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Abstract

Currently employed methods for qualifying population physiologically-based pharmacokinetic 

(Pop-PBPK) model predictions of continuous outcomes (e.g., concentration-time data) fail to 

account for within-subject correlations and the presence of residual error. In this study, we propose 
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a new method for evaluating Pop-PBPK model predictions that account for such features. The 

approach focuses on deriving Pop-PBPK-specific normalized prediction distribution errors 

(NPDE), a metric that is commonly used for population pharmacokinetic model validation. We 

describe specific methodological steps for computing NPDE for Pop-PBPK models and define 

three measures for evaluating model performance: mean of NPDE, goodness-of-fit plots, and the 

magnitude of residual error. Utility of the proposed evaluation approach was demonstrated using 

two simulation-based study designs (positive and negative control studies) as well as 

pharmacokinetic data from a real-world clinical trial. For the positive-control simulation study, 

where observations and model simulations were generated under the same Pop-PBPK model, the 

NPDE-based approach denoted a congruency between model predictions and observed data (mean 

of NPDE = −0.01). In contrast, for the negative-control simulation study, where model simulations 

and observed data were generated under different Pop-PBPK models, the NPDE-based method 

asserted that model simulations and observed data were incongruent (mean of NPDE = −0.29). 

When employed to evaluate a previously developed clindamycin PBPK model against 

prospectively collected plasma concentration data from 29 children, the NPDE-based method 

qualified the model predictions as successful (mean of NPDE = 0). However, when pediatric 

subpopulations (e.g., infants) were evaluated, the approach revealed potential biases that should be 

explored.

Keywords

population physiologically-based pharmacokinetic modeling; normalized prediction distribution 
errors; pediatric subpopulations; potential biases

Introduction

In recent years, utilization of physiologically-based pharmacokinetic (PBPK) modeling 

analyses by pharmaceutical sponsors has dramatically increased, as evidenced by the 

number of regulatory submissions employing PBPK modeling techniques received by the 

United States (U.S.) Food and Drug Administration (FDA). Between 2004 and 2014, the 

U.S. FDA received 39 new drug application (NDA) submissions incorporating PBPK 

modeling techniques; whereas, in the following three-year period (2015 to 2017), 55 

submissions were received [1]. Despite the increased use of PBPK modeling analyses in 

regulatory submissions, to date no clear standards for evaluating the adequacy of model 

predictions have been adopted by key regulatory agencies such as the U.S. FDA and the 

European Medicines Agency (EMA). In 2016, draft documents providing prospective 

guidance for reporting the results of PBPK model analyses were circulated by the U.S. FDA 

and EMA [2,3]. Though both documents highlighted the importance of establishing 

confidence in model predictions with respect to the study’s purpose/question, this notion 

was weakened by the lack of clear criteria for assessing the quality of model predictions. 

This omission likely is due to the limited amount of literature devoted to PBPK model 

evaluation methods. Considering the diverse utilization of PBPK models (e.g., prediction of 

drug-drug interactions, pediatric dose selection, assessing impact of hepatic disease), as well 

as the type and availability of clinical information on-hand to facilitate model evaluation, 

application of a single standardized metric and criteria for all cases is likely untenable. 
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Nevertheless, assessments of a model’s capacity to recapitulate continuous (e.g., time-based) 

drug concentration data from specific biological matrices (e.g., plasma) is a common 

approach for evaluating PBPK model performance [4–6]. Pharmacokinetic (PK) datasets 

used to facilitate such evaluations can range in terms of size (e.g., number of subjects/

samples) and sample collection intervals (e.g., sampling time). Larger PK datasets consisting 

of multiple, timed samples per patient are common among adult subjects [7]. In contrast, for 

specialized populations such as pediatrics, where sparse and opportunistic PK sampling 

designs are employed, disparately collected plasma-concentration-time datasets may 

represent the only measure available for PBPK model evaluation [8,9].

In addition to providing predictions towards a typical individual, PBPK models can be used 

to generate predictions for specific populations through the use of stochastic population 

algorithms. Such algorithms allow for the creation of virtual populations of subjects whose 

anatomy and physiology (e.g., system-specific parameters) differ based on inferences and 

knowledge of real-world biological variability [10]. By characterizing differences in 

simulated drug disposition among virtual population members, population-PBPK (Pop-

PBPK) models can provide users with realistic estimates of the average tendency and range 

of inter-subject variability in compound PK. To assess Pop-PBPK model performance 

against observed concentration-time data, one commonly used approach is to compute the 

proportion of observed data that corresponds with model-derived prediction intervals (PI) 

[5,6,9,11]. Though convenient to compute, such numerical predictive checks (NPC) can 

provide erroneous conclusions regarding model performance as they fail to account for 

within-subject correlations (e.g., multiple samples per subject) and the presence of residual 

error [12]. Furthermore, most studies fail to define thresholds for the proportion of observed 

data falling outside model generated percentiles for model acceptance/rejection, making it 

difficult to assess if the modeling exercise was successful [9,13].

In this study, we propose a new paradigm for assessing the adequacy of Pop-PBPK model 

predictions for continuous PK data (e.g., plasma concentration-time values). The approach 

focuses on deriving Pop-PBPK-specific normalized prediction distribution errors (NPDE), a 

metric that is commonly used for population PK model validation [14]. NPDE are 

simulation-based metrics that are computed using a decorrelation step. Correspondingly, 

they are assumed to have improved properties for evaluating models against datasets 

containing correlated observations (i.e., multiple observations per subject) [15,16]. We first 

introduce the aforementioned model evaluation technique and then demonstrate its 

functionality using a simulation-based study design. We then provide a real-world example 

of the utility of the proposed technique for evaluating a previously published pediatric PBPK 

model for clindamycin [9].

Methods

Software

PK-Sim® (version 7.2, http://open-systems-pharmacology.org) was used for development of 

all Pop-PBPK models. Data management (e.g., formatting) and graphical plots were 

conducted/produced in R (version 3.4.3, R Foundation for Statistical Computing, Vienna, 

Austria) and RStudio (version 1.1.383, RStudio, Boston, MA, USA) with the ggplot2, 
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cowplot, xlsx, and rlist packages. NPDE were computed in R using the npde package [15]. 

The piecewise cubic hermite interpolating polynomial (pchip) function from the pracma 

package in R was used for all data interpolations. Visual predictive checks were generated in 

R using the vpc package [17].

NPDE evaluation methodology

In their original conception, NPDE were formulated to evaluate the performance of mixed-

effect models defined by the following general structure [14]:

yij = f tij, θi + εij (Equation 1)

Where yij is the observed value for subject i at time tij, (tij, θi) is the model predicted value 

for subject i, which is a function of time (tij) and individual subject parameters (θi), and εij is 

the stochastic residual error component. Monte-Carlo simulations based on the above 

statistical model that introduce variability towards inter-individual (e.g., θi) and error (e.g., 

εij) components are used to generate a distribution of K-simulated values for each 

observation (i.e., individual predictive distributions). Following a decorrelation step, where 

both observed data and model simulations are decorrelated based on the empirical 

covariance matrix of model simulations, NPDE values can be obtained by Equations 2 and 3 

[15]:

pdeij = 1
k ∑k = 1

k 1yijsim(k) * < yij* (Equation 2)

npdeij = ϕ−1 pdeij (Equation 3)

Where pdeij is the prediction discrepancy error, yij* is decorrelated observed value, yij 
sim(k)* is the decorrelated simulated value, and ϕ−1 is the inverse of the cumulative normal 

density function for N(0,1). pde defines the decorrelated quantile of an observation within an 

individual predictive distribution. For a formal description of relevant formula associated 

with the decorrelation process, the reader is referred to a previous publication by Comets et 

al. [15]. By forgoing the decorrelation step, indices such as prediction discrepancies (pd) and 

normalized prediction discrepancies (npd) can be computed using similar processes as 

described in Equations 2 and 3, respectively. For graphical depictions of trends over time or 

across predicted values, use of npd are sometimes preferred due to the tendency of the 

decorrelation process to introduce graphical artifacts within npde based plots [18].

