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Abstract

Chiral urea derivatives are shown to catalyze enantioselective tail-to-head cyclization reactions of 

neryl chloride analogues. Experimental data are consistent with a mechanism in which π-

participation by the nucleophilic olefin facilitates chloride ionization and thereby circumvents 

simple elimination pathways. Kinetic and computational studies support a cooperative mode of 

catalysis wherein two molecules of the urea catalyst engage the substrate and induce 

enantioselectivity through selective transition state stabilization.

Graphical Abstract

Carbocycles are ubiquitous motifs within natural and unnatural organic molecules, and their 

construction has been a primary research focus in synthetic organic chemistry since the 

inception of the field.1 Terpenes and terpenoids constitute one of the most important classes 

of carbocyclic natural products from both structural and functional perspectives.2 Their 

carbocyclic frameworks are constructed by terpene cyclase enzymes, which engage linear 

isoprenoid substrates of varying length.3 Cyclization of these polyolefins is initiated either 

through protonation of an olefin or epoxide in head-to-tail (HT) cyclizations, or through 

abstraction of an allylic pyrophosphate leaving group in tail-to-head (TH) cyclizations 

(Figure 1A).2–3 The reactivity of the resulting carbocationic intermediates is then modulated 
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through a combination of substrate preorganization5 and non-covalent stabilizing 

interactions3,6 in the enzyme active site, resulting in selective rearrangements and carbon-

carbon bond-forming reactions that ultimately give rise to an extraordinarily diverse array of 

natural products (Figure 1B).

The remarkable ability of cyclase enzymes to generate carbocationic intermediates and 

channel their reactivity along specific pathways has long captured the imagination of 

chemists and motivated efforts to deploy analogous strategies in synthesis.7 However, the 

very features that make carbocations such powerful intermediates in biosynthesis also render 

their application outside of enzymatic chemistry quite challenging.4,8 Nonetheless, over the 

last 60 years organic chemists have made significant progress in mimicking the HT synthesis 

of steroidal ring systems by leveraging the propensity of these reactions to proceed through 

concerted, stereospecific mechanisms.9,10 In contrast, efforts to reproduce TH cyclizations 

using non-biological catalysts have generally resulted in unselective or thermodynamically 

controlled reactions.4,11 Pioneering studies from the laboratories of Shenvi4 and 

Tiefenbacher12 have revealed strategies for extending carbocation lifetime, unlocking the 

potential for non-enzymatic mimics of TH polycyclizations, but catalyst control over 

enantioselectivity has remained elusive. To our knowledge, the only reported 

enantioselective TH cyclizations13 employ a binol-derived leaving group as a chiral 

auxiliary.

We hypothesized that it might be possible to achieve enantioselectivity in TH cyclizations 

with a small-molecule catalyst by mimicking nature’s strategy of controlled generation and 

selective stabilization of key high-energy cationic intermediates and transition states. In 

particular, we sought to draw on advances in dual-hydrogen-bond-donor (HBD) catalysis, 

which have revealed that chiral urea and thioureas are capable of inducing enantioselectivity 

in reactions involving cationic intermediates generated by anion abstraction.14 Moreover, 

specifically tailored HBD catalysts have been shown to induce enantioselectivity through 

non-covalent stabilizing interactions similar to those present in the active sites of cyclase 

enzymes.10e,15 Herein we report the development of a urea-catalyzed enantioselective 

cyclization of neryl chloride derivatives (Figure 1C). Mechanistic analysis has provided key 

insights into the basis of reactivity and stereoinduction, including the revelation that π-

participation by the nucleophilic olefin during ionization is critical to the success of the 

enantioselective transformation.

