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Abstract

Epilepsy affects over 70 million people worldwide and 30% of patients’ seizures cannot be 

controlled with medications, motivating the development of alternative therapies such as electrical 

stimulation. Current stimulation strategies attempt to stop seizures after they start, but none aim to 

prevent seizures altogether. Preventing seizures requires knowing when the brain is entering a 

preictal state (i.e., approaching seizure onset). Here we show that such preictal activity can be 

detected by an informative neural signal that progressively and monotonically changes as the brain 

approaches a seizure event. Specifically, we use local field potentials (LFP) from a rat model of 

epilepsy to develop an innovative measure of signal novelty relative to nonseizure activity, that 

shows the presence of progressive neural dynamics in an ultra broad band (4 Hz – 5 kHz). The 

measure is extracted from functional connectivity features computed from the LFPs which are 

used as an input to a one-class Support Vector Machine (SVM). The SVM outputs a scalar signal 

which quantifies how novel the current activity looks relative to baseline (non-seizure) activity and 

shows a progression towards seizure onset minutes ahead of time. The use of ultra broad band 

multivariate features into the SVM results in a novelty signal that has a significantly higher slope 

in the progression to seizure onset when compared to using power in conventional frequency 

bands (4 – 500 Hz) on individual channels as input features to the SVM. Functional connectivity 

in conjunction with the SVM is a strategy that generates a new measurement of novelty that can be 

used by closed-loop systems for seizure forecasting and prevention.

I. INTRODUCTION

Epilepsy is a neurological condition that affects over 70 million worldwide. About a third of 

epilepsy patients are drug-resistant and must consider invasive alternatives such as vagal 

nerve stimulation, resective brain surgery, or deep brain stimulation therapy. Electrical 

stimulation is a powerful tool capable of altering neuronal activity with the potential to 

become a highly effective form of treatment for seizure therapy [1]. Closed-loop electrical 
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stimulation therapy provides an attractive option that minimizes intervention by limiting the 

stimulation to times when the patient is in need [2]. Efforts have been made to develop 

closed-loop stimulation strategies using different protocols, yet none provide a highly 

effective and reliable solution. Previously proposed closedloop strategies act as “responsive 

switches” that wait until a seizure is detected (via an algorithm) and then stimulate with a 

fixed pattern to suppress the seizure. The performance of these strategies rely on the type of 

stimuli that is delivered, and detection of the adequate instance to deliver the electrical 

stimulus [3].

Ideally, a real closed-loop controller should be able to continuously steer the neural network 

away from seizure genesis using adaptive stimulation patterns that change with feedback 

from EEG measurements, to avoid seizures altogether. To build this feedback control 

paradigm there is a need for a neural signal that remains “steady” when seizures are not 

imminent, and that then changes in a progressive manner when a seizure is approaching. The 

complexity of seizure dynamics and the variability of seizure-onset patterns present a 

challenge to find a statistic that accurately captures changes in brain activity prior to and 
leading towards seizure onset. Time-frequency analysis is used extensively to characterize 

neurophysiological dynamics leading to seizure onset, and after seizure onset [4], [5], [6]. 

Consequently, spectral features extracted from local field potentials (LFPs) are widely used 

for designing seizure prediction and detection algorithms.

Univariate and multivariate approaches to analyze the LFP signal have shown evidence of 

changes in temporal properties preceding seizure onset [7], [8], [9]. This has made it feasible 

to classify sets of features into preictal and ictal states [10], [11]. The performance of these 

type of algorithms, depends largely on building a training set that accurately represents the 

feature space. This makes it particularly difficult to design patient-specific algorithms if no 

prior data is available. Other algorithms use spectral features from different frequency bands 

ranging between [4500] Hz [7], [8], [10]. However, there are no studies to our knowledge 

that analyze frequencies above 500 Hz for seizure prediction, even though single-unit 

recordings (whose activity is seen between 1kHz - 5 kHz), show that firing rate of neurons 

increases towards seizure onset [12]. Thus, it seems reasonable to hypothesize that there is 

information valuable for seizure prediction in the intermediate frequency range.