In order to compute Pop-PBPK specific NPDE values, PBPK generated individual predictive 

distributions that incorporate inter-subject and residual variability are required. To generate 

such distributions, PBPK modeling software (e.g., PK-Sim®) is used to produce 

individualized-populations (number of individuals = K) for each observed subject based on 

their age, weight, height, race, and sex. Population algorithms incorporated into PBPK 

modeling platforms introduce stochastic variability toward system-specific model 

parameters (e.g., organ volumes, perfusion rates, plasma protein concentrations, enzyme 

abundance, etc.) based on knowledge or inferences of biological variability specific to the 
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organism of interest [10,19]. In addition, during the model development process, users may 

choose to introduce or modify variability towards relevant system-specific parameters. 

Based on this approach, generated individualized-populations will consist of subjects who 

share the same demographic quantifiers (e.g., age, weight, height, race), but exhibit unique 

differences in terms of their underlying anatomic/physiologic parameter values (e.g., liver 

blood flow, liver weight, plasma protein abundance, hepatic enzyme abundance, etc).. 

Conceptually, PK variability associated system-specific parameters introduced by population 

algorithms or the user can be viewed as model-based approximations of inter-subject 

variability. Pop-PBPK models for each subject are parameterized with drug-specific 

properties (e.g., lipophilicity, LogP; molecular weight, MW; acid-base dissociation constant, 

pKa); absorption, distribution, metabolism, and excretion (ADME) data (e.g., fraction 

unbound in plasma, fup; intrinsic clearance towards specific enzymes; CLint); and subject-

specific dosing information to generate K sets of concentration-time estimates.

Concentration-time estimates produced by the PBPK modeling software are read into R 

where simulated concentrations from each individualized-population are interpolated at 

congruent time points to those depicted in the observed dataset (e.g., actual sampling times). 

Interpolated concentrations are formatted into a simulated dataset using a similar structure to 

that of the observed dataset. NPDE are computed using the npde package in R based on 

observed and interpolated (i.e., simulated) datasets [15]. The inverse method (eigenvalue 

decomposition) was used to decorrelate observed and simulated concentration values [20]. 

For models that appropriately describe observed data, NPDE should conform to a normal 

distribution with a mean of 0 and variance of 1 [14]. Unlike real-world (observed) datasets, 

where residual error is assumed to be present, Pop-PBPK model predictions do not include 

residual variability. To define the extent of residual variability associated with Pop-PBPK 

model predictions, we propose an iterative workflow (Fig. 1). During the initial NPDE 

assessment, the simulated dataset is created by directly interpolating Pop-PBPK model 

predictions (i.e., no residual variability added). Expectedly, the estimated variance of 

initially generated NPDE values will be considerably higher than the nominal value (i.e., 1), 

indicating that the degree of variability associated with Pop-PBPK model predictions is 

under-estimated. By defining an error sub-model, such as that depicted by Equation 4, 

residual error can be introduced into simulated datasets in R.

Csim, error = Csim * eε; ε N(0, SD) (Equation 4)

In the above equation, Csim,error is the simulated concentration value with residual error 

added, Csim is the simulated concentration value without error, and ε is a random error term, 

which follows a normal distribution with a mean of 0 and standard deviation of SD. 

Following a repetitive process of increasing the magnitude of residual variability associated 

with model simulations, re-computing NPDE values, and assessing their variance, the 

residual error component of the model can be approximated. Based on the proposed 

workflow, the magnitude of residual error is increased until the variance of NPDE 

approximates a value of 1 (i.e., standard deviation ~ 1). For information on appropriate data 

formatting and use of the npde R package, the reader is referred to the npde user guide [20].

Maharaj et al. Page 5

J Pharmacokinet Pharmacodyn. Author manuscript; available in PMC 2021 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Using the proposed NPDE-based approach, assessments of Pop-PBPK model quality can be 

facilitated using a variety of measures: 1) the mean of NPDE; 2) goodness-of-fit plots; and 

3) the magnitude of residual error. A Student’s t-test (two-sided) can be used to evaluate if 

the mean of NPDE values statistically differ from the theoretical value of 0 (p-value <0.05). 

Goodness-of-fit plots can be constructed to assess for the presence of systematic trends 

associated with model predictions. Lastly, the magnitude of residual variability, as 

approximated by the proposed workflow (Fig. 1), provides a quantitative measure of the 

magnitude of unspecified variability required for model simulations to recapitulate the 

observed PK data.

Assessment of NPDE for qualifying PBPK model predictions using simulation-based study 
designs

The utility of the proposed NPDE-based approach for evaluating the quality Pop-PBPK 

model predictions was demonstrated using two simulation-based study designs. Both studies 

assessed model performance among neonates. The first was a positive-control study, 

whereby the ability of the NPDE-based workflow to identify a case where observed data and 

model simulations were derived from the same Pop-PBPK model was assessed. The second 

was a negative-control study that assessed the ability of the NPDE-based workflow to 

identify a case where observed data and model simulations were generated from different 

Pop-PBPK models. Specific details pertaining to the design and analysis of the positive and 

negative control studies are denoted below.

Positive-control study

Compound physico-chemistry and ADME: For the positive-control study, Pop-PBPK 

models were developed for a theoretical compound whose physico-chemical and ADME 

properties are denoted in Table 1 [12]. Tissue-to-plasma partition coefficients (Kp) were 

estimated in-silico according to the tissue-composition based approach presented by 

Rodgers and Rowland [21–23]. The compound, which exhibited affinity for albumin, 

displayed a high degree of plasma protein binding in adults (fraction unbound in plasma, fup 

= 0.1). Hepatic CYP3A4 was solely responsible for compound clearance. A preliminary 

simulation assessing administration of a 100 mg intravenous (IV) bolus dose of the 

theoretical compound to a 30 year-old White American male (80.4 kg, 178.5 cm) displayed 

a hepatic extraction ratio (ER) of 0.17 (i.e., low ER compound).

Observed subjects: Using PK-Sim’s® population module, demographics information for 

30 unique neonatal subjects (postnatal age < 30 days) were generated based on a White 

American population with a male:female ratio of 50:50. Generated subject demographics 

included postnatal age, weight, height, and sex. In addition, each subject was stochastically 

assigned 9 unique PK sampling times over a 24 hour period. Sample times were defined for 

different collection intervals as described in Supplementary Table S1, with each interval-

specific sampling time being randomly selected. The ontogeny for hepatic CYP3A4 as 

defined by PK-Sim® is displayed in Supplementary Table S2. These proportional scalers 

define the effect of maturation on isozyme function with a value of 1 signifying complete 

maturation (i.e., adult values).
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Individual predictive distributions (individualized-population PBPK 
simulations): Individual predictive distributions of plasma concentrations for each observed 

subjects were generated using PK-Sim’s® population module. For each observed subject, a 

virtual population consisting of 500 individuals was created with the same postnatal age, 

weight, height, sex, and race. The population algorithm introduced stochastic variability 

towards organ weights, blood flows, plasma albumin concentrations, and hepatic CYP3A4 

abundances between members of the same individualized-population [10, 19]. Resulting 

individualized-populations consisted of subjects with the same gross demographic measures 

but with underlying inter-subject anatomical and physiological differences capable of 

perpetuating PK alterations. Pop-PBPK model simulations were generated in PK-Sim® for 

each of the 30 individualized-populations following administration of a 1.5 mg/kg IV bolus 

dose of the above defined theoretical compound (Table 1). For each individualized-

population, model simulated peripheral venous plasma concentrations were interpolated at 

the 9 sampling times points defined for each observed subject. This process created 

individual predictive distributions for each subject-specific sampling time consisting of 500 

simulated concentration values, one for each individualized-population member.