In preliminary studies, geranyl chloride and neryl chloride (1a) were found to display 

dramatic differences in reactivity in the presence of the achiral bis-aryl urea 6 and a 

stoichiometric base (Figure 2). Geranyl chloride underwent a very slow reaction at room 

temperature, with significant formation of uncyclized elimination products. In contrast, the 

reaction of neryl chloride (1a) proceeded to high conversion under the same conditions, 

leading predominantly to the formation of cyclic products 2a-4a. While enantioselective 

variants of the cyclization of 1a could be promoted with chiral dual HBD catalysts, only 

very modest levels of enantioselectivity (up to 34% e.e.) were attained in the formation of 

limonene (2a) despite the evaluation of a wide assortment of chiral hydrogen-bond-donor 

catalysts and reaction conditions (see SI for details).
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Recognizing that 1a might be a particularly challenging substrate for asymmetric induction 

due to its limited structural features, we explored variations to the structure of the reactants. 

Introduction of a phenyl substituent as a potential catalyst-recognition element in place of 

the C3 methyl group (1b) led to significant improvements in enantioselectivity. Urea 7a was 

identified as the optimal catalyst for this substrate, promoting cyclization to 2b in 63% NMR 

yield and 87% e.e. at room temperature (Figure 3). In addition to 2b, alkyl chloride 3b was 

formed in 20% yield with similar e.e. (86%), consistent with both products arising from a 

common intermediate; 3b could be converted to 2b and 4b in 83% combined yield (2b:4b = 

10:1) via collidine-promoted elimination.13b The remainder of the mass balance consisted of 

two achiral cyclization products: 12% yield of tetrasubstituted olefin 4b and 5% yield of 

conjugated diene 5b, which we propose forms via a [1,2] hydride shift followed by 

elimination.16 Consistent with our prior observations using geranyl chloride, the Z isomer of 

1b was found to undergo very slow reaction promoted by 7a (5% conversion after 24 h), 

with 2b generated in only 50% e.e. (see SI for details).

Variation of the electronic and steric properties of the C3 aryl substituent in 1 was explored 

in cyclization reactions catalyzed by 7a (Figure 3). Electronic perturbation of the C3 aryl 

group of 1 revealed that the highest levels of e.e. were attained with electron-deficient 

substrates. Improved enantioselectivity was also observed upon substitution of the meta 

position with either electron-donating or withdrawing groups. While urea 7a catalyzed the 

formation of limonene 2a (R = Me) with low (< 10%) enantioselectivity, the cyclohexyl-

substituted analog 2i was formed in 76% e.e. It is therefore apparent both steric and 

electronic properties of the substrate play important roles in enantioinduction.

The dramatic differences in reactivity and enantioselectivity observed in the 7a-catalyzed 

cyclizations of the E and Z isomers of 1b (vide supra) indicated that both the rate- and 

enantiodetermining steps differed for the two isomers, suggesting that they might react 

through fundamentally different mechanisms. While the Z isomer of 1b must undergo 

rearrangement prior to cyclization,17 the nucleophilic olefin of 1b can interact with the allyl 

electrophile in a preorganized structure, potentially facilitating chloride ionization through 

anchimeric assistance.18

The role of the nucleophilic olefin in the rate-determining step of the cyclization of 1b was 

assessed in a kinetic isotope effect (KIE) experiment.19 Starting material recovered from 

one-pot competition experiments between 1b and 1b-d1 revealed enrichment in the protio 

isotopologue corresponding to kH/kD = 0.944(3) (Figure 4A). This small, secondary inverse 

KIE is consistent with direct involvement of the distal olefin in the rate-determining step, 

with partial rehybridization of the vinylic carbon from sp2 to sp3 and a small degree of C–C 

bond formation in the transition state.20,21

Hammett analysis conducted using catalyst 7b established that reaction rate correlates 

linearly with σ+
para in the reactions of 1b-1f (Figure 4B), consistent with the buildup of 

positive charge on the C3 carbon during the rate-determining step. Enantioselectivity values 

for the same substrates also correlate directly with σ+
para. The increased levels of 

asymmetric induction in electron-deficient substrates may be a consequence of differential 

extents of olefin participation during chloride displacement. For electron-deficient 
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substrates, a higher degree of anchimeric assistance from the distal olefin would be expected 

on the basis of a diminished ability to support positive charge at C3. A greater degree of C–

C bond formation would be expected to result in a more highly ordered enantiodetermining 

transition state.18g

Kinetic analysis of the reaction catalyzed by urea 7b revealed a first-order dependence of 

rate on substrate 1b, 0th order dependence on base, and a kinetic order in catalyst of 1.19 

