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Nowadays, COVID-19 has put a significant responsibility on all of us around the world from its detection
to its remediation. The globe suffer from lockdown due to COVID-19 pandemic. The researchers are doing
their best to discover the nature of this pandemic and try to produce the possible plans to control it. One
of the most effective method to understand and control the evolution of this pandemic is to model it via
an efficient mathematical model. In this paper, we propose to model COVID-19 pandemic by fractional

MSC: order SIDARTHE model which did not appear in the literature before. The existence of a stable solution of
41A28 the fractional order COVID-19 SIDARTHE model is proved and the fractional order necessary conditions of
65D05 four proposed control strategies are produced. The sensitivity of the fractional order COVID-19 SIDARTHE
65H10 model to the fractional order and the infection rate parameters are displayed. All studies are numerically
ggl%g simulated using MATLAB software via fractional order differential equation solver.
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1. Introduction

All the world states’ governments introduce a big effort and vi-
tal measures to eliminate the outbreak of COVID-19 [22]. COVID-19
is a new progeny of coronavirus, SARS-CoV-2 and firstly detected in
Wuhan, China [52,57]. In the few months after discovering it, the
number of patients were increasing exponentially. The taken mea-
sures against COVID-19 until the day of writing these words didn’t
prevent the growth of infected cases around the globe. The World
Health Organization situation report published in 25 May 2020
informed that 5,304,772 cases as total cases and 342,029 deaths
around the globe [54].

Using mathematical model to predict the epidemics is very use-
ful in order to understand the nature of the epidemic and to design
an efficient strategies to control it [4,8,14,26,27].

It is common to study the humanitarian diffusion of epidemics
via SIR or SEIR models [11,13,33,48]. Various models have been
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proposed to model and study COVID-19 pandemic. Taking into ac-
count the risk understanding and the accumulative issue of cases,
COVID-19 pandemic has been modeled by Lin et al. via extend-
ing SEIR model [38] where S signifies the susceptible, E signifies
the exposed, I signifies the infected and R signifies the removed
cases. In [3], Anastassopoulou et al. have suggested the SIR model
in the discrete time mode taking into account the dead cases. In
[9] by Casella, SIR model is expanded to study the delays effect
and to compare the policies of containment. In [56] by Wu et al.,
the COVID-19 severity has been estimated using the dynamics of
transition. In [25,34], random transition models have been stud-
ied. In [12], the general multi-group SEIRA model was represented
and numerically tested for modeling the diffusion of COVID-19
between a non-homogeneous population. The basic mathematical
tool used to model several epidemics is differential equations in
various modes (ordinary, fractional, with delay, randomly detected
or partial) [27-29].

Many research efforts have been widely done to control the
outbreaks of epidemics via optimal control [20,44-47]. The optimal
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Fig. 1. Eight phases of COVID-19 epidemic interactions digraph (W) where S, I, D,
A, R T, H and E signify the population fractions explained in Table 1 where the
sub-phases SI, SD, SA, SR are appeared.

control idea is to look for the utmost powerful plan that decreases
the rate of infection to a possible minimum limit with optimal
minimum cost of circulating a treatment or preventative inocula-
tion [39,44-47,51]. These plans may include treatments, inoculation
with vaccines, social distances, educational programs [6,10].

Studying the epidemiological diseases mathematically become
very important [6,7,16,17,37,40]. The literature has several studies
to control for example models of HIV [24], dengue fever [2], tuber-
culosis [50], delayed SIR [1] and delayed SIRS [29,58].

The fractional order differential equations add an extra dimen-
sions in the study of dynamics of epidemiological models. There-
fore the fractional version of many epidemical models have been
investigated as in [29-32,39,41] and [53].

Here, a new epidemiological fractional mathematical model for
the COVID-19 epidemic is proposed as an extension of the classical
SIR model, similar to that introduced by Gumel et al. for SARS in
[23] and as a generalization of SIDARTHE model proposed in [21].
As explained in Section 3, in SIDARTHE model, the infected cases
are classified into five different classes depending on the detection
and the appearance of symptoms [21].

In this work, we consider the fractional order SIDARTHE model
and then we derive the fractional order necessary conditions for
existence of a stable solution. In addition, we study an optimal
control plans for the fractional order SIDARTHE model via four
control strategies that include the availability of vaccination and
existence of treatments for the infected detected three population
fraction phases. Applying the fractional order differential equations
numerical solver using MATLAB software, we show the dynamics
of the state variables of the model and display the effect of chang-
ing the fractional derivative order on the system response. Also,
the effect of changing the infection rates on the fractional order
SIDARTHE model’s state variables. We also implement the optimal
control strategies numerically for the fractional order SIDARTHE
model.

The remaining parts of the paper are organized as follows.
In Section 2, Preliminaries and basic definition of the fractional
derivative are introduced. Describing COVID-19 epidemic SIDARTHE
fractional mathematical model is introduced in Section 3. The de-
tails of the optimal control strategy and its implementation are
given in Section 4. Numerical simulations of the uncontrolled frac-

tional order SIDARTHE model, the effects of changing the fractional
derivative order on the system response and the effects of chang-
ing the infection rates are all given in Section 5. Numerical simu-
lations of the controlled fractional order SIDARTHE model and the
effects of applying the proposed control strategies are represented
in Section 6. The concluding remarks are put in Section 7 followed
by the list of cited references.