The one-class Support Vector Machine (SVM) is a powerful algorithm, designed for 

unbalanced datasets, where abnormal samples are rare. It outputs a measurement of novelty 
in accordance to its training data set. Gardner et al. [13] implemented the one-class SVM on 

humans with temporal lobe epilepsy for seizure onset detection. In this study they used 

univariate energy features from non-ictal data for training, proving this algorithm is able to 

detect seizure related activity as outliers. Furthermore, it is an attractive option to build a 

patient-specific algorithm when no prior ictal data is available, and it can be implemented in 

realtime as it isn’t computationally expensive.

The proposed framework uses network based spectral features extracted from the entire LFP 

power spectrum to train a one-class SVM that outputs a measure of novelty over time that is 

sensitive to neural activity leading to seizure initiation. To test our approach LFP recordings 

from N = 5 acute rat models of epilepsy were used to compute the Power Spectrum Density 
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(PSD) in 23 different frequency bands ranging from 4 Hz to 5 kHz in a sliding window. 

From each frequency band, a power spectrum-based connectivity matrix among all LFP 

channels was computed. The singular values (σ) of this matrix are then used as feature 

vectors to train a one-class SVM over time. Finally, the outputs of the SVMs are summed 

across all 23 bands and compared to the sum of the bands used in previously proposed 

studies. This approach shows that analysis of the whole LFP spectrum can be used to derive 

an informative feature useful for closed-loop systems.

II. METHODS

A. Animal Model of Epilepsy

All procedures described here were approved by the Technion Institutional Animal Ethics 

Committee. Five adult male Wistar rats (200–300 g) were used for the experiments. 

Electrographical seizures were induced through local application of 4-aminopyridine (4-

AP), a potassium channel blocker. The chemoconvulsant is applied onto the rat’s S1 barrel 

cortex (AP=1 mm, ML=3 mm). The model used, is described in greater detail in our prior 

work [14].

B. Electrophysiological Recordings

LFP were recorded using a linear-electrode array with 16 recording channels (A16 probe 

with inter-contact distance of 50 μm, NeuroNexus, Ann Arbor, MI). Recordings were 

acquired at a sampling rate of 25 kHz, filtered (0.1 Hz - 10 kHz) and digitalized with a 

ME-16 amplifier and MC-Rack software (Multichannel systems, Reutlingen, Germany). 

Preprocessing of LFP recordings was done using band-pass filtering from 0.5 Hz to 5 kHz, 

notch filtering at 50 Hz, and average referencing for noise reduction. Baseline activity was 

recorded for 10 min before 4-AP application, then paused while 4-AP was applied, and 

resumed shortly after until the end of the first seizure. The length of LFP recordings in 

average is 42.9 ± 18.5 min. The first seizure appeared in average 32.7 ± 18.8 min after 4-AP 

application. The seizure onsets were identified by a certified epileptologist (Y. S.).

C. Feature Extraction and Multivariate Analysis

The proposed framework performs a sliding window analysis of the LFP to extract spectral 

features. This is done using a window size of 5 s with an overlap of 4 s. The flow diagram of 

the processes executed by the algorithm at each second are shown in Figure 1. For each 

window of LFP, the PSD is computed for all channels using Welch’s method. The PSD is 

then calculated over an ultra broad band comprised by 23 different frequency bands ranging 

from 4 Hz to 5 kHz. The selected bands include conventionally analyzed EEG bands (θ, α, 

β, γ, 80–250 Hz), then, bands are defined in intervals of 250 Hz, up to 5 kHz (i.e. {250–500 

Hz, 500–750 Hz, ..., 4.75–5 kHz}).

To analyze the spectral content in all the recording channels simultaneously, a functional 

connectivity matrix is computed [15]. In this scheme each electrode is considered a node in a 

graph, any pair of electrodes is regarded as connected if there is dependent activity between 

these sites. In this study the connectivity matrix, A, is computed as the Cross-Power Spectral 

Density (CPSD) between all LFP channels for a particular frequency band, as done in [7]. 
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The connectivity matrix A, is then computed for each of the 23 predefined frequency bands 

at each time second. This results in a sequence of matrices {A1(k),A2(k),...,A23(k)} at every 

instance k. Singular value decomposition of each connectivity matrix, A1,2,..,23(k) is 

performed. The singular values, σ, are an indicator of the time-varying connectivity in the 

epileptic network across all predefined frequency bands [7]. The closer all the singular 

values are to one another, the more disconnected the functional network is, and the larger the 

first few singular values are compared to the rest of the singular values, the more connected 

the network is. Finally, all singular values are used as the feature vector for the oneclass 

SVM.

