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Abstract

A precisely designed chiral squaramide derivative is shown to promote the highly enantioselective 

addition of trimethylsilyl bromide (TMSBr) to a broad variety of 3-substituted and 3,3-

disubstituted oxetanes. The reaction provides direct and general access to synthetically valuable 

1,3-bromohydrin building blocks from easily accessed achiral precursors. The products are readily 

elaborated both by nucleophilic substitution and through transition-metal-catalyzed cross-coupling 

reactions. The enantioselective catalytic oxetane ring opening was employed as part of a 3-step, 

gram-scale synthesis of pretomanid, a recently-approved medication for the treatment of multi-

drug-resistant tuberculosis. Heavy-atom kinetic isotope effect (KIE) studies are consistent with 

enantiodetermining delivery of bromide from the H-bond-donor (HBD) catalyst to the activated 

oxetane. While the nucleophilicity of the bromide ion is expected to be attenuated by association 

to the HBD, overall rate acceleration is achieved by enhancement of Lewis acidity of the TMSBr 

reagent through anion-abstraction.
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Chiral anion-binding catalysis has emerged as a powerful strategy for enantioselective 

additions to cationic intermediates through their non-covalent association to catalyst-bound 

spectator anions.1,2 In most applications identified to date, the chiral catalyst-anion complex 

mediates stereoinduction in the addition of an external nucleophile (Figure 1A). An 

interesting variation to the anion-binding catalysis concept arises when the catalyst-bound 

anion also acts as the nucleophile in the enantiodetermining bond construction.3,4 At least in 

principle, such an approach can provide more precise control over stereoselectivity through 

specific association of both nucleophile and electrophile to the chiral catalyst. However, H-

bonding from the catalyst would also be expected to attenuate the reactivity of the 

nucleophile relative to an uncatalyzed, racemic pathway.5 This fundamental reactivity 

challenge can be circumvented if the catalyst also promotes the generation of the reactive 

ion-pair, as demonstrated elegantly by Gouverneur3f,g in the specific context of phase-

transfer reactions of alkali metal fluorides (Figure 1B). Following the recent discovery that 

H-bond donors such as chiral squaramides can activate silyl triflates via anion binding to 

promote enantioselective transformations,6 we were drawn to an alternative and possibly 

general approach to catalysis of nucleophile delivery by applying the anion-binding 

principle to activation of Lewis acids bearing nucleophilic counterions. Anion abstraction 

from the promoter should result in enhanced Lewis acidity, providing a general platform to 

access highly-reactive, cationic, electrophilic intermediates ion paired with a catalyst-bound 

nucleophilic anion (Figure 1C).

We chose to explore the anion-binding effect on nucleophile-bearing Lewis acids in the 

context of additions of TMSBr to prochiral oxetanes (Fig. 2A). Enantioselective ring-

opening of 3-substituted oxetanes provides a route to valuable 3-carbon chiral building 

blocks from simple, synthetically-accessible precursors.7 Several examples of 

enantioselective openings of 3-susbtituted oxetanes with intramolecular nucleophiles have 

been identified.8,9 However, more generally applicable highly enantioselective reactions 

involving intermolecular nucleophilic addition are limited to two pioneering examples from 

Sun and coworkers involving chiral phosphoric acid-catalyzed addition of 

mercaptobenzothiazole and HCl.10 Here we report the successful application of a chiral 

squaramide catalyst to promote the ring-opening addition of TMSBr to prochiral oxetane 

substrates with unprecedented substrate scope.

The addition of TMSBr to 3-phenyloxetane (1a) was selected as a model reaction.11 

Squaramide hydrogen-bond-donor catalysts6,12 bearing a 2-arylpyrrolidino amide were 

identified as particularly effective, with the the aryl substituent having a marked effect on 
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enantioselectivity and reproducibility (Fig. 2B). Systematic reaction and catalyst 

development (Fig. S1-S5) led to the identification of 9-phenanthryl squaramide 3a as the 

optimal catalyst for the synthesis of silylated bromohydrin 2a, catalyzing its formation in 

quantitative yields and with 96-98% e.e. over >20 runs.13

Squaramide 3a was found to catalyze the opening of a broad range of 3-subsituted and 3,3-

disubstituted oxetanes in high levels of e.e. (Figure 3). With 3-aryl oxetanes, both electron 

donating and withdrawing substituents could be introduced, with only ortho substitution 

impacting enantioselectivity adversely (1a–h). Weakly Lewis basic functional groups such 

as nitriles (1f) and esters (1g) had no deleterious effect on the reaction, and aryl ether 

spectator groups remained intact (1h). Oxetanes bearing protected alcohol and amine 

functionality (1i–m) as well as simple saturated alkyl groups (1n-p) all underwent reaction 

with high enantioselectivity. The reaction could even be extended successfully to certain 