2. Preliminaries

Many definitions of fractional order derivatives exist such as
Riemann-Lioville’s derivative, Grunwald Letnikov’s derivative, Ca-
puto’s derivative, Caputo-Fabrizio, Atangana-Baleanu, etc. The in-
terested reader can consult for example [42,43] and the refer-
ences therein for more details about fractional order defintions
with applications. We have used Caputo’s definition throughout
the paper. Caputo fractional derivative operator A9 of order q (see
[18,30,39,42,43,49]) is defined as:

(n)
AU (O) = riig o Laomerdx. £>0.

_x)d-n+1
n, neN, where I'(.) syrr)lbolizes the Gamma function. For more
details about the basic definitions and characteristics of fractional
derivatives see [18,30,39,49].

Notation: For numerical simulations, the predictor-corrector
PECE method of Adams-Bashforth-Moulton type described in de-
tails in [15,19] has been utilized and programmed with MATLAB
software.

qg>0, n—-1<n=<

3. COVID-19 epidemic SIDARTHE fractional mathematical model

Giulia Giordano et al. in [21] modeled COVID-19 epidemic via
SIDARTHE model and compare its response with the real data
in Italy. SIDARTHE model distinguishes between determined in-
fected cases and undetermined infected cases and between various
degrees of illness (DOI). In SIDARTHE COVID-19 epidemic model,
the total population is partitioned into eight phases of malady as
recorded in the Table 1. Fig. 1 shows the interaction graph (\¥) be-
tween the eight phases of malady. In Fig. 1, the susceptible popula-
tion partition S is partitioned into four sub-phases to show the hid-
den sub-phases of the susceptible population partition S, namely
SI,SD,SA and SR. The detailed interaction digraph in Fig. 1 is named
U that may be studied using graph theory tools to discover more
features about the model.

COVID-19 epidemic SIDARTHE model is described mathemati-
cally by eight ordinary differential equations [21].

The deterministic characteristic is essential in modeling the epi-
demics transition phenomena; the fractional derivative is very use-
ful in modeling the epidemics transition systems because they con-
sider the memory effect and the universal properties of the sys-
tem, that are primary in the deterministic feature. The system is
said to have a memory effect if its future states depend on its cur-
rent states and the history of the states, and the fractional oper-
ator has this memory effect feature so it is very helpful in mod-
eling COVID-19 diffusion model. Here, as recorded in Egs. (3.1) to
(3.8), the dynamics of the population in each phase with time is
described with eight fractional order (q) differential equations:

A9S(t) = —aSI — bSD — cSA — dSR (3.1)
A%(t) = aSI + bSD + cSA + dSR — el — zI — gl (3.2)
AID(t) = el — hD — D (3.3)
AA(t) =zl — 6A — mA — kA (34)
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Fig. 2. The time history of Susceptible cases (S(t)) and Infected, symptomless, undetermined cases (I(t)) with different fractional derivative order (q): (a) time history of S(t)
with ¢ =0.7, 0.8, 0.9, 1; (b) time history of I(t) with ¢ =0.7, 0.8, 0.9, 1.
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Fig. 3. The time history of Diagnosed, infected, symptomless, determined cases (D(t)) and Ailing, infected, symptomatic, undetermined cases (A(t)) with different fractional
derivative order (q): (a) time history of D(t) with ¢ = 0.7, 0.8, 0.9, 1; (b) time history of A(t) with ¢ =0.7, 0.8, 0.9, 1.

Table 1
Eight phases of population modeling COVID-19 epidemic.

Model symbol  Phase of malady

Susceptible (not sick) population fraction.

Infected (symptomless, undetermined) population fraction.

Diagnosed (infected, symptomless, determined) population fraction.

Ailing (infected, with symptoms undetermined) population fraction.

Recognized (infected, with symptoms, determined) population fraction.

Threatened (infected, with life-menacing symptoms, determined) population fraction.
Healed (recuperate) population fraction.

Extinct (died out) population fraction.

mTNERIT~®
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Fig. 4. The time history of Recognized, infected, symptomatic, determined cases (R(t)) and Threatened, infected, symptomatic, determined cases (T(t)) with different fractional
derivative order (q): (a) time history of R(t) with ¢ =0.7, 0.8, 0.9, 1; (b) time history of T(t) with ¢ =0.7, 0.8, 0.9, 1.
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AR(t) = hD + A — UR — xR (3.5)
AIT(t)=mA+ VR —-0oT — 1T (3.6)
AIH({t)=gl+rD+kA+xR+0T (3.7)
AIE(t) =TT (3.8)

Where the population fraction in each phase is modeled by a
state variable that is represented by an uppercase English letters
S, I D, A R T H and E. In the SIDARTHE model (3.1) to (3.8), the
parameters are symbolized by small Greek and English letters. All
model parameters are positive numbers and have been estimated
in [21] using the real data. Fig. 1 shows the impact of each differ-
ent phases of epidemic graphically. The SIDARTHE Covid-19 model
parameters have the following real meaning:

a signifies the rate of infection as a result of contacting among
a susceptible case and an infected case.

b signifies the rate of infection as a result of contacting among
a susceptible case and a diagnosed case.