NPDE-based model evaluation

Assessment of Type-I-error.: To explore the influence of different numbers of subjects and 

samples per subject on performance of the proposed NPDE-based model evaluation 

approach, assessments were performed over 12 separate study designs with over 500 

iterations for each design (Table 2). The frequency of type-I-errors (i.e., incorrectly asserting 

observations and models simulations are divergent) associated with use of the proposed 

NPDE-based model evaluation approach was assessed for the positive-control study 

(observations and model simulations were derived from the same Pop-PBPK model). For 

each iteration, observed datasets were created based on the following process. First, single 

individuals from each individualized-population were selected and their interpolated 

concentration-time values were combined to form an observed dataset. Next, to provide a 

resemblance to a real-world PK data, which implicitly contains residual variability, an 

exponential residual error with a standard deviation (SD) of 0.20 was stochastically added 

onto interpolated concentration values using Equation 4.

Simulated datasets were created by combining interpolated concentrations over all 

individualized-populations. The resulting dataset contained individual predictive 

distributions for each subject-specific sampling time point (500 concentrations per sampling 

time), albeit without residual error. The magnitude of residual error associated with model 

simulations was algorithmically estimated using the optimize function in R (one dimensional 

optimization). Example code for this optimization process has been provided in the 

supplementary materials. Using the estimated residual variability, PBPK model specific 

NPDE values were computed. The proportion of iterations where the mean of NPDE was 

asserted to be statistically different than 0 (p-value <0.05; two-sided Student’s t test) 

provided an estimate of the type-I-error for the proposed model evaluation approach.

To evaluate the influence of misspecification of the magnitude of residual error on the 

frequency of type-I-errors, NPDE values were computed for different scenarios where the 
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magnitude of residual error added onto model simulations varied. For each iteration, the 

mean NPDE value was statistically evaluated under a scenario where no residual error was 

added onto model simulations. Two additional scenarios where excess residual error was 

added onto model simulations to provide NPDE distributions with SD of less than the ideal 

value (i.e., 1) were evaluated. Under these scenarios, the magnitude of residual error was 

optimized to provide NPDE with SD of 0.75 and 0.5. Statistical evaluations for the mean of 

NPDE values under these scenerios were conducted in a similar manner as described above.

Additionally, for each iteration, a conventional NPC was performed to assess Pop-PBPK 

model performance [12]. Under this approach, the proportion of observed concentrations 

falling outside a Pop-PBPK model defined 90% PI generated for 100 virtual neonates whose 

distribution of postnatal age, sex (i.e., 50:50), and race mirrored that of observed subjects 

was calculated. The PI was generated for simulated plasma concentrations following 

administration of a 1.5 mg/kg IV bolus dose of the theoretical compound described in Table 

1. In a manner congruent to current PBPK modeling practices, no residual error was added 

to model simulations for construction of the 90% PI. The exact binomial test was used to 

evaluate if the proportion of observations falling outside the model’s 90% PI was 

statistically greater than the expected proportion (0.10). Statistical significance was asserted 

using a p value<0.05.

Descriptive Example.: Following the workflow depicted in Figure 1, NPDE-based model 

evaluation measures (i.e., mean of NPDE, goodness-of-fit plots, and magnitude of residual 

variability) were computed for a single iteration of the positive-control study consisting of 

10 subjects with 6 samples per subjects. Generated goodness-fit-plots consisted of npd vs 

time, npd vs predicted concentrations, normal quantile-quantile (Q-Q), and prediction-

corrected visual predictive check (pc-vpc) plots [24]. pc-vpc represent a modification of 

traditional visual predictive checks whereby observed and simulated concentrations are 

normalized by their expected model simulated value (i.e., typical value). This modification 

reduces the magnitude variability that occurs when data from subjects receiving dissimilar 

dosages or who differ in terms influential covariates are binned together, enhancing the 

ability of these plots to detect model misspecifications. Goodness-of-fit plots were 

developed based on simulated datasets with added residual error, as defined by the 

evaluation workflow (Fig. 1).

For comparison, conventional metrics employed for PBPK model evaluation including 

residual plots, bias and precision indices, and NPC of the proportion of data falling outside 

the model’s 90% PI were computed/generated. Conventionally computed residuals (RES) 

were calculated according to Equation 5.

RES = OBSi, t − PREDMEDi, t (Equation 5)

Where OBSi,t is the observed concentration-time value for subject, i, at time, t, and 

PREDMEDi, t represents the median simulated concentration (without added residual error) 

corresponding to the individual predictive distribution for subject, i, at time, t. In this 

context, PREDMEDi, t provides an approximation of the expected concentration from model 
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simulations (i.e., the typical value). Conventional measures of bias included mean error 

(ME; Equation 6) and average-fold error (AFE; Equation 7); whereas, conventional 

measures of precision included root mean squared error (RMSE; Equation 8) and absolute 

average-fold error (AAFE; Equation 9).

ME = 1
n ∑ OBSi, t − PREDMEDi, t (Equation 6)

AFE = 10
1
n ∑log

PREDMEDi, t
OBSi, t

(Equation 7)

RMSE = 1
n ∑ OBSi, t − PREDMEDi, t

2
(Equation 8)

AAFE = 10
1
nΣ log

PREDMEDi, t
OBSi, t

(Equation 9)

Lastly, we performed a NPC to evaluate if the proportion of observations falling outside the 

Pop-PBPK model’s 90% PI was statistically greater than the expected proportion (0.10). As 

described above, the 90% PI was generated based on a 100 virtual neonates whose 

demographics distribution (i.e., age, race, and sex) mirrored that of observed subjects.

Negative-control study

Compound physico-chemistry and ADME: For the negative-control study, observed and 

simulated datasets were generated using Pop-PBPK models for two different, albeit similar, 

theoretical compounds. To generate the observed dataset, a modified compound was created 

whose physico-chemical and ADME properties were similar to that displayed in Table 1 

with one alteration; the reference (adult) fup was increased to 0.13. In contrast, the simulated 

dataset was derived based on Pop-PBPK model simulations for the unaltered theoretical 

compound with a reference fup of 0.10 (Table 1).

Observed subjects: Observed subject demographics and PK sampling times were the 

identical to those defined for the positive-control study. Thus, analysis of the negative-

control study was based on 30 neonatal subjects, each assigned a unique PK sampling 

scheme comprised of 9 sample times over 24 hours.

Individual predictive distributions (individualized-population PBPK 
simulations): Using a similar methodology as described for the positive-control study, two 

sets of individual predictive distributions were generated for each of the 30 observed subject. 

The first set was comprised of Pop-PBPK simulations for the theoretical compound 

described in Table 1 (i.e., fup = 0.10) and was identical to the distributions generated for the 

positive-control study. The second set was comprised of Pop-PBPK simulations for the 

above-defined modified theoretical compound (fup = 0.13). Accordingly, two competing 

individual predictive distributions, one for the unaltered theoretical compound (fup = 0.10; 
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Table 1) and one for modified theoretical compound (fup = 0.13), were generated for each 

subject-specific sampling time.

NPDE-based model evaluation

Power.: Model-based statistical evaluations for power were performed over 12 separate 

study designs (Table 2) using 500 iterations per design. Power (i.e., correctly asserting 

observations and models simulations are divergent) associated with use of the proposed 

NPDE-based model evaluation approach was assessed for a case where observations and 

model simulations were derived from different Pop-PBPK model simulations.