D. Novelty Classification

A one-class SVM is implemented for novelty classification for each of the predefined 

frequency bands, in order to show which bands contain novel activity as compared to non-

ictal baseline activity as the seizure onset approaches. The one-class SVM maps feature 

vectors to a higher dimensional space using a kernel function, to then provide an optimal 

separating boundary from the origin using a hyperplane. Thus, if a data point lies beyond the 

hyperplane it is considered a novel event. The output of the SVM is then the distance to the 

hyperplane, the greater the distance the more novel that feature vector is considered. The 

separating hyperplane is the solution to the following optimization problem:

min
w, ξ, ρ

1
2 w

2
+ 1

νN ∑
i

ξi − ρ (2)

subject to the following constraints; w ⋅ Φ xi > ρ − ξi. Where w is the normal vector to the 

hyperplane, ρ represents the margin, and ξ is the slack-variable. The hyperplane is then 

defined in feature space by w and ρ, as w·Φ(x) = 0. Which is mapped using a kernel 

function, k(xi,xj) = (Φ(xi), Φ(xj)). Throughout this study the Gaussian Radial Basis kernel 

function (RBF) is used since it can handle nonlinearities within the relation between feature 

vectors and its classification. Figure 2, illustrates an example of the one-class SVM using the 

RBF kernel.

For the one-class SVM the only control parameter is ν, which is an upper bound on the 

fraction of data points lying on the wrong side of the hyperplane, and a lower bound on the 

fraction of support vectors returned by the algorithm. Therefore, ν can be interpreted as the 

fraction of data points labeled as outliers. The control parameter was given a value of ν = 

0.1, taking into consideration the length of the recordings and seizure duration.

For the one-class SVM the only control parameter is ν, which is an upper bound on the 

fraction of data points lying on the wrong side of the hyperplane, and a lower bound on the 

fraction of support vectors returned by the algorithm. Therefore, ν can be interpreted as the 

fraction of data points labeled as outliers. The control parameter was given a value of ν = 

0.1, taking into consideration the length of the recordings and seizure duration.

Training of the one-class SVM is done with normalized feature vectors extracted from the 

10 minutes of baseline activity. Then, the SVM is used as a novelty classifier at every 

instance after chemoconvulsant application until the end of the recording. A total of 23 one-
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class SVMs where used. One per predefined frequency band in order to output the novelty 

seen for the specified frequencies within each band. Finally, to reduce noisy behavior, the 

output of the SVM is smoothed using a Kalman filter as used in [16].

E. Performance Evaluation

To evaluate the performance of the proposed framework to derive a feature that continuously 

progresses towards seizure initiation, a simple novelty measure is computed from the output 

of the one-class SVMs. This novelty measure is obtained through the sum of SVM outputs 

across frequency bands. Four different novelty measures are evaluated to show which yields 

higher predictive power. Feature sets are given by: (i) the sum across all 23 bands of the 

predefined ultra broad band, (ii) the sum of only the first six bands (conventional frequency 

bands used for EEG analysis); and for each feature set, the SVM is trained using the network 

based spectral features (singular values of the CPSD) against using univariate features (PSD 

of each channel).

In order to evaluate which novelty measure yielded a better progression and linear increment 

trend towards seizure onset, a linear fit was applied to all four novelty traces. The linear fit is 

calculated using each novelty measure from time of chemoconvulsant application until 10 s 

after the seizure onset marking. The slope given by the linear fitting is averaged across 

subjects (N=5) and compared among configurations using a paired t-test in order to show 

statistical significance among the novelty measures dynamics.