¢ signifies the rate of infection as a result of contacting among
a susceptible case and an ailing case.

d signifies the rate of infection as a result of contacting among
a susceptible case and a recognized case.

e signifies the detection probability rate of infected symptom-
less cases.

6 signifies the detection probability rate of infected with symp-
toms cases.

z signifies the rate of probability at which an infected case is
not conscious of becoming infected.

h signifies the rate of probability at which an infected case is
conscious of becoming infected.

m signifies the rate at which undetermined infected case devel-
ops life-menacing signs.
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o v signifies the rate at which the determined infected case de-
velops life-menacing signs.

o 7 signifies the death rate (for infected cases with life-menacing
signs).

e g k, x, rand o signify the rate of healing for the five phases of
infected cases.

For more details about the model choices see [21] and the ref-
erences cited there.

3.1. SIDARTHE fractional order mathematical model discussion

From Egs. (3.1) to (3.8) and since the states H(t) and E(t) are
sink vertices in the model graph W(see Fig. 1), then they are con-
sidered as accumulative state variables that rely only on their own
starting situations and the other state variables.

Since summing up all Egs. (3.1) to (3.8) gives zero as a result
then the system is compartmentalized and shows the conservation
property of mass: as can be directly proved,

DIS(t) + DUI(t) + DID(t) + DIA(t) + DIR(t) + DT(t) + DH(t) + DIE(t) =0 (3.9)

0.4

l 0.8
H(t)

variables: Total infected TI(t) =I(t) + D(t) +A(t) + R(t) + T(t) and Healed cases (H(t)) with different fractional derivative order q =

Which implies that the total population (the sum of all state
variables) is constant. Let

X = [S(t), I(t), D(t), A(t). R(t), T(t), Ht). E®)]T  (3.10)

be the state variables vector. Since the state variables signify the

population fractions, we can suppose that > X (i) = 1, such that 1
Vi
signifies the total population, dead are included.

3.2. Existence of uniformly stable solution of COVID-19 epidemic
SIDARTHE fractional mathematical model

Assume that

AIS(t) = —aSI — bSD — cSA—dSR = f;(S, I, D, A, R, T, H, E)
(3.11)

AY(t) = aSI + bSD + cSA+ dSR — el —zI — gl = f5(S. I, D, A, R, T, H, E)
(3.12)
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Impact of the rate of infection parameter a on different population phases
with fractional derivative order q=0.7; 0.8; 0.9; 1
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Fig. 11. The effect of changing the rate of infection (parameter a) on different population phases at day 60 with different fractional derivative order ¢ = 0.7, 0.8, 0.9, 1.
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AID(t)y=el—hD—1D=f5(S, I, D, A, R, T. H, E) (3.13)

AIA(t) =2z —OA—mA—kA = f4(S. I. D, A, R, T, H, E)
(3.14)

AR(t) =hD+6A—VR—xR = fs(S, I. D, A, R, T, H, E)
(3.15)

AIT(t)=mA+VR—0oT —1T = fs(S. I, D, A, R, T, H, E)
(3.16)

AH(t) =gl + D+ kA+xR+0T = f,(S. I, D, A, R, T, H, E)
(3.17)

AE(t) =TT = fg(S. I, D, A, R, T, H, E)

Assume for a constant N that
Q={(S@). I(t). D). A®). R(t). T(t), H(t). E(t)) R®: [X(i)] <Nandt <0, T].

(3.18)

Then over 2, we have

M= —al-bD—cA—dR = |%}| = al+bD+ cA+dR < kn

3 3 9 ?
%:—aS:»)%‘:aSgkn; %:—bSé a—fl}’:bSEkB;
2 3 3 9
Tf/}=—‘-‘5=>‘a*f/3‘=csfkl4; sz%=—D5=>‘Tf;§‘=D55k15;

3 3 9
%ZOéfl(T)=kls: Tfﬁ:()ﬂfl(H):kw; %=0§f1(5)=kls;

(3.19)
2 =al+bD+cA+dR= | 2| = a4 bD+cA+ dR < g
%:aS—(eJerrg)j %‘:as+(e+z+g)§k22: %:b5¢‘%|:b55k23;
] 3 d 9
%=C5ﬁ|%|=c.§§k24; %:DS:|%§‘=DS§I¢25;
] ] ]
#zoéfz(T):’Qe% TZ:‘Jéfz(H):kzﬁ sz:()ﬁfz(f):"zs-

(3.20)