For each iteration, observed datasets were created from individual predictive distributions 

for the modified theoretical compound (fup = 0.13) using a similar approach as described for 

the positive control study. Exponential residual error with a SD of 0.20 was stochastically 

added onto concentrations from the observed dataset using Equation 4. Simulated datasets 

were based on the unmodified theoretical compound (fup = 0.10; Table 1) and were identical 

those created for the positive control study.

At each iteration, PBPK model derived NPDE values were computed using the proposed 

model evaluation workflow (Fig. 1). Power was computed as the proportion of iterations 

where the mean of NPDE values was asserted to be statistically different than 0 (p-value 

<0.05). The influence of misspecification of the magnitude of residual error on the power the 

proposed model evaluation approach was assessed in a similar manner as described for the 

positive-control study. A conventional NPC evaluating the proportion of observed data that 

coincides with a Pop-PBPK model defined 90% PI generated for 100 virtual neonates 

receiving a 1.5 mg/kg IV bolus dose of the unmodified theoretical compound (fup = 0.10; 

Table 1) was computed.

Descriptive Example.: The model evaluation workflow was conducted for a single 

representative iteration of the negative-control study consisting for 10 subject with 6 samples 

per subject.

Evaluation of a previously developed pediatric PBPK model for clindamycin using the 
proposed NPDE-based approach

Pediatric PBPK model description—The proposed NPDE-based model evaluation 

approach was used to qualify predictions from a published pediatric PBPK model for IV 

clindamycin [9]. The model was originally developed using 68 opportunistically collected 

clindamycin plasma concentration samples from 48 subjects, who ranged in postnatal age 

from 1 month to 19 years. As IV preparations of clindamycin are formulated using its 

prodrug, clindamycin-phosphate, the model was developed to simulate exposures of both 

compounds. Elimination pathways for clindamycin-phosphate include conversion to 

clindamycin by plasma alkaline phosphatase and renal filtration. For clindamycin, 

elimination is modulated by both hepatic (CYP3A4 and CYP3A5) and renal processes 

(filtration and tubular secretion). Specific details pertaining to drug-physico-chemistry and 

PBPK model parametrization (e.g., ontogeny functions, partition coefficients) are denoted in 

the published manuscript [9].
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Observed subjects—Clindamycin plasma-concentration samples were collected from 

children enrolled in a prospective phase-I clinical trial (NCT02475876). Study inclusion was 

confined to children with postnatal ages between 1 month to 17 years receiving IV 

clindamycin for prophylaxis or treatment of a confirmed or suspected infection. Patients 

concomitantly receiving medications known to inhibit or induce hepatic CYP3A4 were 

excluded from the analysis. Up to 7 PK samples were collected per patient over one or two 

occasions (i.e., doses). Samples were collected pre-dose, 0–10 minutes after the end of the 

infusion, 2–4 hours after start of the dose infusion, and 30 minutes prior to the next dose. 

Records pertaining to the complete dosing history for the current course of clindamycin 

were available for each patient. Of note, the abovementioned represents the ideal PK 

sampling scheme; however, as sampling was conducted during the course of clinical care, 

deviations with respect to the timing and number of samples collected per patient were 

observed.

Individual predictive distributions (individualized-population PBPK 
simulations)—Simulated clindamycin peripheral venous plasma concentrations were 

computed using the previously developed clindamycin pediatric PBPK model [9]. For each 

subject, individualized-populations consisting of 500 virtual individuals with the same 

demographic quantifiers (e.g., age, sex, weight, height, and race) were created using PK-

Sim’s® population module. Pop-PBPK model simulations were generated for each 

individualized-population using each subject’s recorded dosing scheme. Model simulated 

peripheral venous concentrations were interpolated at identical time points that PK samples 

were collected for each respective subject. This process created individual predictive 

distributions for each subject-specific sampling time that consisted of 500 simulated 

concentrations.

Model evaluation—The NPDE-based model evaluation workflow (Fig. 1) was employed 

to qualify Pop-PBPK model predictions. Evaluations were conducted based on two 

approaches. The first approach was a full analysis where the entire study cohort (i.e., PK 

data from all subjects) was evaluated together. The second was a segmented analysis that 

grouped subjects using the following age classifications: infant (>1 month–2 years), young 

children (2–6 years), and children/adolescent (6–18 years) [25]. Children and adolescent 

were evaluated as single group as physiological processes modulating PK (e.g., clearance) 

were inferred to be fully mature beyond 6 years of age [26, 27]. Observed datasets were 

created by combining observed clindamycin plasma concentrations from subject belonging 

to each age-group of interest into a single dataset. Simulated datasets were created by 

combining model generated individual predictive distributions of plasma concentrations over 

each age-group of interest. Dissimilar to our developed simulation-based studies, 

clindamycin PK samples were permitted to be collected over two occasions (e.g. samples 

collected over intervals that spanned >1 dose). Owing to temporal changes in PK parameters 

(e.g., clearance or volume of distribution), plasma concentrations within the same individual 

may exhibit interoccasion differences [28]. In general practice, PBPK model simulations do 

not account for interoccasion variability. However, calculated NPDE values based on 

simulations that lack interoccasion variability and observed datasets where interoccasion 

variability is prevalent will typically exhibit inflated variances. Consequently, the defined 
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evaluation workflow (Fig. 1) will necessitate that larger (i.e., inflated) residual errors be 

apportioned toward model simulations. To circumvent this issue, NPDE were computed 

separately for each occasion among subjects where PK samples were collected over multiple 

occasions. This was achieved by assigning unique identification numbers for PK samples 

collected around different doses (e.g., after the first dose [occasion 1]; and around the sixth 

dose [occasion 2]). This modification was instituted in both observed and simulated datasets.

Conventional metrics for qualifying PBPK models, as described previously for simulation-

based studies, were also examined. 90% PI(s) for clindamycin plasma concentrations were 

computed using Pop-PBPK simulations pertaining to three separate virtual populations (i.e., 

infants, young children, and children/adolescents). Populations, consisting of 100 virtual 

subjects each, were generated based on the demographic distributions (i.e., age, race, and 

sex) of observed subjects falling into each of the abovementioned age classifications. 

Separate simulations were conducted using each individual’s specific dosing regimen in 

conjunction with the applicably aged virtual population. NPC were computed using the same 

methodology as described for simulation-based studies.

Results

Evaluation of simulation-based study designs using an NPDE-based approach

Simulated neonatal plasma concentration-time profiles for the two theoretical compounds 

used to facilitate model evaluations for the positive and negative-control simulation studies 

are depicted in Figure 2. Median plasma concentrations corresponding to the unmodified 

theoretical compound (fup = 0.10; Table 1) were greater than concentrations for the modified 

compound (fup=0.13). This finding was unsurprising considering anticipated increases in 

systemic clearance and volume of distribution associated with increases in fup for a low 

extraction ratio compound.

For the positive-control study, where both observed and simulated datasets were based on 

the theoretical compound described in Table 1 (fup = 0.10), assessments of the mean of 

NPDE values were associated with type-I-error rates ranging from 0.026 to 0.06 among the 

examined study designs (Table 3). These values approximate the expected type-I-error rate 

of 0.05. In contrast, use of a NPC based on the proportion of data exceeding the model’s 

90% PI was associated with higher type-I-error rates, ranging between 0.61 to 1 (Table 3). 