3,3'-disubstituted oxetane substrates, which underwent stereoselective ring opening to 

provide products bearing fully substituted stereocenters (1q–v) with moderate-to-high 

enantioselectivity.

Alkyl bromide 2a was examined as a model substrate for potential product derivatizations 

(Fig. 4A) and was found to undergo facile substitution with azide, cyanide, and 

thiophenolate nucleophiles. Recent advances in transition-metal-catalyzed cross-coupling 

chemistry14 provide further opportunities for product elaborations; for example, we found 

that 2a engaged effectively in cobalt-catalyzed arylations.15 Moreover, the polarity of the 

electrophilic alkyl bromide could be inverted either by copper-catalyzed borylation,16 or 

through metal-halogen exchange, allowing 2a to function as the nucleophilic partner in a 

C(sp2)–C(sp3) cross coupling.17 Overall, the diverse range of products that can be accessed 

directly from 2a illustrates the synthetic versatility of these chiral bromohydrin building 

blocks.

The oxetane-opening methodology presents an interesting alternative to well-established 

synthetic strategies for accessing three-carbon chiral building blocks based on glycidol or 

epichlorohydrin derivatives (Figure 4B).18 In particular, the identity of the C2 group can be 

set in the prochiral oxetane substrate, thereby avoiding potentially multi-step late-stage 

functional-group manipulations required in routes involving epoxide ring-opening. This 

advantage is illustrated in the synthesis of the recently approved tuberculosis drug 

pretomanid19 (Figure 4C), which was prepared previously by Reider, Sorensen and 

coworkers in an elegant 5-step route from enantioenriched (R)-3-chloro-1,2-propanediol.20a 

Readily accessible oxetane 1w underwent highly enantioselective ring-opening to yield 

TMS-protected bromohydrin 2w in 98% e.e.21 Gratifyingly, 2-chloro-4-nitroimadzole, 

which was identified in the Reider and Sorensen synthesis as a non-explosive alternative to 

2,4-dinitroimidazole,20a underwent alkylation by 2w with complete regioselectivity followed 

by SNAr annulation to yield the desired product. Both intermediates were formed in 

sufficient purity to be carried forward without purification, and only a recrystallization of the 

final product was required to access analytically-pure pretomanid (10) in >99% e.e. The 

synthetic route avoids protecting-group manipulation steps and provides access to 

pretomanid in just 3 steps.
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As an initial step toward establishing the basis for exquisite enantiocontrol in oxetane ring-

opening reactions with squaramide 3a, we endeavored to determine whether bromide 

delivery was indeed the enantiodetermining step as proposed at the outset of reaction 

development. To address this question, the 12C / 13C KIE at the site of bromide attack was 

determined through analysis of starting material recovered at partial conversion from a one-

pot competition between doubly labeled oxetane 13C2-1a and unlabeled isotopologue 1a 
(Fig. 5).22 If bromide-promoted ring opening were substrate-committing, and thus, 

enantiodetermining, a primary KIE consistent with C─O bond cleavage would be expected. 

In contrast, if a step preceding ring opening such as oxetane silylation were irreversible then 

only a small, secondary KIE would be anticipated. Irreversible silylation would not 

necessarily preclude enantiodetermining bromide delivery, but it would allow for the 

possibility that silylation of 1a was enantiodetermining.23 Subjection of a mixture of 1a and 
13C2-1a to the catalytic reaction conditions led to the observation of a large, primary KIE 

(k12/k13 = 1.126(9)), fully consistent with reversible silylation and enantioselectivity-

determining bromide delivery (see SI for full details of the KIE studies).

