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Abstract

Although infants begin learning about their environment before they are born, little is known about 

how the infant brain changes during learning. Here, we take the initial steps in documenting how 

the neural responses in the brain change as infants learn to associate audio and visual stimuli. 

Using functional near-infrared spectroscopy (fNRIS) to record hemodynamic responses in the 

infant cortex (temporal, occipital, and frontal cortex), we find that across the infant brain, learning 

is characterized by an increase in activation followed by a decrease. We take this U-shaped 

response as evidence of repetition enhancement during early stages of learning and repetition 

suppression during later stages, a result that mirrors the Hunter and Ames model of infant visual 

preference. Furthermore, we find that the neural response to violations of the learned associations 

can be predicted by the shape of the learning curve in temporal and occipital cortex. These data 

provide the first look at the shape of the neural response during audio-visual associative learning 

in infancy establishing that diverse regions of the infant brain exhibit systematic changes across 

the time-course of learning.

Introduction

Decades of research have used behavioral methods to study infant learning and have 

established that human infants are excellent learners in many circumstances (recent 

prominent examples, Gomez & Gerken, 1999; Marcus, Vijayan, Rao & Vishton, 1999; 

Saffran, Aslin & Newport, 1996; Smith & Yu, 2008; Stager & Werker, 1997). While this 

work firmly establishes that early learning has the power to shape neural and cognitive 

development, virtually nothing is known about how the infant brain changes during learning. 

The current paper examines how engaging in a complex learning task (audio-visual 

associative learning) shapes neural activity in the infant brain.

A common method for studying learning is to expose participants to some pattern of stimuli 

and then compare responses to stimuli that are consistent vs. those that differ from the 

previously experienced patterns. These studies provide evidence about what infants have 

learned, how they recognized previously learned stimuli, and how infants track novel 

information in the environment (in addition to the behavioral studies referenced above, see 
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Nakano, Watanabe, Homae & Taga, 2009, for an excellent study of infant auditory novelty 

responses using fNIRS). However, measuring responses to novel stimuli is likely not 

targeting the same cognitive and neural systems that supported learning initially (see Karuza, 

Emberson & Aslin, 2014, for a relevant review of this distinction).

Importantly, the current paper diverges methodologically from previous work and does not 
examine neural activity during violations to a recently learned structure (e.g. Emberson, 

Richards & Aslin, 2015; Gervain, Macagno, Cogoi, Peña & Mehler, 2008). In contrast, the 

current paper examines neural activity starting from the first exposure to a novel audio-

visual pairing and traces neural activity from this first exposure until the infant has become 

bored with or habituated to the stimuli. We then employ regression-based statistical methods 

to uncover the shape of neural responses over successive experiences, or repeated exposures, 

to the audio-visual stimuli (i.e. over the learning task or across the learning trajectory).

While there is little direct evidence for what neural changes correlate with learning 

trajectories in infancy, there is support in the literature for three possible patterns that might 

be observed. One possibility is that repeated exposures during the learning task will result in 

reductions of neural activity. Indeed, the phenomenon of repetition suppression has been 

well documented in the adult brain (sometimes called fMRI adaptation; see review in Grill-

Spector, Henson & Martin, 2006). Moreover, repetition suppression appears to mirror the 

well-known behavioral phenomenon in the developmental literature of habituation where 

infants exhibit decreased looking time to familiar stimuli over successive exposures (Mather, 

2013; Turk-Browne, Scholl & Chun, 2008). Thus, we might expect that infants who are 

repeatedly exposed to the same stimulus during a learning task will show decreases in neural 

activity in regions of the brain involved in learning. In fact, this is supported by Nakano and 

colleagues who found that the frontal cortex in 3-month-old infants exhibits a decrease in 

neural activity during habituation to a one syllable speech sound (Nakano et al., 2009).

However, studies reporting repetition suppression effects tend to employ very simple stimuli 

(e.g. unrelated visual images, Grill-Spector, Kushnir, Edelman, Avidan, Itzchak et al., 1999; 

one syllable speech sounds, Nakano et al., 2009) and contexts where there is not much to be 

learned as a result of repetition. Thus, it is possible that repetition suppression arises from a 

neural disengagement as a result of very little information to learn from the environment. 

Relatedly, recent work has suggested that infants selectively attend or prolong their looking 

to situations where stimuli are learnable but, crucially, disengage their attention to rote 

repetition of a stimulus (Gerken, Balcomb & Minton, 2011; Kidd, Piantadosi & Aslin, 

2012), suggesting that habituation too might be driven in part by the simplicity of the stimuli 

infants are exposed to. These behavioral studies suggest that viewing simple stimuli will 

result in a different pattern of neural activity than experience with more complex stimuli 

endowed with learnable patterns. In fact, Turk-Browne, Yi, Leber and Chun (2007) found 

that the repetition of more perceptually complex or difficult to discriminate stimuli results in 

repetition enhancement in the adult brain. Thus, a second possibility is that learning will 

result in increases in neural activity. Indeed, previous research investigating neonate neural 

responses to learnable vs. non-learnable sequences of syllables (ABB vs. ABC rules) 

reported enhancement in neural activity to the learnable sequence and no change in the 
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neural response to the unlearnable sequence (Gervain et al., 2008; however, also see Wagner, 

Fox, Tager-Flusberg & Nelson, 2011).