(see SI for details). Aryl pyrrolidine urea and thiourea hydrogen-bond donors such as 7 are 

prone to dimerization both in the solid state and in nonpolar organic solvents,22 so a mixed 

resting state of monomeric and dimeric 7b could account for the observed non-integer order 

in catalyst. This possibility was supported through isothermal titration calorimetric studies, 

which revealed the presence of a roughly 70:30 equilibrium mixture of dimeric and 

monomeric 7b in cyclohexane at [7b]total = 0.01 M (see SI for details). Thus, the observed 

kinetic order in [7b] can be ascribed to a mixed dimer-monomer resting state and a rate-

determining transition state containing two molecules of catalyst. Based on the results of the 

kinetic analyses, Hammett studies, and the KIE experiment, we propose the catalytic cycle 

depicted in Figure 4C, where concerted rate- and enantioselectivity-determining chloride 

ionization and carbon-carbon bond formation is promoted through the cooperative action of 

two molecules of the urea catalyst.14d,23

Having established the stoichiometry and general features of the key selectivity-determining 

transition state, we sought to explore the factors responsible for enantioinduction through the 

use of computational modeling (see SI for computational details). Density functional theory 

(DFT) calculations identified energy-minimized transition state structures for the major and 

minor enantiomeric cyclization pathways of 1d promoted by two molecules of 7b.24 

Consistent with experimental observations, chloride ionization was characterized by olefinic 

participation (Figure 4D, forming C–C bond: 2.27 Å, breaking C–Cl bond: 3.26 Å). The 

lowest energy computed cyclization transition state is partially encapsulated within the 

dimeric catalyst assembly, with catalyst naphthyl groups positioned in close proximity to 

developing positive charge. The mode by which the aryl substituents on the catalyst 

influence enantioselectivity was assessed experimentally. Kinetic analysis conducted on the 

cyclization of 1b using catalysts 7a-7d revealed a positive correlation between reaction rate 

and enantioselectivity (Figure 5).25 Decomposition of the observed rate into contributions 

from the major and minor enantiomeric pathways15c reveals that the effect is far more 

pronounced for the major pathway; the catalyst aryl pyrrolidine stabilizes the transition state 

leading to the minor enantiomer to a lesser extent. Thus, it can be concluded that stabilizing 

aromatic interactions are at least partially responsible for enantioinduction.26

In summary, we have developed a highly enantioselective cyclization reaction of neryl 

chloride analogues catalyzed by chiral ureas. Reactions proceed through a concerted 

pathway in which π-participation by the nucleophilic olefin facilitates ionization of the 

leaving group, thereby avoiding direct elimination products. A network of attractive non-

covalent interactions involving two molecules of the urea serves to stabilize the cyclization 

transition state and induce enantiocontrol. Concerted mechanisms have been proposed to 

play key roles in enzymatic3b,27 and synthetic reactions9,28 involving formal cationic 

intermediates, and they likely underlie the attainment of high chemo- and enantioselectivity 
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in the present system. Future studies will be aimed at leveraging the principles uncovered 

here toward more complex transformations such as polycyclization reactions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Solvolysis and Cyclisation of Some Monoterpene 2,4-Dinitrophenyl Ethers. J. Chem. Soc. 
Perkin. Trans. II 1976, 10, 1160–1165.(e)Cori O; Chayet L; Perez LM; Bunton CA; Hachey D 
Rearrangement of Linalool, Geraniol, and Nerol and Their Derivatives. J. Org. Chem 1986, 51, 
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and similar e.e. of 2b (86%) as compared to the reaction catalyzed by 7a. See SI for details.
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KIE.

(22). Ford DD; Lehnherr D; Kennedy CR; Jacobsen EN On- and Off-Cycle Catalyst Cooperativity in 
Anion-Binding Catalysis. J. Am. Chem. Soc 2016, 138, 7860–7863. [PubMed: 27276389] 

(23). Enantioselectivities were observed to be invariant as a function of [7b] at 5, 10, and 15 mol% 
loadings, rendering highly unlikely any participation of a competitive monomeric pathway.

