a stable solution. In addition, we study an optimal

control plans for the fractional order SIDARTHE model via four

control strategies that include the availability of vaccination and

existence of treatments for the infected detected three population

fraction phases. Applying the fractional order differential equations

numerical solver using MATLAB software, we show the dynamics

of the state variables of the model and display the effect of chang-

ing the fractional derivative order on the system response. Also,

the effect of changing the infection rates on the fractional order

SIDARTHE model’s state variables. We also implement the optimal

control strategies numerically for the fractional order SIDARTHE

model. 

The remaining parts of the paper are organized as follows.

In Section 2 , Preliminaries and basic definition of the fractional

derivative are introduced. Describing COVID-19 epidemic SIDARTHE

fractional mathematical model is introduced in Section 3 . The de-

tails of the optimal control strategy and its implementation are

given in Section 4 . Numerical simulations of the uncontrolled frac-
ional order SIDARTHE model, the effects of changing the fractional

erivative order on the system response and the effects of chang-

ng the infection rates are all given in Section 5 . Numerical simu-

ations of the controlled fractional order SIDARTHE model and the

ffects of applying the proposed control strategies are represented

n Section 6 . The concluding remarks are put in Section 7 followed

y the list of cited references. 

. Preliminaries 

Many definitions of fractional order derivatives exist such as

iemann-Lioville’s derivative, Grunwald Letnikov’s derivative, Ca-

uto’s derivative, Caputo-Fabrizio, Atangana-Baleanu, etc. The in-

erested reader can consult for example [ 42 , 43 ] and the refer-

nces therein for more details about fractional order defintions

ith applications. We have used Caputo’s definition throughout

he paper. Caputo fractional derivative operator �q of order q (see

 18 , 30 , 39 , 42 , 43 , 49 ]) is defined as: 

�q f (t) = 

1 
�( n −q ) 

∫ t 
0 

f (n ) (x ) 

( t−x ) q −n +1 dx, t > 0 , q > 0 , n − 1 < η ≤
, n ∈ N, where �(.) symbolizes the Gamma function. For more

etails about the basic definitions and characteristics of fractional

erivatives see [ 18 , 30 , 39 , 49 ]. 

Notation : For numerical simulations, the predictor-corrector

ECE method of Adams-Bashforth-Moulton type described in de-

ails in [ 15 , 19 ] has been utilized and programmed with MATLAB

oftware. 

. COVID-19 epidemic SIDARTHE fractional mathematical model

Giulia Giordano et al. in [21] modeled COVID-19 epidemic via

IDARTHE model and compare its response with the real data

n Italy. SIDARTHE model distinguishes between determined in-

ected cases and undetermined infected cases and between various

egrees of illness (DOI). In SIDARTHE COVID-19 epidemic model,

he total population is partitioned into eight phases of malady as

ecorded in the Table 1 . Fig. 1 shows the interaction graph ( � �) be-

ween the eight phases of malady. In Fig. 1 , the susceptible popula-

ion partition S is partitioned into four sub-phases to show the hid-

en sub-phases of the susceptible population partition S , namely

I , SD , SA and SR . The detailed interaction digraph in Fig. 1 is named
�
 that may be studied using graph theory tools to discover more

eatures about the model. 

COVID-19 epidemic SIDARTHE model is described mathemati-

ally by eight ordinary differential equations [21] . 

The deterministic characteristic is essential in modeling the epi-

emics transition phenomena; the fractional derivative is very use-

ul in modeling the epidemics transition systems because they con-

ider the memory effect and the universal properties of the sys-

em, that are primary in the deterministic feature. The system is

aid to have a memory effect if its future states depend on its cur-

ent states and the history of the states, and the fractional oper-

tor has this memory effect feature so it is very helpful in mod-

ling COVID-19 diffusion model . Here, as recorded in Eqs. (3.1) to

 3.8 ), the dynamics of the population in each phase with time is

escribed with eight fractional order ( q ) differential equations: 

q S ( t ) = −aSI − bSD − cSA − dSR (3.1)

q I ( t ) = aSI + bSD + cSA + dSR − eI − zI − gI (3.2)

q D ( t ) = eI − hD − rD (3.3)

q A ( t ) = zI − θA − mA − kA (3.4)
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Fig. 2. The time history of Susceptible cases (S(t)) and Infected, symptomless, undetermined cases (I(t)) with different fractional derivative order (q): (a) time history of S(t) 

with q = 0 . 7 , 0 . 8 , 0 . 9 , 1 ; (b) time history of I(t) with q = 0 . 7 , 0 . 8 , 0 . 9 , 1 . 

Fig. 3. The time history of Diagnosed, infected, symptomless, determined cases (D(t)) and Ailing, infected, symptomatic, undetermined cases (A(t)) with different fractional 

derivative order (q): (a) time history of D(t) with q = 0 . 7 , 0 . 8 , 0 . 9 , 1 ; (b) time history of A(t) with q = 0 . 7 , 0 . 8 , 0 . 9 , 1 . 

Table 1 

Eight phases of population modeling COVID-19 epidemic. 

Model symbol Phase of malady 

S S usceptible (not sick) population fraction. 

I I nfected (symptomless, undetermined) population fraction. 

D D iagnosed (infected, symptomless, determined) population fraction. 

A A iling (infected, with symptoms undetermined) population fraction. 

R R ecognized (infected, with symptoms, determined) population fraction. 

T T hreatened (infected, with life-menacing symptoms, determined) population fraction. 

H H ealed (recuperate) population fraction. 

E E xtinct (died out) population fraction. 
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Fig. 4. The time history of Recognized, infected, symptomatic, determined cases (R(t)) and Threatened, infected, symptomatic, determined cases (T(t)) with different fractional 

derivative order (q): (a) time history of R(t) with q = 0 . 7 , 0 . 8 , 0 . 9 , 1 ; (b) time history of T(t) with q = 0 . 7 , 0 . 8 , 0 . 9 , 1 . 