In conclusion, the chiral squaramide-catalyzed addition of TMSBr to 3-aryl, 3-alkyl, and 3-

heteroatom substituted oxetanes as well as certain 3,3-disubstituted oxetanes provides a 

general enantioselective synthesis of protected 1,3-bromohydrin derivatives. The products of 

these reactions can be elaborated through a variety of nucleophilic substitution reactions, 

and the utility of the method is illustrated in the 3-step, gram-scale synthesis of the TB drug 

pretomanid. Heavy-atom KIE studies are consistent with enantiodetermining bromide 

delivery by the catalyst to an activated oxetane. This strategy overcomes the intrinsic 

deactivation of nucleophiles that accompanies association with an H-bond donor and holds 

promise as a broadly applicable approach to asymmetric catalysis of addition reactions.

Supplementary Material
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(21). The catalytic reaction was found to slow down on larger scale, but this could be compensated for 
by increasing the concentration to 0.25 M. The basis for the dependence of rate on reaction scale 
is related to the effect of adventitious water noted in ref. 13 and will be discussed fully in a 
separate report.

(22). The one-pot intermolecular competition experiment is the only option that allows accurate and 
diagnostic determination of the KIE in this system. For a lucid discussion of the applications of 
intramolecular, one-pot, and two-pot competition KIE experiments see: Simmons EM; Hartwig 
JF On the Interpretation of Deuterium Kinetic Isotope Effects in C—H Bond Functionalizations 
by Transition Metal Complexes. Angew. Chem., Int. Ed 2012, 51, 3066–3072.

(23). For an example where substrate activation rather than anion delivery is proposed to be 
enantiodetermining, see ref. 3b.
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Figure 1. 
(A) Conventional approach to anion-binding catalysis in which the catalyst binds a spectator 

anion. (B) Alternative reactive mode in anion-binding catalysis involving delivery of the 

bound anionic nucleophile to a cationic electrophile. Hydrogen bonding attenuates the 

reactivity of the nucleophile, but rate acceleration has been achieved via phase-transfer 

catalysis. (C) Catalyst-promoted ionization of an anionic nucleophile from a neutral Lewis 

acid-nucleophile complex allows for H-bond donor catalyzed anion delivery.
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Figure 2. 
A) Model reaction: enantioselective opening of oxetanes with TMSBr. B) Catalyst screening 

data for a series of arylpyrrolidino squaramides.
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Figure 3. 
Isolated yield and enantiomeric enrichments measured for the asymmetric oxetane opening 

at 0.4 mmol scale. See SI for details on methods for e.e. determination, reproducibility 

studies, and the assignment of absolute configuration. a Isolated as a 12.5 : 1 ratio of 

ROTMS to ROH product. b 48-hr reaction time. c −25 °C. d 72-hr reaction time. e 7.5 mol% 

3a. f −65 °C.
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Figure 4. 
A) Product elaborations: all reported yields are for the entire sequence of reactions starting 

from 1a a) standard reaction conditions with 0.4 mmol 1a; b) NaCN; c) NaN3; d) NaSPh; e) 

p-TolMgBr, Co(acac)3, TMEDA; f) B2Pin2, CuCl, Xantphos, t-BuOK; g) NaI in MeCN then 

solvent swap to Et2O, t-BuLi, ZnCl2, Pd(dppf)Cl2, R-I. See SI for detailed procedures. B) 

Glycidol- and oxetane-based strategies to C3 chiral derivatives. C) Gram-scale synthesis of 

pretomanid: Ar = 4-(trifluoromethoxy)phenyl h) 4-(trifluormethoxy)benzyl bromide (1.2 

equiv.), NaH (1.2 equiv.), 2-Me-THF (1.0 M), 60 °C, 12 hr; i) 3a (2 mol%), TMSBr (1.1 

equiv.), t-BuOMe (0.25 M), −80 °C, 24 hr; j) 2-chloro-4-nitroimidazole (2.0 equiv.), Et3N 

(2.1 equiv.), NaI (1.0 equiv.) DMF (0.25 M), 115 °C, 24 hr, then cool to 23 °C and add 

MeOH (1.0 M) and NaOH (5.0 equiv.), 30 min.
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Figure 5. 
One-pot competition KIE between 1a and 13C2-1a. A primary KIE of 1.126(9) was 

measured, indicating that oxetane silylation must be reversible, supporting 

enantiodetermining bromide delivery.
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