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Abstract

An understanding of how memory is acquired and how it can be modified in fear-related anxiety 

disorders, with the enhancement of failing memories on one side and a reduction or elimination of 

traumatic memories on the other, is a key unmet challenge in the fields of neuroscience and 

neuropsychiatry. The latter process depends on an important form of learning called fear 

extinction, where a previously acquired fear-related memory is decoupled from its ability to 

control behaviour through repeated non-reinforced exposure to the original fear-inducing cue. 

Although simple in description, fear extinction relies on a complex pattern of brain region and 

cell-type specific processes, some of which are unique to this form of learning and, for better or 

worse, contribute to the inherent instability of fear extinction memory. Here we explore an 

emerging layer of biology that may compliment and enrich the synapse-centric perspective of fear 

extinction. As opposed to the more classically defined role of protein synthesis in the formation of 

fear extinction memory, a neuroepigenetic view of the experience-dependent gene expression 

involves an appreciation of dynamic changes in the state of the entire cell: from a transient change 

in plasticity at the level of the synapse, to potentially more persistent long-term effects within the 

nucleus. A deeper understanding of neuroepigenetic mechanisms and how they influence the 

formation and maintenance of fear extinction memory has the potential to enable the development 

of more effective treatment approaches for fear-related neuropsychiatric conditions.
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Introduction

Theories and models of fear-related memory exist in many forms and, historically, they have 

been primarily focused on the idea that memories are created by mechanisms that translate 

an initially labile experience to a persistent state (Muller & Pilzecker 1900; Lechner & 

Squire 1999; McGaugh 2000) which can then return to a labile state upon reactivation 
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(“reconsolidation”, Misanin et al. 1968; Nader et al. 2000; although see Dudai & Eisenberg 

2004). The concept of dynamic memory states is most apparent in fear extinction where it 

has been observed, since the time of Pavlov, that fear responses can be reduced following 

repeated exposure to cues related to the original fear evoking experience, but then return 

with the passage of time (Pavlov 1927; Baum 1988), by a return to original context in which 

fear was acquired (Bouton & Bolles 1979a; Bouton & Bolles 1979b), and by exposure to an 

unrelated but stress evoking cue (Rescorla & Heth 1975). However, what has never truly 

been established following Pavlov’s (1927) original observations of extinction is an 

understanding of whether the reduction in behavioural responding results in the erasure of 

the original trace, the creation of a new trace, or something else, and a complete picture of 

what may be happening at the molecular level in the brain has yet to be achieved. In this 

review, we compare and contrast transient extinction learning-induced electrical signalling 

events at the level of the synapse with potentially more persistent experience-dependent 

changes in the capacity for gene expression, which occur against the backdrop of the nuclear 

environment. We highlight newly emerging neuroepigenetic mechanisms surrounding DNA, 

RNA and the local chromatin environment, and describe how they contribute to this 

important form of learning and memory when extinction is considered as a dynamic 

equilibrium between erasure and inhibition of the original fear memory trace.

Theoretical perspectives on fear extinction and the role of LTP

It is notable that since the early days of investigation into fear extinction as a unique 

inhibitory learning process, the question of whether fear memories are ‘erased’ or inhibited 

following extinction has been strongly debated. Pavlov (1927) rejected any form of erasure 

as a mechanism for fear extinction learning and proclaimed that only a new inhibitory trace 

following extinction training was possible due to the observation of spontaneous recovery. 

But, he also stated that “being a definite circumscribed material system, [a reflex] can only 

continue to exist so long as it is in continuous equilibrium with the forces external to it: so 

soon as this equilibrium is seriously disturbed the organism will cease to exist as the entity it 

was. Reflexes are the elemental units in the mechanism of perpetual equilibrium,” 

suggesting, at the very least, an appreciation of the importance of an equilibrium between 

different memory states. This idea, as opposed to a dichotomy between fear and extinction, 

is theoretically attractive because both models, ‘erasure of fear’ and ‘inhibitory control over 

fear’, have repeatedly been observed over the course of 50 years of fear extinction research 

(Quirk & Mueller 2008; Flavell et al. 2013).