Fig. 5. The time history of the total infected cases: I(t) + D (t) + A (t) + R (t) + T (t) , with different fractional derivative order q = 0 . 7 , 0 . 8 , 0 . 9 , 1 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

�q R ( t ) = hD + θA − v R − xR (3.5)

�q T ( t ) = mA + v R − σ T − τT (3.6)

�q H ( t ) = gI + rD + kA + xR + σ T (3.7)

�q E ( t ) = τT (3.8)

Where the population fraction in each phase is modeled by a

state variable that is represented by an uppercase English letters

S, I, D, A, R, T, H and E . In the SIDARTHE model ( 3.1 ) to ( 3.8 ), the

parameters are symbolized by small Greek and English letters. All

model parameters are positive numbers and have been estimated

in [21] using the real data. Fig. 1 shows the impact of each differ-

ent phases of epidemic graphically. The SIDARTHE Covid-19 model

parameters have the following real meaning: 
• a signifies the rate of infection as a result of contacting among

a susceptible case and an infected case. 
• b signifies the rate of infection as a result of contacting among

a susceptible case and a diagnosed case. 
• c signifies the rate of infection as a result of contacting among

a susceptible case and an ailing case. 
• d signifies the rate of infection as a result of contacting among

a susceptible case and a recognized case. 
• e signifies the detection probability rate of infected symptom-

less cases. 
• θ signifies the detection probability rate of infected with symp-

toms cases. 
• z signifies the rate of probability at which an infected case is

not conscious of becoming infected. 
• h signifies the rate of probability at which an infected case is

conscious of becoming infected. 
• m signifies the rate at which undetermined infected case devel-

ops life-menacing signs. 
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Fig. 6. The time history of Healed cases (H(t)) and Died out (Extinct) cases (E(t)) with different fractional derivative order (q): (a) time history of R(t) with q = 

0 . 7 , 0 . 8 , 0 . 9 , 1 ; (b) time history of T(t) with q = 0 . 7 , 0 . 8 , 0 . 9 , 1 . 

Fig. 7. Three-dimensions plot of the state variables: Diagnosed, infected, symptomless, determined cases ( D (t)), Infected, symptomless, undetermined cases ( I (t)) and Sus- 

ceptible cases ( S (t)) with different fractional derivative order q = 0 . 7 , 0 . 8 , 0 . 9 , 1 . 

Fig. 8. Three-dimensions plot of the state variables: Healed cases ( H ( t )), Total infected ( I(t) + D (t) + A (t) + R (t) + T (t) and Susceptible cases ( S ( t )) with different fractional 

derivative order q = 0 . 7 , 0 . 8 , 0 . 9 , 1 . 
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Fig. 9. The phase plane of state variables: Total infected ( I(t) + D (t) + A (t) + R (t) + T (t) and susceptible cases ( S ( t )) with different fractional derivative order q = 

0 . 7 , 0 . 8 , 0 . 9 , 1 . 

Fig. 10. The phase plane of state variables: Total infected T I(t) = I(t) + D (t) + A (t) + R (t) + T (t) and Healed cases ( H ( t )) with different fractional derivative order q = 

0 . 7 , 0 . 8 , 0 . 9 , 1 . 
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• v signifies the rate at which the determined infected case de-

velops life-menacing signs. 
• τ signifies the death rate (for infected cases with life-menacing

signs). 
• g, k, x, r and σ signify the rate of healing for the five phases of

infected cases. 

For more details about the model choices see [21] and the ref-

erences cited there. 

3.1. SIDARTHE fractional order mathematical model discussion 

From Eqs. (3.1) to ( 3.8 ) and since the states H ( t ) and E ( t ) are

sink vertices in the model graph 

�
 �(see Fig. 1 ), then they are con-

sidered as accumulative state variables that rely only on their own

starting situations and the other state variables. 

Since summing up all Eqs. (3.1) to ( 3.8 ) gives zero as a result

then the system is compartmentalized and shows the conservation

property of mass: as can be directly proved, 

D q S(t) + D q I(t) + D q D (t) + D q A (t) + D q R (t) + D q T (t) + D q H(t) + D q E(t) = 0 (3.9)
Which implies that the total population (the sum of all state

ariables) is constant. Let 

 = [ S ( t ) , I ( t ) , D ( t ) , A ( t ) , R ( t ) , T ( t ) , H ( t ) , E ( t ) ] 
tr (3.10)

e the state variables vector. Since the state variables signify the

opulation fractions, we can suppose that 
∑ 

∀ i 

X(i ) = 1 , such that 1

ignifies the total population, dead are included. 

.2. Existence of uniformly stable solution of COVID-19 epidemic 

IDARTHE fractional mathematical model 

Assume that 

q S ( t ) = −aSI − bSD − cSA − dSR = f 1 ( S, I, D, A, R, T , H, E ) 

(3.11)

q I ( t ) = aSI + bSD + cSA + dSR − eI − zI − gI = f 2 ( S, I, D, A, R, T, H, E ) 

(3.12)



M. Higazy / Chaos, Solitons and Fractals 138 (2020) 110 0 07 7 

Fig. 11. The effect of changing the rate of infection (parameter a ) on different population phases at day 60 with different fractional derivative order q = 0 . 7 , 0 . 8 , 0 . 9 , 1 . 

Fig. 12. The effect of changing the rate of infection (parameter b ) on different population phases at day 60 with different fractional derivative order q = 0 . 7 , 0 . 8 , 0 . 9 , 1 . 
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q D ( t ) = eI − hD − rD = f 3 ( S, I, D, A, R, T , H, E ) (3.13)

q A ( t ) = zI − θA − mA − kA = f 4 ( S, I, D, A, R, T , H, E ) 

(3.14) 

q R ( t ) = hD + θA − v R − xR = f 5 ( S, I, D, A, R, T , H, E ) 

(3.15) 

q T ( t ) = mA + v R − σ T − τT = f 6 ( S, I, D, A, R, T , H, E ) 

(3.16) 

q H ( t ) = gI + rD + kA + xR + σ T = f 7 ( S, I, D, A, R, T , H, E ) 

(3.17) 
q E ( t ) = τT = f 8 ( S, I, D, A, R, T , H, E ) (3.18) 

Assume for a constant N that 

= 
{
( S ( t ) , I ( t ) , D ( t ) , A ( t ) , R ( t ) , T ( t ) , H ( t ) , E ( t ) ) ∈ R 8 : | X ( i ) | ≤ N and t ∈ [ 0 , T ] . 