Fig. 13. The effect of changing the rate of infection (parameter a) on all population phases over time where the fractional derivative order q = 0.7.
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Fig. 14. The effect of changing the rate of infection (parameter a) on all population phases over the time where the fractional derivative order q = 0.8.
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W 0= f5(5) = kin: %7=g=>‘m‘§k72;
%:r: ‘i,ﬁ <ks3; %—kﬁ‘ f7‘<k74;
9 af
%=X=> S| < ks 3];7—0=>‘ﬁ < kag; 3H—0=>f7(H) k77;
9
W1 —0= f1(E) = kss.
(3.25)
9
aaﬁ=0=>fs(5)=k81, ;}, =0= fs() = ks;
S5 =0= f3(S) =ks3; 32 =0= fs(A) = ksas
9 9 9
s — 05 fi(R) = kss: A-H\ D] ks G =02 foH) = ke
9
% =0= f3(E) = kgs.
(3.26)

The effect of changing the rate of infection (parameter a) on all population phases over the time where the fractional derivative order q = 1.

Where k; (1 < i,j < 8) are all positive constants. Then from (3.19)

0 (3.26), each of the eight functions f;, f,, ..., fg agree with the
Lipschitz condition [18,39]. With respect to the eight arguments,
then all eight functions are absolutely continuous.

4. Fractional order SIDARTHE model’s optimal control strategy

In this area, the existence of the fractional order SIDARTHE
model’s optimal control is investigated and then the Hamiltonian
of the optimal control problem is constructed in order to produce
the optimal control necessary requirements.

Compute the optimal values of vaccination u; and treatment
strategies u-,us, 4 that would maximize the Healed population
phase (H) and minimize the determined infected phases (D,R,T)
and susceptible (S) population phases. In addition, the charges of
utilizing the vaccination and treatment methods are minimized.
Then the optimal control problem of the following form is con-
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Fig. 18. The effect of changing the rate of infection (parameter b) on all population phases over the time where the fractional derivative order q = 1.

sidered (see for example [1,2,5,6,10,20,24,25,34,37,44-47].

min MU(t)) = fT (U1 + CUu%y + C3UP3 + cqli?y) dt (4.1)
1z i3, ug)U o LS +D(®) +R(®) + T(t) — H(t)

That obeys the constraints

AIS(t) = —(aS(E)I(t) + bS(E)D(t) + cS(OA(L) + dS(ER(E)) — usS(t) = f;,
AYI(t) = aS(t)I(t) +bS(t)D(t) + cS(t)A(t) +dS(t)R(t) — (e +z+Q)I(t) = fo,
AID(t) =el(t) — (h+1)D(t) — uaD(t) = f3,

AIA(t) = ZI(t) — (6 +m + k)A(t) = f,

AIR(t) = hD(t) + 0A(t) — (v +X)R(t) — usR(t) = fs,

AIT(t) = mA(t) + VR(t) — (0 + T)T(t) — usT(t) = fs,

AIH(t) = gl(t) + rD(t) + kA(t) + xR(t) + o T(t) = f7,

AIE(t) = TT(t) = f3.

(4.2)

The control function uq(t) represents the vaccination strategy
applied on the susceptible (S) population phase. The three control

functions u,(t), us(t), uy signify the treatment strategies applied
on the determined infected population phases (D,R,T). All of the
control functions are supposed to be L>(0,Ty) (Ty is the final time)
functions belong to a collection of permissible controls:

U={(u,up, us, tug) € L3O, Tty mmin < 4i(6) SUjmax < 1,i=1,...,4).

The four constants cq, ¢p, c3 and c4 are the cost correspond to
utilizing each control function.

The uncontrolled system (put u; =0 in (4.2)). For certain ini-
tial conditions: S(0) =Sy, 1(0) = Iy, D(0) = Dy, A(0) = Ag, R(0) =
Rg, T(0) =Ty, H(0) = Hy, E(0) = Eg such that their sum equal
one, it is obvious that the final values of the state vari-
ables approach to an equilibrium: S(T¢) =Sy, I(Tf) =0, D(Tf) =
0, A(Tf) =0, R(Tf) =0, T(Tf) =0, H(Tf) = Hf’ E(Tf) = Ef where
Sy +Hf+E; =1 which means that the phenomenon of epidemic
is finished (see [21]). The possible equilibrium points of the sys-
tem are given by (S4,0,0,0,0,0, Hy, Er), where Sy +Hy + Ef = 1.



M. Higazy /Chaos, Solitons and Fractals 138 (2020) 110007 11

—c=0.01

c=0.456 ~———c=1

0 1 L L L L
0 50 100 150 200 250 300 350
Time (days)

150 200 250 300 350
Time (days)

0 50 100

04
0 ke s - —— ]
0 50 100 150 200 250 300 350
Time (days)
o e — e
¥
0

0 50 100 150 200 250 300 350
Time (days)

Fraction derivative order q= 0.8

0.2
£0.1
0 e — —— i
0 50 100 150 200 250 300 350
Time (days)
0.05 -
< ,
0 27, . s e S
0 50 100 150 200 250 300 350
Time (days)
0.2
= 0.1 :
0 | | | | |
0 50 100 150 200 250 300 350
Time (days)
0.1
£0.05
0

0 50 100 150 200 250 300 350
Time (days)

Fig. 19. The effect of changing the rate of infection (parameter c) on all population phases over the time where the fractional derivative order q = 0.8.
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Fig. 20. The effect of changing the rate of infection (parameter c) on all population phases over the time where the fractional derivative order q = 1.