If one were to view extinction learning as a process that exists as an equilibrium between 

erasure and inhibition, it may therefore be posited that any behavioural manipulation which 

influences fear expression would also have impact on a variety of underlying continuous 

biological variables, such as intrinsic excitability, which could either promote a return to 

baseline in the original cells resulting in functional erasure of the original trace, or have 

permissive effects on new ‘inhibitory control’ cells leading to the inhibition of the original 

trace. Behavioural expression also exists on a continuous scale, from absolute fear 

expression to no expression, and this could be overlaid as a combined model in which 

sufficient activation of either of these two mechanisms enables the transition from one 

behavioural state to another, such as from freezing to exploration (Figure 1). The emphasis 
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would then be placed on the subthreshold variables that summate in both the original fear-

related cells and the cells encoding the new inhibitory trace.

To describe how these two processes may operate and functionally interact, the most well 

supported and utilized model of memory storage and retrieval, the electrochemical model of 

plasticity, where synapse-related mechanisms play a dominant role, has often been invoked 

(Poo et al. 2016). The electrochemical model posits that signals in the nervous system 

originate via membrane depolarization, which then propagate via spreading activation along 

axons, and transmit their signal to surrounding neurons via chemical messengers. With 

respect to fear-related learning and memory, this particular model aligns with Hebb’s 

postulate, whereby a collection of neurons representing a memory trace is formed and 

maintained through modulating mechanisms which allow firing of one neuron to increase 

the probability of triggering firing in the network of temporally coincident neurons 

distributed across the brain. This idea has been validated at the cellular level, in part, with 

the discovery of long-term potentiation (LTP; Bliss & Lomo 1973) and long-term depression 

(LTD; Ito 1989). Because of its potential link with memory formation, this correlate for 

experience-dependent plasticity has thus taken hold of our conception of cellular memory, 

and supporting evidence can be found throughout the literature, supporting a relationship 

between LTP/LTD like processes and fear-related learning and memory. For example, a 

synapsin-driven channelrhodopsin called oChIEF, was used to demonstrate that modulation 

of LTP and LTD in the medial geniculate nucleus and auditory cortex, can either induce or 

impair fear memory respectively (Saucier & Cain 1995; although see Nabavi et al. 2014 for 

evidence that LTP is not necessary for the formation of other forms of memory).

Electrophysiological recordings have also been used to define anxiety, fear, and extinction 

cells in associated brain areas, such as the hippocampus and prefrontal cortex, which have 

made it possible to examine LTP in neurons selectively activated by fear and extinction 

learning (Milad & Quirk 2002; Herry et al. 2010; Tovote et al. 2015; Jimenez et al. 2018). It 

has even been possible to demonstrate that manipulations which appear to completely erase 

cued fear to either a 7kHz or 2kHz tone which share overlapping cells, can be rescued if just 

the cells of one representation are activated with oChIEF (Abdou et al. 2018). From this, it is 

clear that electrophysiological changes must occur in particular regions and cells of the brain 

for extinction to occur; however, it is still debated as to whether these changes theoretically 

constitute erasure or inhibition. In a recent extension of this idea, An et al. (2017) 

demonstrated that the training conditions are critical and the mechanisms of erasure or 

inhibition can be activated depending on the behavioural protocol employed. Specifically, 

they found that a single training session resulted in firing in the prelimbic PFC and basal 

lateral amygdala, which is known to be associated with inhibition of fear. Whereas repeated 

training sessions, failed to activate these areas and instead resulted in the activation of 

‘erasure’ mechanisms including depotentiation of local circuits in the lateral amygdala.

As indicated, it has been shown that the neuronal circuits responsible for fear memory can 

be electrophysiologically de-potentiated and therefore relate to ‘erasure’, or, when 

alternative inhibitory traces are created, the two processes can compete (Clem & Schiller 

2016). Although this conceptual framing of extinction in relation to equilibrium is a step in 

the right direction, this premise remains incomplete as it fails to integrate molecular 
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mechanisms, which may serve as primary components of the extinction engram (Lashley 

1950; Marshall & Bredy 2016). This is important because there are many instances where 

LTP-related changes in synaptic efficacy and synaptic structure following fear extinction 

learning do not persist even when the memory is maintained over long periods of time. For 

example, following a significant reduction in LTP associated with fear and its extinction, 

there is typically a return of fear (Nabavi et al. 2014). Mechanisms known to promote LTP 

such as spine formation (Hayashi-Takagi et al. 2015) have also been shown to be 

impermanent (Chen et al. 2014; Attardo et al. 2015; Lai et al. 2018). Furthermore, 

performance, memory and electrophysiological recordings can be decoupled; although 

recent findings suggest that this may be in part due to not clearly differentiating which 

outputs, among many, are involved in memory during the manipulation of local synaptic 

plasticity (Saucier & Cain 1995; Herry et al. 2008; Hong & Kim 2017; Marek et al. 2018). 