III. RESULTS

For all experiments, the one-class SVMs outputs showed increasing activity well before the 

seizure onset in frequen-cies above 500 Hz, supporting the hypothesis that there is valuable 

information for seizure prediction between 500 Hz and 5 kHz. This was captured doing a 

multivariate analysis using network based features, where the functional connectivity matrix 

was computed using the CSPD for 23 different frequency bands across the UBB. The 

features were used to train a one-class SVM, a machine learning algorithm that computes a 

hyperplane to maximally separate training data from the origin in a higher dimensional 

space. The one-class SVM classifies feature vectors, its output is the distance of the 

datapoint to the hyperplane, the distance indicates the degree of novelty for that datapoint. 

Hence, when trained with non-ictal features it classifies preictal states as novel and seizure 

activity as extremely novel.

The sum of SVM outputs across frequency bands produced a novelty measure that shows a 

gradually increasing trend starting several minutes before the seizure onset until seizure 

termination. In Figure 3 the traces of the average of novelty measures across 4 experiments 

that had at least 25 min of preictal activity show how frequency bands above 500 Hz yield a 

novelty measure that monotonically increases towards seizure initiation. Figure 4 shows the 

distribution of the linear fit slopes applied to each of the novelty measures defined by input 

features. The novelty measure computed using singular values and SVM-output sum across 

all frequency bands in the UBB had the larger slopes overall. This input feature showed a 

statistically significant larger slope and faster increment trend over both novelty measures 

that only included the conventionally used frequency bands (4–500 Hz), with p = 0.005 and 
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p = 0.016 respectively. Also, the use of PSD to train the one-class SVM, showed a 

statistically significant (p = 0.017) larger slope when using the sum of outputs across the 

UBB in comparison to when only the conventionally frequency bands.

IV. CONCLUSIONS

Singular values of the CPSD comprise an informative feature vector, that when used to train 

a one-class SVM, outputs a novelty measure of network behavior. This novelty measure 

shows a gradually increasing trend starting several minutes before the seizure onset until 

seizure termination.

The proposed framework still needs to be tested in chronic animal models and humans 

where spontaneous recurrent seizures appear in longer LFP recordings. However, it is clear 

that there is valuable neurophysiological information in the ultra broad band that can be used 

to derive a progressively increasing informative feature apt for designing closed-loop 

strategies for seizure control.
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Fig. 1. 
Illustrates the process flow done by the algorithm. For all panels the pink line marks 

chemoconvulsant application, x-axis denotes time in minutes, the onset of the first seizure is 

marked at 0. A, shows the LFP recordings for all channels. B, illustrates the PSD across all 

frequencies. C, plots the Singular Values (SV) from the CSPD, for all frequency bands. D, 

shows the output of the one-class SVMs per frequency band. For D, the one-class SVM is 

trained using SV. In E, the sums of the SVM outputs are plotted in the four different 

configurations tested with their respective line fit. SV and PSD denote if the one-class SVM 

is trained using either the singular values or the PSD from each channel. UBB indicates if 

the sum is done over all 23 frequency bands, the ultra broad band (4 Hz – 5 kHz). Otherwise, 

the sum is done over the first 6 frequency bands (4 – 500 Hz).
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Fig. 2. 
Geometric representation of the one-class SVM using the RBF kernel. The distance between 

the hyperplane and the origin is given by p
w , where w is the normal vector to the 

hyperplane. The distance between outliers and the hyperplane is given by the slack-variable 
ξi
w .
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Fig. 3. 
Shows the traces of sums of the SVM outputs for four experiments. The trace starts 25 

minutes before seizure onset, until 30 seconds after onset. The yellow/red line denotes the 

seizure onset at zero. In black, the sum of the SVM outputs across the whole UBB is shown. 

In red, the sum trace for frequency bands above 500 Hz, and in blue for frequency bands 

between 4 to 500 Hz. Shaded regions show the standard error mean of each trace.
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Fig. 4. 
Shows the slope distribution for the four different configurations tested. SV and PSD denote 

if the one-class SVM is trained using either the singular values from the CSPD or the PSD 

from each channel. UBB indicates if the sum is done over all 23 frequency bands, the ultra 

broad band (4 Hz – 5 kHz). Otherwise, the sum is done over the first 6 frequency bands (4 – 

500 Hz).). For the paired t-test (N=5); *, ** denote statistical significance at p < 0.05 and p < 
0.01 respectively.
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