Under this approach, type-I-error rates increased with increasing subject numbers and 

samples per subject. The influence of misspecification of the magnitude of residual error is 

depicted in Supplementary Table S3. For workflows where no residual error was added onto 

model simulations, evaluations of the mean of NPDE values were associated with 

suppressed type-I-error rates (~ 0). Conversely, for workflows where excessive residual error 

was added onto model simulations to provide NPDE distributions with SD of 0.75 and 0.5, 

inflated type-I-error rates ranging between 0.056 to 0.222 and 0.1 to 0.678, respectively, 

were observed.

NPDE-based model evaluation measures computed for a single iteration of the positive-

control study (10 subjects; 6 samples per subject) depicted a similarity between model 

simulations and observed data. The mean of NPDE values was −0.01, a value that was not 
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statistically different than 0 (p-value = 0.952). Goodness-of-fit plots generated for the 

proposed model evaluation approach were devoid of systematic trends (Fig. 3). An 

exponential residual error of 0.181 was estimated using the NPDE-based methodology, a 

value that is in close agreement to the theoretical value of 0.20. The visual impact of adding 

varying magnitudes of residual error onto model simulations for the positive-control study is 

depicted in Supplementary Figure S1. Normal quantile-quantile plots demonstrate that 

increasing the magnitude of residual error redistributes the NPDE density away from the 

tails. When the magnitude of residual error is approximately estimated (e.g., 0.15 to 0.25; 

Supplementary Fig. S1D–F), visual agreement between distributions for NPDE values and a 

standard normal random variable were observed.

Conventional model evaluation metrics provided contrasting depictions of model 

performance for the positive-control study. AFE (bias) was 1.08, indicating agreement 

between observations and model simulations, albeit with a minute positive bias (over-

prediction). AAFE (precision) was 1.34 (Table 4). Conventional residual plots were free of 

systematic trends (Supplementary Fig. S2). However, a NPC based on the model’s 90 % PI 

indicated a discrepancy between observed and simulated datasets. The proportion of 

observed data exceeding the model’s 90% PI was 0.27 - a value that was statistically greater 

than the nominal rate of 0.10 (Table 4).

For the negative-control study, observed datasets were generated using a Pop-PBPK model 

for the modified theoretical compound (fup = 0.13); whereas, simulated datasets were 

generated using a Pop-PBPK model for the unmodified theoretical compound (fup = 0.10; 

Table 1). The power of statistical tests for the mean of NPDE increased with increasing 

subject numbers. For 5, 10, 20, and 30 subjects, power ranged between 0.43 to 0.511, 0.79 to 

0.869, 0.98 to 0.996, and 1, respectively (Table 5). Power estimates for study designs with 

the same amount of subjects but varying number of samples per subject were relatively 

similar. For a NPC based on the Pop-PBPK model’s 90% PI, power ranged between 0.735 to 

1 (Table 5). NPC-based power estimates increased with increasing subject numbers and 

samples per subject. Supplementary Table S4 depicts the influence of misspecification of the 

magnitude of residual error on the power of the proposed NPDE-based model evaluation 

approach. Low power estimates (0–0.07) were associated with workflows where no residual 

error was added onto model simulations. In general, the addition of excessive residual error 

onto model simulations had a minimal impact on the power of the proposed model 

evaluation approach.

For single representative iteration of the negative-control study (10 subjects; 6 samples per 

subject), the NPDE-based model evaluation approach depicted a divergence between model 

simulations and observed data. The mean of NPDE was −0.29, a value that was statistically 

different than 0 (p-value = 0.0308). Goodness-of-fit plots generated for the proposed model 

evaluation approach were indicative of a discrepancy between observed and simulated 

datasets (Fig. 4). npd based plots (versus time and predicted concentrations) indicated a 

tendency of model simulations to over-predict observed values (Fig. 4A, B). pc-vpc and 

normal quantile-quantile plots also depicted a tendency towards model over-prediction (Fig. 

4C,D). Using the NPDE-based methodology, an exponential residual error of 0.184 was 

estimated. Supplementary Fig. S3 depicts the impact of adding varying magnitudes of 
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residual error onto model simulations for the negative-control study. For all magnitudes of 

residual error depicted (0 to 0.30; Supplementary Fig. S3A–G), distributional differences 

between NPDE values and a standard normal random variable were observed.

The majority of conventional PBPK model evaluation metrics for the negative-control study 

depicted the presence of a mismatch between observed data and model simulations. The 

AFE (bias) was 1.26, indicating the presence of an over-prediction bias associated with 

model simulations. However, AAFE (precision) was only 1.39 - a value that was similar to 

that computed for the positive-control study (Table 4). Conventional residual-based 

goodness-of-fit plots exhibited trends indicative of model over-prediction (Supplementary 

Fig. S4). Application of a NPC to the negative control study indicated that the proportion of 

observed data exceeding the model’s 90% PI was 0.32 - a value that was statistically greater 

than the nominal value of 0.10 (Table 4)

Evaluation of a previously developed pediatric PBPK model for clindamycin using the 
proposed NPDE-based approach

Demographics of the 29 children who participated in the prospective clindamycin PK study 

are displayed in Table 6. Subjects ranged in postnatal age from 3 months to 16 years. 

Gestational age (GA) was reported for 7 infants less than 1 year postnatal age, four of whom 

were premature at birth (GA <37 weeks). However, specific modeling considerations for 

prematurity were not considered since the postnatal age of all premature subjects was greater 

than 7 months. A total of 157 samples were available for clindamycin PK analysis; the 

median (range) number of samples per subject was 6 (2–7). Samples were collected on one 

occasion (i.e., dose) in 8 subjects. The remaining 21 subjects provided samples over two 

occasions. PK samples corresponding to the first occasion were collected after a median 

(range) of 5 (1–7) doses. For the cohort of subjects who contributed samples over two 

occasions, samples corresponding to the second occasion were collected after a median 

(range) of 8 (4–13) doses. The median (range) administered clindamycin dosage was 12.6 

mg/kg (9.1–16.4). Notably, two subjects received single oral doses of clindamycin over the 

course of their sampling interval. However, PK samples were not collected over the interval 

immediately following oral dose administration. Considering the high oral bioavailability of 

clindamycin (~90%) [29], these doses were modeled by administration of the complete dose 

via an IV intermittent infusion over 30 minutes.

Application of the presented NPDE-based model evaluation approach (Fig. 1) towards the 

entire clindamycin PK dataset (i.e., 29 children; 157 samples) indicated that model 

simulations adequately reproduced observed data. A mean NPDE value of 0 (p-value = 0.99) 

was computed. The estimated magnitude of residual error (exponential) to provide NPDE 

values with a SD of 1 was 0.42 (Table 7). Figure 5 displays goodness-of-fit plots generated 

for the proposed model evaluation approach. npd and pc-vpc plots displayed a adequate fit 

between model simulations and observed data, though minor trends towards model over-

prediction at higher concentrations (collected post-drug infusion) and under-prediction at 

sampling times 2–4 hours post-drug infusion were observed. Trough concentrations were 

well predicted (Fig. 5A, B, C). In addition, the distribution of NPDE values were similar to 

that of a standard normal random variable (Fig. 5D). The AFE was computed to be 1, 
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indicating a lack of bias associated with model predictions. Precision (AAFE) was computed 

to be 1.95, indicating that on-average observed data fell within 1.95-fold of simulated values 

(Table 8).

Conversely, age-segmented evaluations of PBPK model performance displayed dissimilar 

results between age-groups. For infants (1 month–2 years; 10 subjects; 48 PK samples), the 

proposed NPDE-based model evaluation approach indicated the presence of a discrepancy 

between model simulations and observed data. Computed NPDE values exhibited a mean of 

−0.36 (p-value = 0.015; Table 7), indicating a trend towards model over-prediction. 