Fortunately, in recent years an entirely new model of molecular memory has emerged, which 

may advance the understanding of experience-dependent plasticity and address the problem 

of lingering fear memory following fear extinction.

Neuroepigenetics: a new frontier in the molecular underpinnings of fear 

extinction

An emerging perspective that may overcome current limitations in fully understanding the 

process of fear extinction involves recent discoveries in the burgeoning field of cognitive 

neuroepigenetics. Broadly defined, neuroepigenetic mechanisms represent a variety of 

molecular processes traditionally associated with cell lineage specification during early 

development, which have been co-opted in the adult brain to facilitate experience-dependent 

gene expression (Day & Sweatt 2011; Marshall & Bredy 2016). These mechanisms are 

rapid, long lasting and are well suited to govern the fine tuning of experience-dependent 

gene expression and memory in ways that are potentially independent, yet complementary, 

to protein synthesis-dependent changes in synaptic plasticity and behavioural performance at 

the time of learning.

DNA Modification

The first neuroepigenetic mechanism that satisfies these criteria is DNA methylation, which 

is known to be directly involved in memory formation (Ashapkin et al. 1982; Miller & 

Sweatt 2007; Stafford & Lattal 2011; Baker-Andresen et al. 2013). Importantly, this 

molecular process does not simply turn on and off genes necessary for fear learning or for its 

extinction. The accumulation of 5-methylcytosine (5mC) on DNA can both activate and 

inhibit gene expression associated with fear extinction depending on its position within the 

genome (Figure 2). In gene promoters, 5mC often silences gene expression and when it 

accumulates in gene bodies, this epigenetic mark tends to be permissive (Day & Sweatt 

2010; Vanyushin & Ashapkin 2017). Other recently identified DNA modifications, including 

5-hydroxymethylcytosine (5hmC) and N6-methyldeoxyadenosine (m6da), appear to be 

biased towards gene activation in fear extinction (Li et al. 2014; Li et al. 2018).

Beyond on-off states, DNA modification can also influence the rate of transcription 

(Roundtree & Selker 1997). If one were to consider fear extinction as a process that involves 
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a dynamic equilibrium between erasure and inhibition, perhaps in this context, changes in 

DNA methylation and the regulation of transcription rates would be important. In the case of 

functional erasure, this might involve transcriptional repression by DNA methylation or, 

similar to depotentiation, active DNA demethylation may occur as a function of fear 

extinction learning, which may then functionally erase transcriptional blocks that occur 

during fear learning (Li et al. 2013; Rudenko et al. 2013; Li et al. 2014). For inhibitory 

control, transcription rate may be controlled along an analogue scale with many DNA 

modifications required to govern gene expression associated with the new trace. DNA 

modifications could therefore serve to tune gene expression and behavioural outcomes in a 

manner akin to a dimmer switch, dialling down the original fear, or dialling up inhibitory 

control, with the behavioural impact depending on both sequence context, and surrounding 

DNA modifications (Figure 1 and Figure 2).

However, much in the way that LTP is only observed after repeated stimulation, there are 

many cases when the effect of DNA modification on gene expression and behavioural 

regulation is only evident at the time of reactivation (Baker-Andresen et al. 2013; Liu et al. 

2017). This has led to the intriguing hypothesis that DNA modification may serve as a form 

of genomic meta-plasticity where it can effectively tune the genome in response to 

experience, which could then dynamically modify the strength of fear extinction memory 

and performance depending on the context and future experience (Baker-Andresen et al. 

2013). For example, it is possible that one reason why only repeated training leads to fear 

erasure is because fear cells must first be epigenetically primed. Future studies may explore 

the conditions under which this may occur in order to facilitate more permanent changes.