Then over 	, we have 

∂ f 1 
∂S 

= −aI − bD − cA − dR ⇒ 

∣∣∣ ∂ f 1 
∂S 

∣∣∣ = aI + bD + cA + dR ≤ k 11 ;
∂ f 1 
∂ I 

= −aS ⇒ 

∣∣∣ ∂ f 1 
∂ I 

∣∣∣ = aS ≤ k 12 ; ∂ f 1 
∂D 

= −bS ⇒ 

∣∣∣ ∂ f 1 
∂D 

∣∣∣ = bS ≤ k 13 ;
∂ f 1 
∂A 

= −cS ⇒ 

∣∣∣ ∂ f 1 
∂A 

∣∣∣ = cS ≤ k 14 ; ∂ f 1 
∂R 

= −DS ⇒ 

∣∣∣ ∂ f 1 
∂R 

∣∣∣ = DS ≤ k 15 ;
∂ f 1 
∂T 

= 0 ⇒ f 1 (T ) = k 16 ; ∂ f 1 
∂H 

= 0 ⇒ f 1 (H) = k 17 ; ∂ f 1 
∂E 

= 0 ⇒ f 1 (E) = k 18 ;
(3.19) 

∂ f 2 
∂S 

= aI + bD + cA + dR ⇒ 

∣∣∣ ∂ f 2 
∂S 

∣∣∣ = aI + bD + cA + dR ≤ k 21 ;
∂ f 2 
∂ I 

= aS − (e + z + g) ⇒ 

∣∣∣ ∂ f 2 
∂ I 

∣∣∣ = aS + (e + z + g) ≤ k 22 ;
∂ f 2 
∂D 

= bS ⇒ 

∣∣∣ ∂ f 2 
∂D 

∣∣∣ = bS ≤ k 23 ;
∂ f 2 
∂A 

= cS ⇒ 

∣∣∣ ∂ f 2 
∂A 

∣∣∣ = cS ≤ k 24 ;
∂ f 2 
∂R 

= DS ⇒ 

∣∣∣ ∂ f 2 
∂R 

∣∣∣ = DS ≤ k 25 ;
∂ f 2 
∂T 

= 0 ⇒ f 2 (T ) = k 26 ;
∂ f 2 
∂H 

= 0 ⇒ f 2 (H) = k 27 ;
∂ f 2 
∂E 

= 0 ⇒ f 2 (E) = k 28 . 

(3.20) 
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Fig. 13. The effect of changing the rate of infection (parameter a ) on all population phases over time where the fractional derivative order q = 0 . 7 . 

Fig. 14. The effect of changing the rate of infection (parameter a ) on all population phases over the time where the fractional derivative order q = 0 . 8 . 

 

 

 

 

∂ f 3 
∂S 

= 0 ⇒ f 3 (S) = k 31 ; ∂ f 3 
∂ I 

= e ⇒ 

∣∣∣ ∂ f 3 
∂ I 

∣∣∣ ≤ k 32 ;
∂ f 2 
∂D 

= −h − r ⇒ 

∣∣∣ ∂ f 3 
∂D 

∣∣∣ = h + r ≤ k 33 ; ∂ f 3 
∂A 

= 0 ⇒ f 3 (A ) = k 34 ;
∂ f 3 
∂R 

= 0 ⇒ f 3 (R ) = k 35 ; ∂ f 3 
∂T 

= 0 ⇒ f 3 (T ) = k 36 ; ∂ f 3 
∂H 

= 0 ⇒ f 3 (H) = k 37 ;
∂ f 3 
∂E 

= 0 ⇒ f 3 (E) = k 38 . 

(3.21)

∂ f 4 
∂S 

= 0 ⇒ f 4 (S) = k 41 ; ∂ f 4 
∂ I 

= z ⇒ 

∣∣∣ ∂ f 4 
∂ I 

∣∣∣ ≤ k 42 ;
∂ f 4 
∂D 

= 0 ⇒ f 4 (S) = k 43 ; ∂ f 4 
∂A 

= −θ − m − k ⇒ 

∣∣∣ ∂ f 4 
∂A 

∣∣∣ ≤ k 44 ;
∂ f 4 
∂R 

= 0 ⇒ f 4 (R ) = k 45 ; ∂ f 4 
∂T 

= 0 ⇒ f 4 (T ) = k 46 ; ∂ f 4 
∂H 

= 0 ⇒ f 4 (H) = k 47 ;
∂ f 4 
∂E 

= 0 ⇒ f 4 (E) = k 48 . 

(3.22)
∂ f 5 
∂S 

= 0 ⇒ f 5 (S) = k 51 ; ∂ f 5 
∂ I 

= 0 ⇒ f 5 (I) = k 52 ;
∂ f 5 
∂D 

= h ⇒ 

∣∣∣ ∂ f 5 
∂D 

∣∣∣ ≤ k 53 ; ∂ f 5 
∂A 

= θ ⇒ 

∣∣∣ ∂ f 5 
∂A 

∣∣∣ ≤ k 54 ;
∂ f 5 
∂R 

= −v − x ⇒ 

∣∣∣ ∂ f 5 
∂R 

∣∣∣ ≤ k 55 ; ∂ f 5 
∂T 

= 0 ⇒ f 5 (T ) = k 56 ; ∂ f 5 
∂H 

= 0 ⇒ f 5 (H) = k 57 ;
∂ f 5 
∂E 

= 0 ⇒ f 5 (E) = k 58 . 

(3.23)

∂ f 6 
∂S 

= 0 ⇒ f 6 (S) = k 61 ; ∂ f 6 
∂ I 

= 0 ⇒ f 6 (I) = k 62 ;
∂ f 6 
∂D 

= 0 ⇒ f 6 (D ) = k 63 ; ∂ f 6 
∂A 

= m ⇒ 

∣∣∣ ∂ f 6 
∂A 

∣∣∣ ≤ k 64 ;
∂ f 6 
∂R 

= v ⇒ 

∣∣∣ ∂ f 6 
∂R 

∣∣∣ ≤ k 65 ; ∂ f 6 
∂T 

= −σ − τ ⇒ 

∣∣∣ ∂ f 6 
∂T 

∣∣∣ ≤ k 66 ; ∂ f 6 
∂H 

= 0 ⇒ f 6 (H) = k 67 ;
∂ f 6 
∂E 

= 0 ⇒ f 6 (E) = k 68 . 