(24). On the basis of prior mechanistic studies from our group (see ref. 22), we assumed a 4-H binding 
geometry to chloride. Transition states characterized by 2-H binding to chloride were not 
modeled.

(25). There is no detectable background reaction of 1 under the reaction conditions in the absence of 
catalysts 7.

(26). For detailed investigations on how cationic C–H···π interactions can modify potential energy 
surfaces in terpene cyclase chemistry see:(a)Hong YJ; Tantillo DJ C–H···π interactions as 
modulators of carbocation structure – implications for terpene biosynthesis. Chem. Sci 2013, 4, 
2512–2518.(b)Hong YJ; Tantillo DJ Tension between Internal and External Modes of 
Stabilization in Carbocations Relevant to Terpene Biosynthesis: Modulate Minima Depth via C–
H···π Interactions. Org. Lett 2015, 17, 5388–5391. [PubMed: 26506248] 

(27). (a)Tantillo DJ Recent excursions to the borderlands between the realms of concerted and 
stepwise: carbocation cascades in natural product biosynthesis. J. Phys. Org. Chem 2008, 21, 
561–570.(b)Tantillo DJ The carbocation continuum in terpene biosynthesis—where are the 
secondary cations? Chem. Soc. Rev 2010, 39, 2847–2854. [PubMed: 20442917] (c)Tantillo DJ 
Biosynthesis via carbocations: Theoretical studies on terpene formation. Nat. Prod. Rep 2011, 28, 
1035–1053. [PubMed: 21541432] 

(28). (a)Khomutnyk YY; Arguelles AJ; Winschel GA; Sun Z; Zimmerman PM; Nagorny P Studies of 
the Mechanism and Origins of Enantioselectivity for the Chiral Phosphoric Acid-Catalyzed 
Stereoselective Spiroketalization Reactions. J. Am. Chem. Soc 2016, 138, 444–456. [PubMed: 
26641317] (b)Tsuji N; Kennemur JL; Buyck T; Lee S; Prevost S; Kaib PSJ; Bykov D; Fares C; 
List B Activation of olefins via asymmetric Brønsted acid catalysis. Science 2018, 359, 1501–
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Figure 1. 
A) Head-to-tail and tail-to-head cyclization reactions. B) Schematic illustrating Nature’s 

strategy for controlled ionization-dependent cyclizations. C) Proposed strategy for 

enantioselective tail-to-head cyclizations catalyzed by chiral hydrogen-bond donors.
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Figure 2. 
Differing reactivity observed in the urea-catalyzed cyclization of E and Z isomers. 

Conversions and yields were assessed from crude reaction mixtures using 1H NMR with 

mesitylene as an internal quantitative standard.
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Figure 3. 
Substrate scope. All reactions were performed on 0.15 mmol scale and proceeded to 

complete conversion. E.e. values are for products 2a-i. Alkyl chlorides 3b, 3h, and 3i were 

generated in 86% e.e., 91% e.e., and 70% e.e., respectively. Conversions and yields were 

assessed from crude reaction mixtures using 1H NMR with mesitylene as an internal 

standard. aReaction run in C6D12; b72 hr. reaction time; c48 hr. reaction time.
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Figure 4. 
Mechanistic studies. A) One-pot competition secondary H/D KIE experiment. B) Hammett 

studies. In red: Relative rates of cyclization of 1b-1f promoted by catalyst 7b. In blue: 

Enantioselectivities (expressed as –ΔΔG‡= RTln(enantiomer ratio), T = 25 °C) in the 

formation of 2b-2f promoted by 7a. C) Proposed catalytic cycle based on the KIE data and 

the experimentally determined rate law. D) Transition state model for the pathway leading to 

the major enantiomeric product in the cyclization of 1d. Key bond lengths are reported in 

Angstroms. Calculations were carried out at PCM (CyH) – B3LYP-D3(BJ)/6-311+G(d,p) // 

B3LYP/6-31G(d).
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Figure 5. 
Effect of catalyst aryl substituents on reaction rate and enantioselectivity.
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