DNA Structure State

DNA structure states represent another level of DNA that may follow this concept of 

dynamic tuning. Initially thought to be static, based on the original double-helix structure 

proposed by Watson and Crick, there is now a long history of observation of alternate and 

dynamic DNA structures, which may functionally regulate transcription and, possibly, 

memory traces (Watson & Crick 1953; Felsenfeld et al. 1957). Specifically, particular 

structures like particular DNA modifications, have been observed to both impair or promote 

transcription rate, suggesting a non-binary structure-switch potentially playing a role in 

tuning fear memory (Figure 2 and Figure 1; Naylor & Clark 1990; Siddiqui-Jain et al. 2002). 

In addition, like DNA modification, it has been proposed that these structures once induced 

can modify the probability of future structure-switch induction in this genomic context thus 

providing further support for the idea of genomic priming and tuning (Pohl 1987). The idea 

of a structure switch has been demonstrated in the context of regulation of the immediate 

early gene expression thought to be important for fear conditioning. Specifically, Top2B 

activation is required to cut and repair DNA to promote the expression of immediate early 

genes (Madabhushi et al. 2015). In unpublished experiments, we have also found that DNA 

breaks produced by Top2B generate changes in DNA methylation, which must be actively 

removed to produce multiple waves of transcription, which are then critical for the formation 

of fear memory (Li et al. 2018). Further work will be required to determine the extent of 

structure-function relationships, and their interaction with other layers such as DNA 

modification in fear extinction regulation.
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Histone Modification

Histone modifications represent another layer in which epigenetic modification appears to 

play a role in the formation of extinction memory. Schmitt & Matthies (1979) first observed 

a relationship between histones and learning, and since then histone modifications have 

become some of the best established epigenetic mediators of behaviour ranging from 

acetylation to methylation of histone proteins (Swank & Sweatt 2001; Gupta-Agarwal et al. 

2012; Damez-Werno et al. 2016). Furthermore, histone acetylation and methylation are also 

specifically engaged during reconsolidation (Gupta-Agarwal et al. 2014; Webb et al. 2017; 

Jarome et al. 2018), and extinction (Itzhak et al. 2012; Stafford et al. 2012; Li et al. 2014). 

As a result of these marks transcriptional activity is enhanced or inhibited by modifying 

chromatin accessibility, specifically methylation tends to inhibit transcription by closing the 

chromatin, while acetylation tends to do the opposite (Rice & Allis 2001). Thus, blocking 

proteins which promote acetylation such as PCAF impairs extinction (Wei et al. 2012). 

Similarly, facilitating acetylation by blocking enzymes which remove acetylation either 

indirectly with histone deacetylase inhibitor drugs (Bredy et al. 2007; Bredy & Barad 2008), 

or directly by knocking down specific histone deacetylases (HDACs) such as HDAC1 

(Bahari-Javan et al. 2012) HDAC2 (Morris et al. 2013) or HDA3 (Malvaez et al. 2013) 

facilitates extinction.

More interestingly, like DNA modifications, histone modifications have also been shown to 

be involved in epigenetic priming. Specifically, HDAC inhibitors when given alone appear to 

have no effect on destabilizing or stabilizing memory, but when given just before or after 

behavioural experience, or in conjunction with other memory modulators, they can 

drastically alter memory memory updating (Gräff & Tsai 2013; Gräff et al. 2014). 

Furthermore, early studies demonstrated that massed vs. spaced extinction training in the 

presence of an HDAC inhibitor biased the expression of memory from extinction to the 

enhanced reconsolidation of the original fear (Bredy & Barad 2008). Thus, these reversible 

modifications appear also to interact with the behavioural conditions, and through these 

interactions modulate both the original trace and the fear extinction trace by modifying 

transcription.

Histone Variant Exchange

In addition to posttranslational modification of histone proteins, a variety of histone variants 

including: H3.3, H2A.Lap1, H2Az and H2BE have been shown to regulate experience 

dependent gene expression within the context of learning and memory. While H2BE, has 

been shown to be mainly for learning in the olfactory bulb (Santoro & Dulac 2012) H3.3 

(Maze et al. 2015) H2A.Lap1 (Anuar 2018), and H2A.Z (Zovkic et al. 2014) appear to be 

critical for fear learning. Additionally, like RNA and DNA there appear to be 100’s of 

unexplored variants that may also participate in extinction learning, each with a potentially 

specialized role (Draizen et al. 2016). For example, H2A.Z appear to regulate the 

equilibrium of chromatin architecture such that it biases regions to remain in a 

transcriptionally poised state (Subramanian et al. 2015).