(3.24)
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Fig. 15. The effect of changing the rate of infection (parameter a ) on all population phases over the time where the fractional derivative order q = 0 . 9 . 

Fig. 16. The effect of changing the rate of infection (parameter a ) on all population phases over the time where the fractional derivative order q = 1 . 
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∂ f 7 
∂S 

= 0 ⇒ f 7 (S) = k 71 ; ∂ f 7 
∂ I 

= g ⇒ 

∣∣∣ ∂ f 7 
∂ I 

∣∣∣ ≤ k 72 ;
∂ f 7 
∂D 

= r ⇒ 

∣∣∣ ∂ f 7 
∂D 

∣∣∣ ≤ k 73 ; ∂ f 7 
∂A 

= k ⇒ 

∣∣∣ ∂ f 7 
∂A 

∣∣∣ ≤ k 74 ;
∂ f 7 
∂R 

= x ⇒ 

∣∣∣ ∂ f 7 
∂R 

∣∣∣ ≤ k 75 ; ∂ f 7 
∂T 

= σ ⇒ 

∣∣∣ ∂ f 7 
∂T 

∣∣∣ ≤ k 76 ; ∂ f 7 
∂H 

= 0 ⇒ f 7 (H) = k 77 ;
∂ f 7 
∂E 

= 0 ⇒ f 7 (E) = k 78 . 

(3.25) 

∂ f 8 
∂S 

= 0 ⇒ f 8 (S) = k 81 ; ∂ f 8 
∂ I 

= 0 ⇒ f 8 (I) = k 82 ;
∂ f 8 
∂D 

= 0 ⇒ f 8 (S) = k 83 ; ∂ f 8 
∂A 

= 0 ⇒ f 8 (A ) = k 84 ;
∂ f 8 
∂R 

= 0 ⇒ f 8 (R ) = k 85 ; ∂ f 8 
∂T 

= τ ⇒ 

∣∣∣ ∂ f 8 
∂T 

∣∣∣ ≤ k 86 ; ∂ f 8 
∂H 

= 0 ⇒ f 8 (H) = k 87 ;
∂ f 8 
∂E 

= 0 ⇒ f 8 (E) = k 88 . 

(3.26) 
here k ij (1 ≤ i , j ≤ 8) are all positive constants. Then from ( 3.19 )

o ( 3.26 ), each of the eight functions f 1 , f 2 , . . . , f 8 agree with the

ipschitz condition [ 18 , 39 ]. With respect to the eight arguments,

hen all eight functions are absolutely continuous. 

. Fractional order SIDARTHE model’s optimal control strategy 

In this area, the existence of the fractional order SIDARTHE

odel’s optimal control is investigated and then the Hamiltonian

f the optimal control problem is constructed in order to produce

he optimal control necessary requirements. 

Compute the optimal values of vaccination u 1 and treatment

trategies u 2 , u 3 , u 4 that would maximize the Healed population

hase ( H ) and minimize the determined infected phases ( D , R , T )

nd susceptible ( S ) population phases. In addition, the charges of

tilizing the vaccination and treatment methods are minimized.

hen the optimal control problem of the following form is con-
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Fig. 17. The effect of changing the rate of infection (parameter b ) on all population phases over the time where the fractional derivative order q = 0 . 8 . 

Fig. 18. The effect of changing the rate of infection (parameter b ) on all population phases over the time where the fractional derivative order q = 1 . 
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sidered (see for example [ 1 , 2 , 5 , 6 , 10 , 20 , 24 , 25 , 34 , 37 , 44-47 ]. 

min 
( u 1 , u 2 , u 3 , u 4 ) ∈ U 

M(U(t)) = 

⎧ ⎨ 

⎩ 

S( T f ) + D ( T f ) + R ( T f ) + T ( T f ) − H( T f ) 

+ 

T ∫ 
0 

(
( c 1 u 

2 
1 + c 2 u 

2 
2 + c 3 u 

2 
3 + c 4 u 

2 
4 ) 

+ S(t ) + D (t ) + R (t ) + T (t ) − H(t ) 

)
dt 

(4.1)

That obeys the constraints 

�q S(t) = −(aS(t ) I(t ) + bS(t ) D (t ) + cS(t ) A (t ) + dS(t ) R (t )) − u 1 S(t) = f 1 , 

�q I(t) = aS(t ) I(t ) + bS(t ) D (t ) + cS(t ) A (t ) + dS(t ) R (t ) − (e + z + g) I(t) = f 2 , 

�q D (t) = eI(t) − (h + r) D (t) − u 2 D (t) = f 3 , 

�q A (t) = zI(t) − (θ + m + k ) A (t) = f 4 , 

�q R (t) = hD (t) + θA (t) − (v + x ) R (t) − u 3 R (t) = f 5 , 

�q T (t) = mA (t) + v R (t) − (σ + τ ) T (t) − u 4 T (t) = f 6 , 

�q H(t) = gI(t) + rD (t) + kA (t) + xR (t) + σ T (t) = f 7 , 

�q E(t) = τT (t) = f 8 . 

(4.2)

The control function u 1 ( t ) represents the vaccination strategy

applied on the susceptible ( S ) population phase. The three control
unctions u 2 ( t ), u 3 ( t ), u 4( t ) signify the treatment strategies applied

n the determined infected population phases ( D , R , T ). All of the

ontrol functions are supposed to be L ∞ (0, T f ) ( T f is the final time)

unctions belong to a collection of permissible controls: 

 = { ( u 1 , u 2 , u 3 , u 4 ) ∈ ( L 8 (0 , T f )) 
4 : u i min ≤ u i (t) ≤ u i max ≤ 1 , i = 1 , ..., 4 } . 

The four constants c 1 , c 2 , c 3 and c 4 are the cost correspond to

tilizing each control function. 