The incidence function of the system is:
f(S, I, D, A, R, T) =S(t)(al(t) + bD(t) + cA(t) + dR(t)) (4.3)

In the following result, the existence of the optimal control is
proved.

Theorem 4.1. For the problem of optimal control (4.1) with con-
straints (4.2). There exists an

optimal controls quadruple (uq, Uy, us, ug) € U and a related opti-
mal states (S*, I¥, D*, A*,R*, T*, H*, E¥) which minimize the objective
function M(U(t)) over a collection of permissible controls U.

Proof. In order to prove the optimal control quadruple
(uq, uy, us, Uy) existence, it is important to confirm the next asser-
tions.

(I) The controls’ collection and the related state variables is not
empty.

(II) The collection of permissible controls U is closed and convex.

(II) The state model (4.2) is limited.s

(IV) The integration part of the objective function
JsiparTHE (U1, Uo, U3, Uy4) is convex on the collection U.

(4.1)

The hessian matrix of integration part of the objective function
(4.1) SsiparTHE (U1, U, U3, Ug) on U is given by:

20 0 0 0

.| 0 2¢) 0 0
Hessian = 0 0 2 o |’

0 0 0 2¢4

SP(Hessian) = {2c¢q, 2cy, 2¢3, 2¢4} € R.*, then the integration
part of the objective function (4.1) fsparThE (U1, Up, U3, Uy) iS TO-
bustly convex in U.
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Fig. 21. The effect of changing the rate of infection (parameter d) on all population phases over the time where the fractional derivative order q = 0.8.

| =——d=0.0114 mmmmd=0.5 -d=1

0 50 100 150 200 250 300 350

Time (days)
02—
S 01 4,\
0 50 100 150 200 250 300 350
Time (days)
0.5
4
0 " " - .
0 50 100 150 200 250 300 350

Time (days)

07 50 100 150 200 250 300 350
Time (days)

Fraction derivative order q= 1

N

0 50 100 150 200 250 300 350

Time (days)

0 50 100 150 200 250 300 350
Time (days)

0.4
€02
0

0.1
005
0

0.4

S I i

0 1 — a— h
0 50 100 150 200 250 300 350
Time (days)
0.2 pm—
&7 01
0!

0 750 100 150 200 250 300 350
Time (days)

Fig. 22. The effect of changing the rate of infection (parameter d) on all population phases over the time where the fractional derivative order q = 1.

(I) There are constants B; > 0 and fB,,3 > 1 where

SsiparTHE (U1, Up, U3, Uy) satisfies:

(u1, Uy, us, ug) > 1| (U, uy, us, U4)|‘53 - Ba.
SIDARTHE

/ (U, . U3, ) = G2 (E) + CUB(E) + csd ()
SIDARTHE

+cqu2(t) +S(t) + D(t) +R(t) + T(t) — H(t)
> min(cy, €3, €3, €4) (U3 () + u3(t) + U3 (t) + uZ(t)) — H(t)
Since S+I+D+A+R+T+H+E=1 then H(t) is bounded.
That is mean there exist two constants H; and H, such that
Hl < H(t) < Hz, Vit
Assume that B; = min(cy, ¢, ¢3, ¢4) and B, = H, then we
have:

2
S (wy, ug, us, ug) = B[ (ur, uz, us, ug)||” - Ba.
SIDARTHE

4.1. Implementation of optimal control

This subsection records the needed conditions for the op-
timal control to be exist. The necessary conditions are com-
puted here via constructing the Hamiltonian (®) and satisfy-
ing the maximum basis of Pontryagin [5]. Let us denote by X =
[S(t), I(t), D(t), A(t), R(t), T(t), H(t), E(t)]' the system states,
by u(t) =[uq, up, uz, uyg]'the vector of control functions, by
A(t) =M1, Ay, A3, A4, As, Ag, A7, Ag] the Lagrange multipliers
and by [gparrue (X (t), u(t)) the integration part of the objective
function (3.1).

Then the Hamiltonian O =DX(t), At), u(t) =
SsiparTHE X (£), u(t)) + AT AIX(E), 8

o = C]UZ] +C2Ll22 +C3U23 +c4u24 +S+D+R+T *H+Z)"i-fi
i=1
(4.4)
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Fig. 23. The effect of changing the fractional derivative order q on the system eight Lyapunov exponents (LE1, LE2, ..., LE8).

Assume that the characterization functional is formed as:

_ 1 ifrefo, 1],
Plo.7)(®) = {0, otherwise.