Furthermore, recent data has made clear that variant presence or absence is not all that 

governs their function. The turnover rate of these histone variants is also critical to their 
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function such that impairing histone turnover impairs: expression of genes critical for fear 

expression, cell to cell signalling, and fear expression itself (Maze et al. 2015). Additionally, 

as animals age the distribution of these variants also changes (Stefanelli et al. 2018). Both of 

these data can be interpreted within the proposed framework that these variants specify 

regions of transcriptional activity or silencing (Hake & Allis 2006). Thus one shift that may 

be observed following repeated behavioural training is local variants composition, such that 

genomic regions containing transcriptional repressors are activated in fear cells, and 

disinhibited in inhibitory control cells following extinction training. Together this suggests 

this epigenetic mechanism can modify transcriptional rate through bidirectionally modifying 

the histone code, and tune the activity of both the original fear and inhibitory control cells 

involved in extinction learning.

RNA Modification

A bidirectional and graded regulatory signal driving fear extinction may also extend to 

RNA-mediated regulatory processes (Figure 3 and Figure 1). For example, RNA methylation 

in the form of N6-methyldeoxyadenosine (m6A) has been implicated in fear learning 

(Widagdo et al. 2016; Walters et al. 2017) and that this occurs in part as a consequence of 

RNA degradation. But with over 140 RNA modifications identified to date (Machnicka et al. 

2013), “epitranscriptomic” mechanisms may expand beyond just acting as transcription 

termination signals by directly modifying the rate of RNA degradation (Machnicka et al. 

2013; Nainar et al. 2016; Widagdo et al. 2016) and the efficiency of translation (Wang et al. 

2015). RNA modifications may also serve modify the localization of the RNA itself (Wang 

et al. 2015; Ohtan Wang) or other yet to be characterized interactions in the context of fear 

extinction learning (Nainar et al. 2016). It is therefore likely that we will see the emergence 

of novel RNA modifications that influence both the rate of translation and RNA degradation 

during fear extinction learning, which could then facilitate or inhibit the extinction processes 

via altering the molecular pathways underlying the memory trace. Theoretically speaking, 

this might serve to enhance the formation of extinction trace substrates in new inhibitory 

cells, while enhancing RNA degradation in the cells supporting the original fear trace, which 

could lead to memory erasure, suggesting yet another opportunity for the continuous tuning 

of gene expression to control behaviour (Figure 1) which may arise independent of local 

changes in synaptic activity.

RNA Editing

Interestingly, the potential impact of RNA modification on fear extinction may not end here. 

Another mechanism of RNA metabolism that may play a critical role in fear extinction is 

RNA editing. This is a biochemical process that enzymatically converts one nucleotide to 

another to produce diverse types of transcripts without altering the genetic code. For 

example, ADAR-mediated-editing of the AMPA receptor subunit GluR2, in which 

conversion of adenosine to inosine changes a glutamine to arginine, can dramatically modify 

channel permeability and, therefore, fear extinction learning (Clem & Huganir 2010; Wright 

& Vissel 2012). In addition, the RNA editing-related molecule ADAR3 has recently been 

shown to be critical for the formation of contextual fear memory (Mladenova et al. 2018). 

Furthermore, in a series of recent studies, we have found a functional role for another RNA 

editing enzyme, activation-induced cytidine deaminase (AID), in the regulation of gene 
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expression (Ratnu et al, 2014) and in the formation of fear extinction memory (Marshall, 

unpublished observations).

These observations are not surprising given the fact that RNA editing has increased 

throughout evolution in organisms with increased cognitive complexity (Mattick & Mehler 

2008). RNA editing may therefore be playing a direct role in fear and extinction memory by 

regulating translational efficiency such that the presence or absence of critical proteins for 

inhibiting and facilitating extinction are being bidirectionally ‘tuned’. In this case, the 

biological variable impacting fear extinction could be described as a ratio of edited to non-

edited RNA, such that the complete absence of RNA editing facilitates plasticity and 

behaviour whereas a ratio above a certain threshold may lead to a reduction in plasticity and 

behavioural inhibition. This process could have its most relevant impact in the context of a 

new trace model for extinction by facilitating the expression of functionally distinct proteins, 

which could impact the stability of the original fear memory and/or the instability of the fear 

extinction trace.