The uncontrolled system (put u i = 0 in ( 4.2 )). For certain ini-

ial conditions: S(0) = S 0 , I(0) = I 0 , D (0) = D 0 , A (0) = A 0 , R (0) =
 0 , T (0) = T 0 , H(0) = H 0 , E(0) = E 0 such that their sum equal

ne, it is obvious that the final values of the state vari-

bles approach to an equilibrium: S( T f ) = S f , I( T f ) = 0 , D ( T f ) =
 , A ( T f ) = 0 , R ( T f ) = 0 , T ( T f ) = 0 , H( T f ) = H f , E( T f ) = E f where

 f + H f + E f = 1 which means that the phenomenon of epidemic

s finished (see [21] ). The possible equilibrium points of the sys-

em are given by ( S f , 0, 0, 0, 0, 0, H f , E f ), where S f + H f + E f = 1 . 
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Fig. 19. The effect of changing the rate of infection (parameter c ) on all population phases over the time where the fractional derivative order q = 0 . 8 . 

Fig. 20. The effect of changing the rate of infection (parameter c ) on all population phases over the time where the fractional derivative order q = 1 . 
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The incidence function of the system is: 

f (S, I, D, A, R, T ) = S(t )(aI(t ) + bD (t) + cA (t) + dR (t)) (4.3)

In the following result, the existence of the optimal control is

roved. 

heorem 4.1. For the problem of optimal control ( 4.1 ) with con-

traints ( 4.2 ). There exists an 

optimal controls quadruple ( u 1 , u 2 , u 3 , u 4 ) ∈ U and a related opti-

al states ( S ∗, I ∗, D 

∗, A 

∗, R ∗, T ∗, H 

∗, E ∗) which minimize the objective

unction M( U ( t )) over a collection of permissible controls U. 

Proof. In order to prove the optimal control quadruple

 u 1 , u 2 , u 3 , u 4 ) existence, it is important to confirm the next asser-

ions. 

I) The controls’ collection and the related state variables is not

empty. 
II) The collection of permissible controls U is closed and convex. 

II) The state model ( 4.2 ) is limited.s 

V) The integration part of the objective function ( 4.1 )

∫ SIDART HE ( u 1 , u 2 , u 3 , u 4 ) is convex on the collection U . 

The hessian matrix of integration part of the objective function

 4.1 ) ∫ SIDART HE ( u 1 , u 2 , u 3 , u 4 ) on U is given by: 

essian = 

⎛ 

⎜ ⎝ 

2 c 1 0 0 0 

0 2 c 2 0 0 

0 0 2 c 3 0 

0 0 0 2 c 4 

⎞ 

⎟ ⎠ 

, 

SP ( Hessian ) = { 2 c 1 , 2 c 2 , 2 c 3 , 2 c 4 } ∈ R + ∗, then the integration

art of the objective function ( 4.1 ) ∫ SIDART HE ( u 1 , u 2 , u 3 , u 4 ) is ro-

ustly convex in U . 
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Fig. 21. The effect of changing the rate of infection (parameter d ) on all population phases over the time where the fractional derivative order q = 0 . 8 . 

Fig. 22. The effect of changing the rate of infection (parameter d ) on all population phases over the time where the fractional derivative order q = 1 . 
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∫
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(I) There are constants β1 > 0 and β2 , β3 > 1 where

∫ SIDART HE ( u 1 , u 2 , u 3 , u 4 ) satisfies: 

∫ 
SIDART HE 

( u 1 , u 2 , u 3 , u 4 ) ≥ β1 | ( u 1 , u 2 , u 3 , u 4 ) | β3 − β2 . 

∫ 
SIDART HE 

( u 1 , u 2 , u 3 , u 4 ) = c 1 u 

2 
1 (t) + c 2 u 

2 
2 (t) + c 3 u 

2 
3 (t) 

+ c 4 u 

2 
4 (t) + S(t) + D (t) + R (t) + T (t) − H(t) 

≥ min ( c 1 , c 2 , c 3 , c 4 )(u 

2 
1 (t) + u 

2 
2 (t) + u 

2 
3 (t) + u 

2 
4 (t)) − H(t) 

Since S + I + D + A + R + T + H + E = 1 then H ( t ) is bounded.

That is mean there exist two constants H 1 and H 2 such that

H 1 ≤ H ( t ) ≤ H 2 , ∀ t 

Assume that β1 = min ( c 1 , c 2 , c 3 , c 4 ) and β2 = H 2 , then we

have: 

∫ ( u 1 , u 2 , u 3 , u 4 ) ≥ β1 ‖ 

( u 1 , u 2 , u 3 , u 4 ) ‖ 

2 − β2 . 

SIDART HE 

 

.1. Implementation of optimal control 

This subsection records the needed conditions for the op-

imal control to be exist. The necessary conditions are com-

uted here via constructing the Hamiltonian ( �) and satisfy-

ng the maximum basis of Pontryagin [5] . Let us denote by X =
 S(t) , I(t) , D (t) , A (t) , R (t) , T (t) , H(t) , E(t) ] tr the system states,

y u (t) = [ u 1 , u 2 , u 3 , u 4 ] 
tr the vector of control functions, by

(t) = [ λ1 , λ2 , λ3 , λ4 , λ5 , λ6 , λ7 , λ8 ] the Lagrange multipliers

nd by ∫ SIDART HE (X(t) , u (t)) the integration part of the objective

unction ( 3.1 ). 

Then the Hamiltonian � = �(X(t) , λ(t) , u (t) =
 SIDART HE (X(t) , u (t)) + λtr . �q X(t) , 

= c 1 u 

2 
1 + c 2 u 

2 
2 + c 3 u 

2 
3 + c 4 u 

2 
4 + S + D + R + T − H + 

8 ∑ 

i =1 

λi . f i

(4.4)
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Fig. 23. The effect of changing the fractional derivative order q on the system eight Lyapunov exponents (LE1, LE2, …, LE8). 
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Assume that the characterization functional is formed as: 

[ 0 , T f ] (t) = 

{
1 , if t ∈ 

[
0 , T f 

]
, 

0 , otherwise . 
(4.5) 

Assume that u ∗(t) = [ u ∗
1 
, u ∗

2 
, u ∗

3 
, u ∗

4 
] tr is the optimal controls

nd X ∗ = [ S ∗(t) , I ∗(t) , D 

∗(t) , A 

∗(t) , R ∗(t) , T ∗(t) , H 

∗(t) , E ∗(t) ] tr 

e the related optimal population phases fractions. Consequently,

here exists λ( t ) ∈ R 

8 such that the necessary conditions for the

ptimal control to be exist are produced by (see for example [5] ):