Goodness-of-fit plots also supported the presence of an over-prediction bias associated with 

model predictions (Supplementary Fig. S5). Conventionally computed bias (AFE) and 

precision (AAFE) measures were 1.31 (i.e., over-prediction bias) and 1.84, respectively. 

However, a NPC for the proportion of data exceeding the model’s 90% PI (0.0625) did not 

exceed the nominal value of 0.10 (Table 8).

In young children (2–6 years; 6 subjects; 37 PK samples), evaluation measures from the 

proposed model evaluation approach provided conflicting findings. NPDE values exhibited a 

mean of 0.21 - a value that was not significantly different than 0 (p-value = 0.211; Table 7). 

However, goodness-of-fit plots indicated a trend towards model under-prediction for samples 

collected between 2–4 hours (Supplementary Fig. S6). The computed AFE (0.73) indicated a 

bias towards model under-prediction. However, precision (AAFE) associated with model 

predictions was less than 2-fold (1.76; Table 8). Furthermore, the proportion observed data 

exceeding the model’s 90% PI (0.1622) was not statistically greater than the nominal value 

of 0.10 (Table 8).

For children between 6–18 years (13 subjects; 72 PK samples), the proposed model 

evaluation workflow depicted an adequate fit between model simulations and observed data. 

NPDE values exhibited a mean value of 0.08 (p-value = 0.522; Table 7). Goodness-of-fit 

plots indicated that model simulations adequately recapitulated the observed data. Although, 

for concentrations post-drug infusion (i.e., high concentrations), a minor over-prediction bias 

was observed (Supplementary Fig. S7). The estimated residual variability (exponential) 

associated with model predictions was 0.50 (Table 7). AFE was 0.98, indicating a lack of 

bias associated with model predictions. However, AAFE (precision) was greater than 2-fold 

(2.14). In addition, a statistically greater proportion of observed data fell outside the model’s 

90% PI (0.375) compared to the nominal value of 0.10 (Table 8).

Discussion

The current study introduces a new approach for evaluating Pop-PBPK model predictions 

against time-based observations (i.e., continuous data) that are commonly collected during 

clinical investigations. Though the examples presented here were specifically tailored 

towards PK data, the depicted methodology could equally be applied to other continuous 

data types, such as pharmacodynamic measures. The proposed approach focuses on deriving 

Pop-PBPK specific NPDE. Rather than providing an indication of the absolute difference 

between model simulations and observed data, NPDE provide a normalized approximation 

of the percentile that decorrelated observations fall in terms of model simulations. For 
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example, a NPDE value of 0 would indicate that the decorrelated observation falls on the 

50th (i.e., median) percentile of docorrelated model simulations. Furthermore, statistical 

analysis of the first two moments (i.e., mean and variance) for derived NPDE distributions 

provide an understanding of the model’s ability to recapitulate observed datasets in terms of 

bias and variability. Though commonly employed for population PK model validation [30, 

31], to our knowledge, this presents the first instance where NPDE have been appropriated 

for Pop-PBPK model evaluation.

Due to their varied scope of utilization, as well as lack of clear guidance from regulatory 

authorities [2, 3], PBPK models are commonly evaluated using a diverse set of quantitative 

metrics. For continuous data, such as concentration-time measurements, evaluations 

traditionally include summative metrics of bias (e.g., AFE, mean percentage error) and 

precision (e.g., AAFE, root-mean squared error, mean absolute percentage error) [32, 33], as 

well as NPC (e.g., proportion of observed data falling outside the model’s 90% PI) [9, 13]. 

Of note, such metrics fail to account for within-subject correlations (i.e., multiple 

observations per subject) and the presence of residual error. As a result, derived conclusions 

may be biased [12]. For example, the NPC based on the 90% PI from the presented positive-

control study indicated that the proportion of data exceeding the model’s PI (0.27) was 

statistically greater than the nominal value of 0.10 (Table 4). This is a notable finding, 

considering that observations and simulations were generated under the same PBPK model, 

albeit with a 0.20 exponential error added to observed concentrations.

The proposed NPDE-based model evaluation approach offers several distinct advantages 

compared to conventionally employed metrics. First, the approach allows for the 

development of goodness-of-fit plots that aid in the identification of model misspecifications 

similar to those used for population PK analyses [34]. Generated plots allows for data from 

individuals administered a drug at dissimilar dosages or frequencies to be combined and 

displayed using a discrete set of graphs. Such visual depictions are particularly advantageous 

for opportunistically collected PK datasets, where dosing schemes and timing of samples 

can vary considerably between subjects. Additionally, through creation of individual 

predictive distributions for each observed value, the proposed workflow permits for Pop-

PBPK model specific pc-vpc plots to be generated. These plots offer an enhanced ability to 

detect model misspecifications by normalizing data to account for differences in dosages or 

influential covariates between subjects [24]. Second, unlike summative metrics (e.g., AFE), 

which are derived based on model predictions for a typical subject (i.e., without 

consideration of inter-subject variability), NPDE are computed based on simulations that 

encapsulate the range of expected variability (e.g., inter-individual variability and residual 

error) associated with each prediction [14]. As such, NPDE-based analyses provide an 

important conceptual shift from conventional summative metrics. Rather than focusing on 

how far observations lie with respect to a single simulated (typical) individual, the proposed 

approach focuses on where observations fall within the range of variability proposed by the 

model, which permits NPDE-based analyses to provide simultaneous assessments of the 

adequacy of model predictions in terms of bias and variability. Lastly, the proposed 

evaluation approach incorporates residual variability into its qualification process. To our 

knowledge, this is one of the first instances where consideration of residual error has been 

incorporated into the PBPK model evaluation process. As pediatric PK studies are frequently 
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conducted during the course of clinical care, obtained PK datasets are inferred to embody 

higher degrees of residual error in comparison to prototypical phase-I PK studies performed 

in adults. Therefore, to facilitate appropriate model evaluations against such observed 

datasets, evaluation techniques capable of accounting for residual error are required.

Pre-established thresholds for assessing the quality of PBPK model predictions are not well-

defined within the literature. For example, a systematic review of published PBPK models 

indicated that for 56% of modeling exercises, a priori criteria for qualifying models as 

successful was not listed [35]. This finding is likely a reflection of the difficulty associated 

with establishing thresholds that are of clinical relevance. As opposed to evaluating models 

based on pre-specified clinically relevant thresholds, which vary between compounds and 

study populations, the proposed model evaluation workflow permits for a statistical 

assessment of similarity between observations and model simulations. For example, 

statistical evaluations of the mean of NPDE values provides an explicit quantitative 

assessment of model bias. However, it can be conceded that specific thresholds for 

acceptable goodness-of-fit plots and magnitudes of residual error are less well-defined. For 

the magnitude of residual error, estimates should be within a reasonable range with respect 

to the compound’s efficacy/safety profile and source of data. Though the safety of 

clindamycin in children has yet to widely investigated, a previously published safety 

analysis of 21 preterm and term infants receiving clindamycin for treatment of a suspected 

systemic infection or as part of standard of care found that 9 (43%) experienced adverse 

events, none of which were inferred to be related to clindamycin [36]. Additionally, a 

previously conducted population PK analysis of opportunistically collected clindamycin 

plasma PK data from 125 children, characterized a proportional residual error of 0.40 [37]. 

Of note, for smaller magnitudes of variance, proportional and exponential error functions 

introduce similar degrees of variability. Consequently, exponential residual error estimates 

from the developed pediatric clindamycin Pop-PBPK model were deemed acceptable as they 

approximated or were less than the population PK model defined value (Table 7) [9, 37].