Assume that u*(t) = [uf, u3, u3, u;]" is the optimal controls
and X* = [S*(t), I*(t), D*(t), A*(t), R*(t), T*(t), H*(t), E*(t)]"
be the related optimal population phases fractions. Consequently,
there exists A(t) € R8 such that the necessary conditions for the
optimal control to be exist are produced by (see for example [5]):

(4.5)

%%(t) N O’acp
AIX(t) =7 (4.6)
A =8¢

From (4.4) and (4.6), the optimization constraints can be found
as:
3—3?({) =2ciu" — 1S =0,
%(t) = 2C2U: — )\,3D =0,
g%(t) =2c3u* — AsR =0,
g—ﬁ(t) = 2cqu’ — A6T =0,

From (4.7), we can find that

uf = min {uy max, max {0, 25501
U = min iz max, max [0, 22O
u = min {u3 may, max {0, 2RO
U = min {ui3 may, Max {0, 22O

(4.8)

From the state variables system given in (4.2), the co-state con-
ditions are:

dxr; 0P )

E(t) = _ai)q(t), i=1, 2, ...,
Which can be simplified to produce the following co-state sys-

tem:

i

(4.9)

Addq(t) = —aa—q;(t) = —1+ (al + bD + cA + dR) (A1 (t) + A2 (t))
+urdq (b);

Ay (t) = faafcf(t) =aS(A(t) = 22(t)) + (e +z+g)A2(8)
—eAs3(t) — zhg(t) — gA7(t);

<10
ﬁ 222 e
—‘222; -x:y:-rrrr",‘"'f' J
0.9 0.92 0.94 0.96 0.98 1
Fraction derivative order: q
= -0.018 ]
w 002f®°eceo ]
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0.9 0.92 0.94 0.96 0.98 1
Fraction derivative order: q
0.04
© £}
PO N
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-0.1 T .
8 o000 o .‘
- 012 i i e 5 L
0.9 0.92 0.94 0.96 0.98 1
Fraction derivative order: q
L)
A5 (t) = _ﬁ(t) = —1+bSA{(t) — bSA,(t)
+(h+r1+uz)A3(t) — hAs(t) — Az (¢);
BRI
Addy(t) = fa—A(t) =CSA(t) — cSha(t) + (0 + m+k)Ay(t)

—0As(t) —mAg(t) — kAs(0);
Ahs(t) = —%%’ (£) = —1 +dShi(£) — dShy(£) + (V + X + u3)As ()

—VAg(t) — XA7(0);
a9

Afpg(t) = —a—T(t) =-14+ (0 +7+ughe(t) —ors(t) — TAg(t);

o0
Al (t) = 7O =1

ATrg(t) = —%—?(t) =0; (4.10)
i=7

The transversality conditions leads to A;(Ty) = {1_1’ otherwise

Notation 4. .2. From the above discussion, it is obvious that

I The Hamiltonian functional & is robustly convex in the vari-
ables of control.
II The state Eqgs. (4.2) and co-state Eqs. (4.10) are Lipschitz contin-
uous.
III The collection of permissible controls U is convex.

The effect of applying the different control strategies will be
simulated numerically in Section 6.

5. Fractional order numerical simulation of the SIDARTHE
uncontrolled model

In this fifth section, we solve the fractional order SIDARTHE
model numerically utilizing the predictor-corrector PECE method
of Adams-Bashforth-Moulton type described in details in [15,19].

The parameters’ values used for the numerical simulation
are estimated from the Italian real life statistics published

in [21] where: a=0.57;b=0.0114;c = 0.456;d;0.0114; e =
0.171; 0 =0.3705;z=0.1254; h = 0.1254; m = 0.0171; v =
0.0274; t=001; g=0.0342; r= 0.0342; k=0.0171;x=

0.0171; o =0.0171.
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Fig. 24. Lyapunov Exponents of the model over time: (a) g= 1 (b) g= 0.9 (c)
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The total population are taken 100 Million and the initial values
of the different population phases after normalization are (let N be
the total population):

200 20
1(0) = N D(0) = N’

A(0) = %;
R(0) = 2:T(0) = 0: H(0)=0: E(0)=0;

S(0) = 1—1(0) — D(0) — A(0) — R(0) — T(0) — H(0) — E(0):

X(0) = [S(0), 1(0), D(0), A(0), R(0), T(0), H(0), E(O)];