∂�
∂u 

(t) = 0 , 
q X (t) = 

∂�
∂λ

, 
q λ = − ∂�

∂X 

(4.6) 

From ( 4.4 ) and ( 4.6 ), the optimization constraints can be found

s: 

∂�
∂ u 1 

(t) = 2 c 1 u 

∗
1 
− λ1 S = 0 , 

∂�
∂ u 2 

(t) = 2 c 2 u 

∗
2 
− λ3 D = 0 , 

∂�
∂ u 3 

(t) = 2 c 3 u 

∗
3 
− λ5 R = 0 , 

∂�
∂ u 4 

(t) = 2 c 4 u 

∗
4 
− λ6 T = 0 , 

(4.7) 

From ( 4.7 ), we can find that 

 

∗
1 

= min 

{
u 1 max , max 

{
0 , 

λ1 (t) S(t) 
2 c 1 

}}
, 

 

∗
2 

= min 

{
u 2 max , max 

{
0 , 

λ3 (t) D (t) 
2 c 2 

}}
, 

 

∗
3 

= min 

{
u 3 max , max 

{
0 , 

λ5 (t) R (t) 
2 c 3 

}}
, 

 

∗
4 

= min 

{
u 3 max , max 

{
0 , 

λ6 (t) T (t) 
2 c 4 

}}
. 

(4.8) 

From the state variables system given in ( 4.2 ), the co-state con-

itions are: 

d λi 

dt 
(t) = −∂�

∂ X i 

(t) , i = 1 , 2 , ..., 8 . (4.9)

Which can be simplified to produce the following co-state sys-

em: 

q λ1 (t) = −∂�

∂S 
(t) = −1 + ( aI + bD + cA + dR ) ( λ1 (t) + λ2 (t) ) 

+ u 1 λ1 (t) ;
q λ2 (t) = −∂�

∂ I 
(t) = aS( λ1 (t) − λ2 (t)) + (e + z + g) λ2 (t) 

− e λ3 (t) − z λ4 (t) − g λ7 (t) ;
q λ3 (t) = −∂�

∂D 

(t) = −1 + bS λ1 (t) − bS λ2 (t) 

+ (h + r + u 2 ) λ3 (t) − h λ5 (t) − r λ7 (t) ;
q λ4 (t) = −∂�

∂A 

(t) = cS λ1 (t) − cS λ2 (t) + (θ + m + k ) λ4 (t) 

− θλ5 (t) − m λ6 (t) − k λ7 (t) ;
q λ5 (t) = −∂�

∂R 

(t) = −1 + dS λ1 (t) − dS λ2 (t) + (v + x + u 3 ) λ5 (

− v λ6 (t) − x λ7 (t) ;
q λ6 (t) = −∂�

∂T 
(t) = −1 + (σ + τ + u 4 ) λ6 (t) − σλ7 (t) − τλ8 (t

q λ7 (t) = −∂�

∂H 

(t) = 1 ;

q λ8 (t) = −∂�

∂E 
(t) = 0 ; (4.1

The transversality conditions leads to λi ( T f ) = { −1 , i = 7 

1 , otherw ise. 

otation 4. .2. From the above discussion, it is obvious that 

I The Hamiltonian functional � is robustly convex in the vari-

ables of control. 

II The state Eqs. (4.2) and co-state Eqs. (4.10) are Lipschitz contin-

uous. 

III The collection of permissible controls U is convex. 

The effect of applying the different control strategies will be

imulated numerically in Section 6 . 

. Fractional order numerical simulation of the SIDARTHE 

ncontrolled model 

In this fifth section, we solve the fractional order SIDARTHE

odel numerically utilizing the predictor-corrector PECE method

f Adams-Bashforth-Moulton type described in details in [ 15 , 19 ]. 

The parameters’ values used for the numerical simulation

re estimated from the Italian real life statistics published

n [21] where: a = 0 . 57 ; b = 0 . 0114 ; c = 0 . 456 ; d; 0 . 0114 ; e =
 . 171 ; θ = 0 . 3705 ; z = 0 . 1254 ; h = 0 . 1254 ; m = 0 . 0171 ; v =
 . 0274 ; τ = 0 . 01 ; g = 0 . 0342 ; r = 0 . 0342 ; k = 0 . 0171 ; x =
 . 0171 ; σ = 0 . 0171 . 
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Fig. 24. Lyapunov Exponents of the model over time: (a) q = 1 (b) q = 0 . 9 (c) 

q = 0 . 8 (d) q = 0 . 7 . 

 

 

X

 

u  

t  

l  

t  

(  

p  

t  

m  

(  

t  

h  

(  

(  

t  

q  

t  

f  

p  

t  

(  

t  

d  

t  

m  

t  

t  

t  

t  

0  

s  

D  

f  

p  

A  

t  

p  

A  

d

 

t  

n  

f  

t

5

 

t  

v  

c  

l  

q  

o  

6  

F  

(  

t  

d  

a  

t  

f  

l  
The total population are taken 100 Million and the initial values

of the different population phases after normalization are (let N be

the total population): 

I ( 0 ) = 

200 

N 

; D ( 0 ) = 

20 

N 

; A ( 0 ) = 

1 

N 

;

R ( 0 ) = 

2 

N 

; T ( 0 ) = 0 ; H ( 0 ) = 0 ; E ( 0 ) = 0 ;