PBPK model evaluations should be conducted in a manner that demonstrates the model’s 

applicability towards study populations of interest [3]. The importance of this concept was 

highlighted through our evaluation of the previously developed pediatric Pop-PBPK model 

for clindamycin [9]. When model simulations were evaluated against observed data from all 

subjects, spanning from infants to adolescents, a suitable fit between model simulations and 

observed data was depicted (Table 7; Figure 5). However, when analyses were segregated 

between different age-specific cohorts, differences in model performance were observed. In 

young children (2–6 years), evaluation measures offered contrasting findings. Goodness-of-

fit plots indicated the presence of model under-prediction, yet the mean of NPDE values was 

not statistically significant (Table 7; Supplementary Figure S6). This discrepancy may be a 

result of the low number of subjects within this cohort (i.e., 6), reducing the power for tests 

associated with the mean of NPDE values. Furthermore, in infants (1 month – 2 years), 

model simulations were found to over-predict observed concentrations (Table 7; 

Supplementary Figure S5). These results support the use of segmented analyses of Pop-

PBPK model performance within specific study populations of interest. Subject segregation 

should be conducted with careful consideration as the creation of too heterogeneous groups 

may mask the ability to detect model misspecifications within specific sub-groups. 
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Regulatory guidance and pre-existing knowledge of patient populations where PK 

differences are anticipated (e.g., neonates vs infants; males vs females) could be used to 

formulate groups for such analyses.

The proposed NPDE-based evaluation approach is not without limitations. Computation of 

NPDE uses a process whereby observations are decorrelated based on model simulations 

[16]. However, this process does not necessarily render NPDE as completely independent 

[38]. As a consequence, statistical tests based on NPDE can be associated with slightly 

higher type I error rates (i.e., erroneously asserting that model predictions and data are 

divergent). Therefore, it is recommended that goodness-of-fit plots also be considered as part 

of the model evaluation process [15]. Although the negative-control study was designed to 

assess the power of the proposed NPDE-based model evaluation approach to detect 

differences between two theoretical compounds whose PK profiles were slightly different, it 

should be noted that these computations were specific to the presented example. With use of 

Pop-PBPK models for an alternative set of compounds, different results would have been 

obtained. Despite their complexity, PBPK models are still simplified representations of 

complex biological systems. Consequently, the residual error computed using the defined 

workflow should be viewed as a composite of several sources including inappropriate model 

structure, misspecification of drug and system-specific parameters in addition to study 

execution and drug measurement errors. Although we assessed the influence of 

misspecifications of the magnitude of residual (exponential) error on type-I-error and power 

(Table 3 and Table 5), this work does not provide an understanding of the impacts of 

misspecification of the error model type (e.g., additive vs. proportional vs. auto-correlated, 

etc.). The most notable limitation of the proposed evaluation approach is its need for patient-

specific PK and demographic data; this represents a departure from currently employed 

metrics such as NPC that can be employed based on tertiary demographic information (e.g., 

age and weight range of observed subjects) [39]. Nonetheless, considering the advantages 

associated with use of the proposed model evaluation approach in comparison to 

conventionally utilized evaluation metrics, further development of NPDE-based methods for 

Pop-PBPK model evaluation is warranted.

Conclusions

The presented work introduces a new paradigm for qualifying Pop-PBPK model predictions 

of continuous outcomes (e.g., concentration-time values) that accounts for within-subject 

correlations (i.e., multiple observations per subject) and the presence of residual error. The 

novel approach focuses on deriving Pop-PBPK model specific NPDE, a metric that is 

commonly utilized for population PK model validation. Using simulation-based study 

designs, the performance of the proposed NPDE-based model evaluation approach was 

demonstrated through statistical assessments of power and type-I-error . When employed to 

evaluate a previously developed clindamycin PBPK model against prospectively collected 

plasma concentration values from 29 children, the NPDE-based approach asserted that, on 

average, the model predictions were unbiased; however, when pediatric subpopulations were 

evaluated, the approach revealed potential biases that should be explored.
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Figure. 1. 
NPDE model evaluation workflow.

NPDE, normalized prediction distribution errors; PBPK, physiologically-based 

pharmacokinetic
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Figure. 2. 
Simulated plasma concentration-time profiles (linear, A; semi-logarithmic, B) for two 

theoretical hepatic isozyme CYP3A4 substrates with different fractions unbound in plasma 

[0.10 (blue) and 0.13 (red)]. Shaded regions depict 90% PI for Pop-PBPK model simulations 

following administration of 1.5 mg/kg IV doses of each theoretical compound to a 

population of 100 virtual neonates. Solid lines depict median concentration-time values.

IV, intravenous; PI, prediction interval; Pop-PBPK, population physiologically-based 

pharmacokinetic
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Figure. 3. 
Goodness-of-fit plots generated from the NPDE-based model evaluation workflow 

corresponding to the positive-control study. Model simulations incorporated a residual error 

(exponential) of 0.181. Plots include npd vs. time (A); npd vs. PRED (B); a prediction-

corrected visual predictive check (C); and a normal quantile-quantile plot of NPDE values 

(D). In A and B, red lines represent moving (local) averages. In C, the light blue shaded 

regions represent 90% prediction bands associated with the 5th and 95th percentiles of PBPK 

model simulations. The dark blue region represents the 90% prediction band associated with 

the 50th percentile of PBPK model simulations. Dashed lines represent the 5th and 95th 

percentiles of observed data; whereas, the solid line represents the 50th percentile of 

observed data. In D, the light blue shaded region represents the 95% prediction interval for a 

standard normal random variable (based on 1000 iterations). The solid line represents the 

50th percentile of the standard normal random variable.

npd, normalized prediction distribution errors; NPDE, normalized prediction distribution 

errors; PRED, median simulated concentration
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Figure. 4. 
Goodness-of-fit plots generated from the NPDE-based model evaluation workflow 

corresponding to the negative-control study. Model simulations incorporated a residual error 

(exponential) of 0.184. Plots include npd vs. time (A); npd vs. PRED (B); a prediction-

corrected visual predictive check (C); and a normal quantile-quantile plot of NPDE values 

(D). In A and B, red lines represent moving (local) averages. In C, the light blue shaded 

regions represent 90% prediction bands associated with the 5th and 95th percentiles of PBPK 

model simulations. The dark blue region represents the 90% prediction band associated with 

the 50th percentile of PBPK model simulations. Dashed lines represent the 5th and 95th 

percentiles of observed data; whereas, the solid line represents the 50th percentile of 

observed data. In D, the light blue shaded region represents the 95% prediction interval for a 

standard normal random variable (based on 1000 iterations). The solid line represents the 

50th percentile of the standard normal random variable.

npd, normalized prediction distribution errors; NPDE, normalized prediction distribution 

errors; PRED, median simulated concentration
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Figure. 5. 
Goodness-of-fit plots generated from the NPDE-based model evaluation workflow 

corresponding to all subjects (N=29) from whom clindamycin concentrations were collected. 

Model simulations incorporated a residual error (exponential) of 0.422. Plots include npd vs. 

time (A); npd vs. PRED (B); a prediction-corrected visual predictive check (C); and a 

normal quantile-quantile plot of NPDE values (D). In A and B, red lines represent moving 

(local) averages. In C, the light blue shaded regions represent 90% prediction bands 

associated with the 5th and 95th percentiles of PBPK model simulations. The dark blue 

region represents the 90% prediction band associated with the 50th percentile of PBPK 

model simulations. Dashed lines represent the 5th and 95th percentiles of observed data; 

whereas, the solid line represents the 50th percentile of observed data. In D, the light blue 

shaded region represents the 95% prediction interval for a standard normal random variable 

(based on 1000 iterations). The solid line represents the 50th percentile of the standard 

normal random variable.

npd, normalized prediction distribution errors; NPDE, normalized prediction distribution 

errors; PRED, median simulated concentration
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Table 1.