In the following, we display the results of the numerical sim-
ulation of the uncontrolled SIDARTHE model. Fig. 2 displays the
time history of susceptible cases (S(t)) and infected, symptom-
less, undetermined cases (I(t)) with different fractional deriva-
tive order (q): (a) time history of S(t) with ¢g=0.7, 0.8, 0.9, 1;
(b) time history of I(t) with ¢q=0.7, 0.8, 0.9, 1. Fig. 3 dis-
plays the time history of diagnosed, infected, symptomless, de-
termined cases (D(t)) and ailing, infected, symptomatic, undeter-
mined cases (A(t)) with different fractional derivative order (q):
(a) time history of D(t) with ¢ =0.7, 0.8, 0.9, 1; (b) time his-
tory of A(t) with ¢=0.7, 0.8, 0.9, 1. Fig. 4 displays the time
history of recognized, infected, symptomatic, determined cases
(R(t)) and threatened, infected, symptomatic, determined cases
(T(t)) with different fractional derivative order (q): (a) time his-
tory of R(t) with ¢ =0.7, 0.8, 0.9, 1; (b) time history of T(t) with
g=0.7, 0.8, 0.9, 1. Fig. 5 displays the time history of the to-
tal infected cases: TI(t) = I(t) + D(t) + A(t) + R(t) + T (t), with dif-
ferent fractional derivative order ¢ =0.7, 0.8, 0.9, 1. Fig. 6 dis-
plays the time history of healed cases (H(t)) and died out (Ex-
tinct) cases (E(t)) with different fractional derivative order (q):
(a) time history of R(t) with ¢q=0.7, 0.8, 0.9, 1; (b) time his-
tory of T(t) with ¢=0.7, 0.8, 0.9, 1. Fig. 7 displays the three-
dimensions plot of the state variables: diagnosed, infected, symp-
tomless, determined cases (D(t)), infected, symptomless, undeter-
mined cases (I(t)) and susceptible cases (S(t)) with different frac-
tional derivative order ¢q =0.7, 0.8, 0.9, 1. Fig. 8 displays the
three-dimensions plot of the state variables: healed cases (H(t)),
total infected (TI(t) = I(t) +D(t) +A(t) + R(t) + T(t) and suscep-
tible cases (S(t)) with different fractional derivative order q =
0.7, 0.8, 0.9, 1. Fig. 8 displays the three-dimensions plot of the
state variables: healed cases (H(t)), total infected (TI(t) =I(t) +
D(t) +A(t) +R(t) + T(t) and susceptible cases (S(t)) with different
fractional derivative order ¢ = 0.7, 0.8, 0.9, 1. Fig. 9 displays the
phase plane of state variables: total infected (TI(t) = I(t) + D(t) +
A(t) +R(t) + T(t) and susceptible cases (S(t)) with different frac-
tional derivative order ¢ =0.7, 0.8, 0.9, 1. Fig. 10 displays the
phase plane of state variables: total infected TI(t) = I(t) + D(t) +
A(t) +R(t) + T(t) and healed cases (H(t)) with different fractional
derivative order ¢ = 0.7, 0.8, 0.9, 1.

From the results and the figures mentioned here, we can state
that decreasing the fractional derivative order q decreases the
number of each population phase (except Susceptible population
fraction as expected) and flatten the curves also delays reaching
the maximum in each population phase.

5.1. Parameters impact on different population phases

In this subsection, we show the effect of changing certain sys-
tem parameters on different population phases at day 60 with
various fractional derivative order. Fig. 11 displays the effect of
changing the rate of infection (parameter a) on different popu-
lation phases at day 60 with different fractional derivative order
qg=0.7, 0.8, 0.9, 1. Fig. 12 displays the effect of changing the rate
of infection (parameter b) on different population phases at day
60 with different fractional derivative order ¢ =0.7, 0.8, 0.9, 1.
Figs. 13,14,15,16 display the effect of changing the rate of infection
(parameter a) on all population phases over time where the frac-
tional derivative order ¢ = 0.7, 0.8, 0.9, 1, respectively. Figs. 17,18
display the effect of changing the rate of infection (parameter b) on
all population phases over the time where the fractional deriva-
tive order ¢ =0.8 and 1, respectively. Figs. 19,20 display the ef-
fect of changing the rate of infection (parameter c¢) on all popu-
lation phases over the time where the fractional derivative order
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Fig. 25. Time history of Susceptiple cases in uncontrolled (no vaccination and no treatment) case and with control (vaccination and treatment are available) with different

fractional derivative order: (a) ¢ =0.1, (b) = 0.9, (c) ¢ =0.8, (c) g =0.7.
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Fig. 26. Time history of total infected cases in uncontrolled (no vaccination and no treatment) case and with control (vaccination and treatment are available) with different

fractional derivative order: (a) ¢ = 0.1, (b) ¢ =0.9, (c) ¢ =0.8, (c) g =0.7.

q = 0.8 and 1, respectively. Fig. 21,22 display the effect of chang-
ing the rate of infection (parameter d) on all population phases
over the time where the fraction derivative order ¢ = 0.8 and 1,
respectively.

From the results shown in all figures mentioned in the previous
paragraph and plotted in the current subsection, we can state that
decreasing the fractional derivative order q decreases the number
of infected cases and delays the time of reaching the maximum
number in each population phase. Decreasing the fractional deriva-
tive order ¢ makes the curves of all population phases more flat.
In addition, decreasing the infection rates a, b,candd decreases the
number of cases in all population phases except the susceptible as
expected.

5.2. Lyapunov exponents of the fractional order SIDARTHE model
The mean rate of separation or contraction of tiny phase-space

disturbances of a dynamical system beginning from near starting
points is metered by the Lyapunov exponents (LEs) [55],[59]. Thus,

they can be utilized to study the stability of dynamical systems
and to examine sensitive reliance on starting conditions, that im-
plies, the presence of hidden chaotic dynamics. It is important to
check the epidemic transition models if it is chaotic or not via cal-
culating LEs. Corresponding techniques for the LEs calculation and
their distinction are studied, e.g., in [35,36].