S ( 0 ) = 1 − I ( 0 ) − D ( 0 ) − A ( 0 ) − R ( 0 ) − T ( 0 ) − H ( 0 ) − E ( 0 ) ;
 ( 0 ) = [ S ( 0 ) , I ( 0 ) , D ( 0 ) , A ( 0 ) , R ( 0 ) , T ( 0 ) , H ( 0 ) , E ( 0 ) ] ;
In the following, we display the results of the numerical sim-

lation of the uncontrolled SIDARTHE model. Fig. 2 displays the

ime history of susceptible cases (S(t)) and infected, symptom-

ess, undetermined cases (I(t)) with different fractional deriva-

ive order (q): (a) time history of S(t) with q = 0 . 7 , 0 . 8 , 0 . 9 , 1 ;

b) time history of I(t) with q = 0 . 7 , 0 . 8 , 0 . 9 , 1 . Fig. 3 dis-

lays the time history of diagnosed, infected, symptomless, de-

ermined cases (D(t)) and ailing, infected, symptomatic, undeter-

ined cases (A(t)) with different fractional derivative order (q):

a) time history of D(t) with q = 0 . 7 , 0 . 8 , 0 . 9 , 1 ; (b) time his-

ory of A(t) with q = 0 . 7 , 0 . 8 , 0 . 9 , 1 . Fig. 4 displays the time

istory of recognized, infected, symptomatic, determined cases

R(t)) and threatened, infected, symptomatic, determined cases

T(t)) with different fractional derivative order (q): (a) time his-

ory of R(t) with q = 0 . 7 , 0 . 8 , 0 . 9 , 1 ; (b) time history of T(t) with

 = 0 . 7 , 0 . 8 , 0 . 9 , 1 . Fig. 5 displays the time history of the to-

al infected cases: T I(t) = I(t) + D (t) + A (t) + R (t) + T (t) , with dif-

erent fractional derivative order q = 0 . 7 , 0 . 8 , 0 . 9 , 1 . Fig. 6 dis-

lays the time history of healed cases (H(t)) and died out (Ex-

inct) cases (E(t)) with different fractional derivative order (q):

a) time history of R(t) with q = 0 . 7 , 0 . 8 , 0 . 9 , 1 ; (b) time his-

ory of T(t) with q = 0 . 7 , 0 . 8 , 0 . 9 , 1 . Fig. 7 displays the three-

imensions plot of the state variables: diagnosed, infected, symp-

omless, determined cases ( D (t)), infected, symptomless, undeter-

ined cases ( I (t)) and susceptible cases ( S (t)) with different frac-

ional derivative order q = 0 . 7 , 0 . 8 , 0 . 9 , 1 . Fig. 8 displays the

hree-dimensions plot of the state variables: healed cases ( H ( t )),

otal infected ( T I (t) = I (t) + D (t) + A (t) + R (t) + T (t) and suscep-

ible cases ( S ( t )) with different fractional derivative order q =
 . 7 , 0 . 8 , 0 . 9 , 1 . Fig. 8 displays the three-dimensions plot of the

tate variables: healed cases ( H ( t )), total infected ( T I(t) = I(t) +
 (t) + A (t) + R (t) + T (t) and susceptible cases ( S ( t )) with different

ractional derivative order q = 0 . 7 , 0 . 8 , 0 . 9 , 1 . Fig. 9 displays the

hase plane of state variables: total infected ( T I(t) = I(t) + D (t) +
 (t) + R (t) + T (t) and susceptible cases ( S ( t )) with different frac-

ional derivative order q = 0 . 7 , 0 . 8 , 0 . 9 , 1 . Fig. 10 displays the

hase plane of state variables: total infected T I(t) = I(t) + D (t) +
 (t) + R (t) + T (t) and healed cases ( H ( t )) with different fractional

erivative order q = 0 . 7 , 0 . 8 , 0 . 9 , 1 . 

From the results and the figures mentioned here, we can state

hat decreasing the fractional derivative order q decreases the

umber of each population phase (except Susceptible population

raction as expected) and flatten the curves also delays reaching

he maximum in each population phase. 

.1. Parameters impact on different population phases 

In this subsection, we show the effect of changing certain sys-

em parameters on different population phases at day 60 with

arious fractional derivative order. Fig. 11 displays the effect of

hanging the rate of infection (parameter a ) on different popu-

ation phases at day 60 with different fractional derivative order

 = 0 . 7 , 0 . 8 , 0 . 9 , 1 . Fig. 12 displays the effect of changing the rate

f infection (parameter b ) on different population phases at day

0 with different fractional derivative order q = 0 . 7 , 0 . 8 , 0 . 9 , 1 .

igs. 13 , 14 , 15 , 16 display the effect of changing the rate of infection

parameter a ) on all population phases over time where the frac-

ional derivative order q = 0 . 7 , 0 . 8 , 0 . 9 , 1 , respectively. Figs. 17 , 18

isplay the effect of changing the rate of infection (parameter b ) on

ll population phases over the time where the fractional deriva-

ive order q = 0 . 8 and 1 , respectively. Figs. 19 , 20 display the ef-

ect of changing the rate of infection (parameter c ) on all popu-

ation phases over the time where the fractional derivative order
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Fig. 25. Time history of Susceptiple cases in uncontrolled (no vaccination and no treatment) case and with control (vaccination and treatment are available) with different 

fractional derivative order: (a) q = 0 . 1 , (b) q = 0 . 9 , (c) q = 0 . 8 , (c) q = 0 . 7 . 

Fig. 26. Time history of total infected cases in uncontrolled (no vaccination and no treatment) case and with control (vaccination and treatment are available) with different 

fractional derivative order: (a) q = 0 . 1 , (b) q = 0 . 9 , (c) q = 0 . 8 , (c) q = 0 . 7 . 
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 = 0 . 8 and 1 , respectively. Fig. 21 , 22 display the effect of chang-

ng the rate of infection (parameter d ) on all population phases

ver the time where the fraction derivative order q = 0 . 8 and 1 ,

espectively. 

From the results shown in all figures mentioned in the previous

aragraph and plotted in the current subsection, we can state that

ecreasing the fractional derivative order q decreases the number

f infected cases and delays the time of reaching the maximum

umber in each population phase. Decreasing the fractional deriva-

ive order q makes the curves of all population phases more flat.

n addition, decreasing the infection rates a , b , c and d decreases the

umber of cases in all population phases except the susceptible as

xpected. 

.2. Lyapunov exponents of the fractional order SIDARTHE model 

The mean rate of separation or contraction of tiny phase-space

isturbances of a dynamical system beginning from near starting

oints is metered by the Lyapunov exponents (LEs) [55] , [59] . Thus,
hey can be utilized to study the stability of dynamical systems

nd to examine sensitive reliance on starting conditions, that im-

lies, the presence of hidden chaotic dynamics. It is important to

heck the epidemic transition models if it is chaotic or not via cal-

ulating LEs. Corresponding techniques for the LEs calculation and

heir distinction are studied, e.g., in [ 35 , 36 ]. 