Theoretical compound physico-chemistry and ADME information [12]

Physico-chemistry

LogP 2.5

pKa NA (neutral)

MW 350 g/mol (0 halogens)

ADME

Fup 0.1

Binding protein albumin

CLint,3A4 (hepatic) 0.25 1/min/umol CYP3A4

CLint,3A4, intrinsic clearance intrinsic clearance of (hepatic) isozyme CYP3A4; fup, plasma fraction unbound; LogP, logarithm of the octanol-
water partition coefficient (lipophilicity); MW, molecular weight; pKa, negative logarithm of the acid dissociation constant; NA, not applicable
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Table 2.

Evaluated study designs for positive and negative-control studies

Number of Subjects
a

Samples per Subject
b

5 3 6 9

10 3 6 9

20 3 6 9

30 3 6 9

a
Successive (subject) groups contain observed subjects from previous groupings in addition new subjects

b
Collection intervals for the 3 sample time points were 10–15 minutes, 60–70 minutes, and 8–8.5 hours. For 6 sample time points, collection 

intervals were 10–15 minutes, 25–30 minutes, 60–70 minutes, 120–140 minutes, 8–8.5 hours, and 12–13 hours. For 9 sample time points, 
collection intervals were 1–3 minutes, 10–15 minutes, 25–30 minutes, 60–70 minutes, 120–140 minutes, 4–4.5 hours, 8–8.5 hours, 12–13 hours, 
and 22–24 hours (post-dose administration).
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Table 3.

Type-I-error for the NPDE-based model evaluation approach (positive-control simulation study)

Number of Subjects Samples per Subject Total Samples Iterations
a P-value (μNPDE)

b
P-value (NPC)

c

5 3 15 467 0.028 0.61

10 3 30 491 0.047 0.894

20 3 60 498 0.042 1

30 3 90 500 0.06 1

5 6 30 493 0.053 0.85

10 6 60 496 0.026 0.974

20 6 120 498 0.038 0.998

30 6 180 497 0.038 1

5 9 45 492 0.03 0.868

10 9 90 497 0.054 0.988

20 9 180 499 0.036 1

30 9 270 499 0.056 1

μNPDE mean of normalized prediction distribution errors; NPC, numerical predictive check

a
Iterations (out of 500) where the standard deviation of NPDE were not optimized to within ±0.01 of the target value (i.e., 1) by the developed 

fitting algorithm were excluded from the analysis.

b
Type-I-error for the NPDE-based model evaluation approach. Computed as the proportion of iterations where the μNPDE was statistically 

different than 0 (p-value<0.05; two-sided Student’s t-test).

c
Type-I-error for the conventional evaluation approach. Computed as the proportion of iterations where the proportion of observed data exceeding 

the model’s 90% prediction interval was statistically > 0.10 (p-value < 0.05; exact binomial test)
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Table 4.

Conventional model evaluation metrics for the positive and negative-control simulation studies

Variable Positive-control study Negative-control study

Number of subjects 10 10

Samples per Subject 6 6

Total Samples 60 60

ME (mg/L) 0.025 −0.207

RMSE (mg/L) 0.445 0.472

AFE 1.08 1.26

AAFE 1.34 1.39

Number of samples outside the model’s 90 PI (N [%]) 16 (26.67%)* 19 (31.67%)*

ME, mean error; RMSE, root mean squared error; AFE, average fold-error ; AAFE, absolute average fold-error ; PI, prediction interval; PK, 
pharmacokinetic

*
Proportion of observed data exceeding model’s 90% PI is statistically greater than 0.10 (p-value<0.05, exact binomial test)
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Table 5.

Power of the NPDE-based model evaluation approach (negative-control simulation study)

Number of Subjects Samples per Subject Total Samples Iterations
a P-value (μNPDE)

b
P-value (NPC)

c

5 3 15 446 0.43 0.735

10 3 30 485 0.79 0.973

20 3 60 492 0.98 1

30 3 90 495 1 1

5 6 30 487 0.511 0.891

10 6 60 498 0.869 0.998

20 6 120 500 0.996 1

30 6 180 499 1 1

5 9 45 497 0.503 0.942

10 9 90 499 0.866 0.998

20 9 180 499 0.984 1

30 9 270 499 1 1

μNPDE, mean of normalized prediction distribution errors; NPC, numerical predictive check

a
Iterations (out of 500) where the standard deviation of NPDE were not optimized to within ±0.01 of the target value (i.e., 1) by the developed 

fitting algorithm were excluded from the analysis.

b
Power of the NPDE-based model evaluation approach. Computed as the proportion of iterations where the μNPDE was statistically different than 

0 (p-value<0.05; two-sided Student’s t-test).

c
Power of the conventional evaluation approach. Computed as the proportion of iterations where the proportion of observed data exceeding the 

model’s 90% prediction interval was statistically > 0.10 (p-value < 0.05; exact binomial test)
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Table 6.

Demographic characteristics of children who contributed clindamycin PK data for the analysis

Variable Median (Range) or N (%)

1 month-2 years 2–6 years 6–18 years

Number of subjects 10 6 13

Gestational age (weeks)
37 (33–40)

a - -

Postmenstrual age (weeks)
67 (51–78)

b - -

Postnatal age (years) 0.64 (0.27–1.45) 4 (3.56–5.93) 9.18 (6.06–15.98)

Body weight (kg) 8.45 (5.5–11.7) 16.3 (14.7–21.1) 41.2 (16.9–72.7)

Female 4 (40) 2 (33) 7 (54)

Race

White 5 (50) 5 (83) 11 (84)

Black or African American 2 (20) 1 (17) 1 (8)

Asian 2 (20) 0 0

More than one race 1 (10) 0 0

Other or not reported 0 0 1 (8)

PK, pharmacokinetic

a
Gestational age reported for subjects with postnatal age <1 year (N=7 subjects).

b
Postmenstrual age computed for subjects with postnatal age <1 year as the sum of gestational and postnatal age (N=7 subjects).
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Table 7.

NPDE-based model evaluation metrics for the previously developed pediatric clindamycin PBPK model [9]

Variable 1 month–2 years 2–6 years 6–18 years All

Number of subjects 10 6 13 29

Number of PK samples 48 37 72 157

Residual (exponential) variability 0.26 0.43 0.5 0.42

Mean of NPDE −0.36* 0.21 0.08 0

NPDE, normalized prediction distribution errors; PBPK, physiologically-based pharmacokinetic; PK, pharmacokinetic

*
mean of NPDE is statistically different than 0 (p-value < 0.05, two-sided Student’s t-test)
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Table 8.

Conventional model evaluation metrics for the previously developed pediatric clindamycin PBPK model [9]

Variable 1 month–2 years 2–6 years 6–18 years All

Number of subjects 10 6 13 29

Number of PK samples 48 37 72 157

ME (mcg/mL) −0.82 1.7 0.06 0.18

RMSE (mcg/mL) 4.2 5.68 6.45 5.66

AFE 1.31 0.73 0.98 1.00

AAFE 1.84 1.76 2.14 1.95

Number of samples outside the model’s 90 PI (N [%]) 3 (6.25 %) 6 (16.22 %) 27 (37.5%)* 36 (22.93 %)
a,*

ME, mean error; RMSE, root mean squared error; AFE, average fold-error; AAFE, average absolute fold-error; PBPK, physiologically-based 
pharmacokinetic; PI, prediction interval.

a
Summary of age-segmented analyses.

*
Proportion of observed data exceeding model’s 90% PI is statistically greater than 0.10 (p-value<0.05, exact binomial test)
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