The studied system represented by equations: (3.1) - (3.8) is
stable [21]. Here, we confirm its stability for different values of
fractional derivative order via plotting the relationship between
the fraction derivative order and the eight Lyapunov exponents of
the system. Fig. 23 shows that all system eight Lyapunov expo-
nents are negative with different fraction derivative order as time
approaches infinity (here, time is taken 1500). Fig. 24 shows the
dynamics of the system eight Lyapunov exponents with time. In
Fig. 24-(a) to 24-(d) with different fraction derivative order, the
system eight Lyapunov exponents approaches negative end which
confirm the system stability with different fractional derivative or-
ders. For more details about Lyapunov exponents see [55]. Here,
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Fig. 28. Time history of Dead cases in uncontrolled (no vaccination and no treatment) case and with control (vaccination and treatment are available) with different fractional

derivative order: (a) g=0.1,(b) ¢=0.9,(c) g=0.8, (c) g=0.7.

we use the method in [13] for calculating the fractional order Lya-
punov exponents.

6. Numerical simulation of the controlled system

In this section, we show numerically, the effect of applying the
four control strategies studied in Section 3. Fig. 25 shows the time
history of Susceptible cases in uncontrolled (no vaccination and
no treatment) case and with control (vaccination and treatment

are available) with different fractional derivative order: (a) ¢ = 0.1,
(b) g=0.9, (c) q=0.8, (c) g=0.7. Fig. 26. Shows the time his-
tory of total infected cases in uncontrolled (no vaccination and no
treatment) case and with control (vaccination and treatment are
available) with different fractional derivative order: (a) g = 0.1, (b)
q=0.9, (c) g=0.8, (c) g=0.7. Fig. 27 shows the time history of
Healed cases in uncontrolled (no vaccination and no treatment)
case and with control (vaccination and treatment are available)
with different fractional derivative order: (a) ¢ =0.1, (b) g=0.9,
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(c)g=0.8, (c) g=0.7. Fig. 28 shows the time history of Dead cases
in uncontrolled (no vaccination and no treatment) case and with
control (vaccination and treatment are available) with different
fractional derivative order: (a) g =0.1, (b) ¢=0.9, (c) ¢g=0.8, (c)
q = 0.7. Fig. 29 shows the effect of the control strategies: u; (vac-
cination) and u, (treatment of the Diagnosed population phase D)
on the different population phases at day 70 with fractional deriva-
tive order g = 1. Fig. 30 shows the effect of the control strategies:

1 0.02

0.01
Treatment u,

Vaccination u,

u; (vaccination) and u, (treatment of the Diagnosed population phase D) on the different population phases at day 70 with

uy (vaccination) and u, (treatment of the Diagnosed population
phase D) on the different population phases at day 70 with frac-
tional derivative order g = 0.9. Fig. 31 shows the effect of the con-
trol strategies: us (treatment of the Recognized population phase
R) and u4 (treatment of the Threatened population phase T) on
the different population phases at day 70 with fraction derivative
order q = 1. Fig. 32 shows the effect of the control strategies: us
(treatment of the Recognized population phase R) and uy4 (treat-
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ment of the Threatened population phase T) on the different pop-
ulation phases at day 70 with fractional derivative order q = 0.9.
From all of these simulations, we can claim that the availability of
the vaccination and (or) treatment has a great effect of the spread
of the COVID-19 pandemic and on the cases on each population
phase.

7. Conclusion

This research has been carried out to the analysis of an eight di-
mension fractional order SIDARTHE COVID-19 mathematical model.
In this 8-D CVID-19 mathematical model, the infected popula-
tion fraction is partitioned into five different population fractions:
I,D,A,RandT. It is the first time to study such model with frac-
tional order. The existence of stable solution of the fractional order

SIDARTHE model is proved. The fractional order necessary condi-
tions for a four optimal control strategies are implemented. In ad-
dition, the system dynamics displayed via the fraction order nu-
merical solver by MATLAB software with different fractional orders
and the effects of changing the infection rates parameters are pre-
sented in this manuscript with different fractional orders. The ef-
fects of changing the fractional order on the system Lyapunov ex-
ponent are also displayed. The dynamics of the system are pre-
sented before and after control. From our study, we can state that
decreasing the fractional derivative order decreases the number of
cases in all population fraction phases and delays the maximum
plus changing the value of the fractional derivative order has no ef-
fect on the stability of the system since its all Lyapunov exponents
still negative. The proposed fractional order COVID-19 SIDARTHE
model predicts the evolution of COVID-19 epidemic and try to help
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in understanding the impact of different plans to limit the diffu-
sion of this epidemic with different values of the fractional or-
der. Our results confirm the importance of decreasing the infec-
tion rates. Decreasing the infection rates include taking various ac-
tions like insure the social distance, closing the airports, closing all
teaching authorities, random testing the asymptomatic cases and
contact tracing. The author hope that COVID-19 study using the
proposed model continues. And via utilizing the real data the op-
timum fractional order can be estimated.
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