The studied system represented by equations: ( 3.1 ) – ( 3.8 ) is

table [21] . Here, we confirm its stability for different values of

ractional derivative order via plotting the relationship between

he fraction derivative order and the eight Lyapunov exponents of

he system. Fig. 23 shows that all system eight Lyapunov expo-

ents are negative with different fraction derivative order as time

pproaches infinity (here, time is taken 1500). Fig. 24 shows the

ynamics of the system eight Lyapunov exponents with time. In

ig. 24 -(a) to 24-(d) with different fraction derivative order, the

ystem eight Lyapunov exponents approaches negative end which

onfirm the system stability with different fractional derivative or-

ers. For more details about Lyapunov exponents see [55] . Here,
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Fig. 27. Time history of Healed cases in uncontrolled (no vaccination and no treatment) case and with control (vaccination and treatment are available) with different 

fractional derivative order: (a) q = 0 . 1 , (b) q = 0 . 9 , (c) q = 0 . 8 , (c) q = 0 . 7 . 

Fig. 28. Time history of Dead cases in uncontrolled (no vaccination and no treatment) case and with control (vaccination and treatment are available) with different fractional 

derivative order: (a) q = 0 . 1 , (b) q = 0 . 9 , (c) q = 0 . 8 , (c) q = 0 . 7 . 
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we use the method in [13] for calculating the fractional order Lya-

punov exponents. 

6. Numerical simulation of the controlled system 

In this section, we show numerically, the effect of applying the

four control strategies studied in Section 3 . Fig. 25 shows the time

history of Susceptible cases in uncontrolled (no vaccination and

no treatment) case and with control (vaccination and treatment
re available) with different fractional derivative order: (a) q = 0 . 1 ,

b) q = 0 . 9 , (c) q = 0 . 8 , (c) q = 0 . 7 . Fig. 26 . Shows the time his-

ory of total infected cases in uncontrolled (no vaccination and no

reatment) case and with control (vaccination and treatment are

vailable) with different fractional derivative order: (a) q = 0 . 1 , (b)

 = 0 . 9 , (c) q = 0 . 8 , (c) q = 0 . 7 . Fig. 27 shows the time history of

ealed cases in uncontrolled (no vaccination and no treatment)

ase and with control (vaccination and treatment are available)

ith different fractional derivative order: (a) q = 0 . 1 , (b) q = 0 . 9 ,
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Fig. 29. The effect of the control strategies: u 1 (vaccination) and u 2 (treatment of the Diagnosed population phase D ) on the different population phases at day 70 with 

fractional derivative order q = 1 . 

Fig. 30. The effect of the control strategies: u 1 (vaccination) and u 2 (treatment of the Diagnosed population phase D ) on the different population phases at day 70 with 

fractional derivative order q = 0 . 9 . 

(  

i  

c  

f  

q  

c  

o  

t  

u  

p  

t  

t  

R  

t  

o

(  
c) q = 0 . 8 , (c) q = 0 . 7 . Fig. 28 shows the time history of Dead cases

n uncontrolled (no vaccination and no treatment) case and with

ontrol (vaccination and treatment are available) with different

ractional derivative order: (a) q = 0 . 1 , (b) q = 0 . 9 , (c) q = 0 . 8 , (c)

 = 0 . 7 . Fig. 29 shows the effect of the control strategies: u 1 (vac-

ination) and u 2 (treatment of the Diagnosed population phase D )

n the different population phases at day 70 with fractional deriva-

ive order q = 1 . Fig. 30 shows the effect of the control strategies:
 1 (vaccination) and u 2 (treatment of the Diagnosed population

hase D ) on the different population phases at day 70 with frac-

ional derivative order q = 0 . 9 . Fig. 31 shows the effect of the con-

rol strategies: u 3 (treatment of the Recognized population phase

 ) and u 4 (treatment of the Threatened population phase T ) on

he different population phases at day 70 with fraction derivative

rder q = 1 . Fig. 32 shows the effect of the control strategies: u 3 
treatment of the Recognized population phase R ) and u (treat-
4 
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Fig. 31. The effect of the control strategies: u 3 (treatment of the Recognized population phase R ) and u 4 (treatment of the Threatened population phase T ) on the different 

population phases at day 70 with fractional derivative order q = 1 . 

Fig. 32. The effect of the control strategies: u 3 (treatment of the Recognized population phase R ) and u 4 (treatment of the Threatened population phase T ) on the different 

population phases at day 70 with fractional derivative order q = 0 . 9 . 
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ment of the Threatened population phase T ) on the different pop-

ulation phases at day 70 with fractional derivative order q = 0 . 9 .

From all of these simulations, we can claim that the availability of

the vaccination and (or) treatment has a great effect of the spread

of the COVID-19 pandemic and on the cases on each population

phase. 

7. Conclusion 

This research has been carried out to the analysis of an eight di-

mension fractional order SIDARTHE COVID-19 mathematical model.

In this 8-D CVID-19 mathematical model, the infected popula-

tion fraction is partitioned into five different population fractions:

I , D , A , R and T . It is the first time to study such model with frac-

tional order. The existence of stable solution of the fractional order
IDARTHE model is proved. The fractional order necessary condi-

ions for a four optimal control strategies are implemented. In ad-

ition, the system dynamics displayed via the fraction order nu-

erical solver by MATLAB software with different fractional orders

nd the effects of changing the infection rates parameters are pre-

ented in this manuscript with different fractional orders. The ef-

ects of changing the fractional order on the system Lyapunov ex-

onent are also displayed. The dynamics of the system are pre-

ented before and after control. From our study, we can state that

ecreasing the fractional derivative order decreases the number of

ases in all population fraction phases and delays the maximum

lus changing the value of the fractional derivative order has no ef-

ect on the stability of the system since its all Lyapunov exponents

till negative. The proposed fractional order COVID-19 SIDARTHE

odel predicts the evolution of COVID-19 epidemic and try to help
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n understanding the impact of different plans to limit the diffu-

ion of this epidemic with different values of the fractional or-

er. Our results confirm the importance of decreasing the infec-

ion rates. Decreasing the infection rates include taking various ac-

ions like insure the social distance, closing the airports, closing all

eaching authorities, random testing the asymptomatic cases and

ontact tracing. The author hope that COVID-19 study using the

roposed model continues. And via utilizing the real data the op-

imum fractional order can be estimated. 
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