Limitations of a cognitive neuroepigenetic perspective

Epigenetic modifications may contribute to our understanding of how the formation of fear 

extinction memory could proceed by either ‘erasure’ of the original trace, the formation of 

inhibitory memory traces, or the tuning of both in real-time during behaviour. However, 

much akin to the fact that at the psychological level one cannot differentiate between a lack 

of retrieval due to permanent erasure or a lack of appropriate retrieval cues, a limitation of 

this neuroepigenetic view is the inability to determine whether the degradation of the 

substrates of epigenetic modifications are complete and can therefore be deemed ‘erasure’, 

or whether the processes have been tuned temporarily to zero. We predict that similar to the 

electrophysiological perspective, there exists an equilibrium in epigenetic states that can be 

pushed in one direction or another at multiple levels of molecular control within the cell; 

likely leading to both erasure and new inhibitory traces depending on: the context, time since 

acquisition, length of training, or time between sessions (Cain et al. 2003; Myers 2006; 

Auber et al. 2013; Flavell et al. 2013; Clem & Schiller 2016).

This leads to the second limitation around what to call this process, as acknowledging that 

retrieval can activate both original fear cells and new inhibitory cells blurs the line between 

classical definitions of extinction and reconsolidation (Hemstedt et al. 2017). This said, there 

is little debate that retrieval activates a variety of epigenetic mechanisms that seem to be 

critical for storage of the fear memory including enzymes which promote DNA and histone 

modifications (Zhao et al. 2014; Liu et al. 2017). Thus, to overcome this limitation in future, 

as opposed to labelling manipulations as solely effecting reconsolidation or extinction, it 

may prove useful to find drugs which can be combined without interfering with each other to 

maximally potentiate changes in both populations of cells.
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Predicting behavioural strength from neuroepigenetic changes within the 

nucleus

The most significant problem with fear extinction is the persistence or re-emergence of fear 

after extinction learning and, therefore, clinical preference is given to treatments that aim to 

achieve total erasure. One way in which total erasure may be achieved is to utilize 

manipulations which engage genomic priming in conjunction with both behavioural and 

electrophysiological manipulations, such that they prime the epigenome for a more 

permanent change. For example, a mechanism which initially only partially modifies the 

transcription rate, may poise the same locus to be disengaged more robustly thereby leading 

to a complete cessation of transcription, and resultant electrophysiological activity, which 

we may present itself as cellular erasure. However, this strategy presents an issue, such that 

global manipulations which would favourably prime gene activation in extinction cells might 

also reactive the fear cells, or treatments that prime fear cells for erasure may also erase 

inhibitory cells. Thus, to achieve the desired behavioural balance with minimal side-effects 

one must selectively target the cells in which these behavioural relevant changes occur. More 

specifically, in addition to electrophysiologically defined “fear”, “extinction”, and “anxiety” 

cells (Milad & Quirk 2002; Herry et al. 2010; Tovote et al. 2015; Jimenez et al. 2018), the 

precise molecular marks within a cell that allow it to compete more effectively for resources 

leading to aforementioned behavioural tuning must be identified and linked to 

neuroepigenetic mechanisms.

One attractive explanation that has been described among others is that higher levels of 

CREB are critical for inclusion into a fear memory engram, specifically higher levels of 

CREB predict the cells where the largest changes in intrinsic membrane excitability occur 

(Silva et al. 1998; Kida et al. 2002; Kim et al. 2013). These observations are likely to 

represent the physiological correlate of the dominant trace hypothesis that proposes there are 

mechanisms, which bias a memory trace towards one that commands resources to update or 

modify a memory, hence guiding which cells are tuned and when (Eisenberg et al. 2003). 

Recent observations from our laboratory suggest this may be the case for neuroepigenetic 

states. Specifically, higher levels of Activity-regulated cytoskeleton-associated protein, 

which occurs in cells with high CREB expression, tend to co-occur in neurons that exhibit 

higher rates of RNA editing and the accumulation of DNA modifications such as m6dA (Li 

et al, 2018). Other marks which can differentiate between reconsolidation and consolidation 

of new extinction traces such as zif268 and BDNF, may also co-occur with neuroepigenetic 

changes, but this remains to be investigated (Lee et al. 2004). Together, the data suggest the 

intriguing possibility that if these markers are experimentally specified and utilized, certain 

neuroepigenetic mechanisms may be selectively engaged in these two discrete population of 

cells and lead to more permanent behavioural changes.

Implications, impact and future directions

Based on a neuroepigenetic perspective, promising new directions to answer long held 

questions about the stability of fear extinction memory, and how to target it, are emerging. 

For example, if epigenetic priming is required for long-term erasure, as has been suggested, 
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re-consolidation protocols with epigenetic modifiers as adjuncts to therapy could be 

implemented in the clinic (Gräff et al. 2014). In addition, if one accepts that memory is not 

primarily contained within the synapse, a cognitive neuroepigenetic view leaves room for 

Lamarkian-like phenomena where information can be acquired in one generation and passed 

on to the next (Franklin et al. 2010; Fischer 2014). Although the evidence is inconclusive, it 

has been shown that paternal sperm of defeated mice, potentially through a miRNA-

mediated signal effecting DNA methylation, can bias the next generations towards a similar 

fearful phenotype (Dietz et al. 2011; Rodgers et al. 2015). In this case adolescent behaviour 

associated with mental health issues may therefore be viewed as epigenetic tendencies, 

which can be predicted and thus tuned behaviourally in order to minimise the future 

development of anxiety disorders.

But with so many levels and interactions, where might development of new therapies begin 

testing? Because of the large amount of data on HDAC effects in animal models and limited 

side effects (Gräff & Tsai 2013), these have been some of the first epigenetic targets to be 

tested clinically (Whittle & Singewald 2014). But there still remains a variety of other 

actionable epigenetic targets which can enhance the tuning of fear memory traces at every 

level. For example, with respect to RNA, it has been shown that increasing either miR-128b 

in the prefrontal cortex or miR144–3p in the amygdala can enhance extinction learning (Lin 

et al. 2011; Murphy et al. 2017). With respect to DNA modification, it has been 

demonstrated that activity of Tet3, which leads to the accumulation of 5hmC, can also 

enhance the formation of extinction memory (Li et al. 2014). The problem remains that 

unlike globally manipulating HDACs global manipulation of these targets can have 

detrimental side effects. Thus in order to alter these and other levels mentioned it will 

require the development of more targetted manipulations ranging from specific drugs to gene 

editing tools like CRISPR (Adli 2018). As well as advancing delivery systems such as self-

deleting viral vectors (Russ et al. 1996) or nanoparticles (Gao 2016) to deliver these directly 

to the affected areas. Treatments of the future may also take this one step further by 

developing tools which apply knowledge of which molecular markers occur in fear and 

extinction cells and use this to differentially target these areas following central infusion.

In conclusion, a neuroepigenetic view of fear extinction suggests that, although the 

formation and stability of fear extinction memory occurs at more levels within the cell than 

currently appreciated, a better understanding of this tunable equilibrium and how to target it 

may be another key step to addressing the issue of lingering fear.
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Figure 1. 
Visual representation of behavioural tuning where modulation of both fear cells and 

inhibitory control cells can occur along a continuum. When erasure of original fear (green) 

and/or fear trace inhibition (blue) occurs, animals may transition from fear behaviours such 

as freezing and escape behaviours, to normal grooming and exploratory behaviour. However, 

when original fear traces are activated (purple) and/or engagement of inhibitory control is 

low (yellow) animals will fail to overcome the threshold to re-engage normal behaviours and 

remain freezing or performing escape behaviours. Thus, the dynamic equilibrium of 

behavioural expression relies on mechanisms which modulate either of these aspects.
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Figure 2. 
A proposed mechanism for controlling behavioural equilibrium during fear extinction is 

genomic tuning. This is a process in which both DNA modifications and DNA structure can 

modulate transcription rate along a continuum. In the case of DNA modifications, while 

5mC may entirely inhibit transcription, m6dA enhances transcription rate above baseline. 

Similarly DNA structure can completely stall RNA polymerase II (RNA pol II) and block 

transcription, or facilitate RNA pol II by opening DNA and thus enhance transcription rate 

above baseline. Combination of either of these mechanisms may thus dial transcription rate 

up or down.
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Figure 3. 
A second proposed mechanism for controlling behavioural equilibrium during fear 

extinction is translational tuning in which RNA modifications can modulate translation rate 

along a continuum. RNA modifications are shown altering physical interactions with the 

ribosome machinery to modify its translation rate. Here, 5mC methylation in RNA may stall 

translation, while m6A methylation may enhance translation rate. Thus RNA modifications 

may dial translation rate up or down depending on the presence of absence of these marks.
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