Yet a third possibility is that regions involved in learning will show evidence of both neural 

suppression and enhancement. If repetition suppression and enhancement are related to 

attention and infant looking preferences, then a familiarity preference would be mirrored by 

greater activation to the repeated stimulus (neural enhancement), while a novelty preference 

would suggest a decreased response to the learning stimulus (neural suppression). Indeed, 

the seminal model of infant habituation, Hunter and Ames (1988), proposes that early stages 

of learning or encoding result in familiarity preferences, while later stages of learning result 

in novelty preferences.1 A recent study in adults found evidence that perceptually complex 

conditions (similar to the conditions that resulted in repetition enhancement in Turk-Browne 

et al., 2007) lead to initial repetition enhancement followed by repetition suppression 

(Muller, Strumpf, Scholz, Baier & Melloni, 2013). Therefore, a distinct and third possibility 

is that the infant brain could exhibit neural enhancement during early stages of learning and 

neural suppression during later ones (i.e. a non-linear relation between neural activation and 

stages of learning).

In the present study, we examined neural activity in 6-month-old infants using fNIRS during 

an audio-visual learning task. During this learning task, infants viewed successive blocks of 

audio-visual (AV) events. Each AV event paired a complex sound (either a squeaky horn or a 

rattle) with the appearance of a red, cartoon smiley face (Figure 1). Crucially, it has been 

well established that infants at this age can learn AV pairings under similar experimental 

conditions (Gogate & Bahrick, 1998). Accordingly, the current study presumes that infants 

are engaging in AV learning during exposure and addresses the question of how neural 

activity changes over the time-course of learning.

Neural activity was recorded during learning using fNIRS, a neuroimaging modality that 

records the same physiological signal as fMRI (i.e. changes in blood oxygenation arising 

from neural activity) using near- infrared light. Unlike fMRI, this method permits relatively 

easy recording of these neural signals when infants are awake and learning (see Aslin, 

Shukla & Emberson, 2015). We recorded activity in three regions of interest (ROIs): the 

temporal lobe, occipital lobe and prefrontal cortex (Figure 2). ROIs were defined based on 

coregistration of the NIRS recordings with age-appropriate infant MR templates. Details of 

this method are reported in Emberson et al. (2015).

To trace the relation between learning and neural activity in three regions of the infant brain, 

neural responses to each successive block of AV experience during learning were estimated. 

Then, we employed regression-based statistical methods to determine the most robust 

relation between successive experiences and neural activity. Specifically, we investigated 

whether there is a significant change to the neural responses over learning and, if so, whether 

there is a linear decrease or increase (repetition suppression and repetition enhancement, 

1The Hunter and Ames model includes a ‘task difficulty’ factor that could potentially accommodate all three possibilities. However, to 
see only repetition suppression or repetition enhancement, learning would have to be either extremely simple or extremely complex.
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respectively) or whether there is a significant non-linear relation between successive learning 

experiences suggesting a combination of repetition enhancement and suppression.

Materials and methods

Participants

Twenty-six infants, aged 5–7 months, were recruited from the database of interested 

participants for the Rochester Baby Lab. Infants were born no more than 3 weeks before 

their due date, had no major health problems, surgeries, history of ear infections, nor known 

hearing or vision difficulties. Out of 26 infants recruited, nine infants (34% of the total 

sample) were excluded for failing to watch the video to criterion (n = 5), poor optical contact 

(n = 3, e.g. due to too much dark hair, see below for specific definitions for each of these 

exclusionary criteria) and experimenter error (n = 1). The final sample was 17 infants (mean 

age = 5.6 months, SD = 0.6, range = 5.0–6.9, 12 female, race: 14 white, three other or more 

than one, and no Hispanic infants). These are the same infants from the experimental group 

reported in Emberson et al. (2015).

Stimulus presentation and experimental procedure

The stimuli and stimulus presentation were the same as the experimental group reported in 

Emberson et al. (2015). Stimuli are included in the Supplementary Materials of this paper. 

All trials began with the presentation of a monochromatic grey screen with a white box 

(black bordered) presented in the middle. The box was 15.2 degrees of visual angle squared 

(11.5 cm2 with the infant sitting approximately 43 cm from the screen). Immediately after, 

combinations of auditory and visual stimuli were presented. Auditory stimuli consisted of 

novel, non-speech auditory sounds that are similar to a squeaky honk from a clown horn and 

an unusual rattle sound. Visual stimuli consisted of a red cartoon smiley face that entered the 

screen from either the top or the bottom of a white box, moved into the box to touch the 

opposite side in 500 ms, and then exited the box in the same surface that it entered from in 

another 500 ms. Each sound was consistently and uniquely paired with one direction of 

movement for the visual stimulus, creating two pairs of audio-visual stimuli. Here infants 

could be learning either that a specific sound predicts a specific direction or location of the 

smiley face or infants could be learning that the presentation of a sound predicts the 

appearance of the smiley face. In either case, infants are associating previously unrelated 

auditory and visual information and engaging in cross-modal learning. The auditory 

stimulus was presented at the onset of each event for 1000 ms. The visual stimulus began 

750 ms after the onset of the auditory stimulus and also lasted for 1000 ms. This resulted in 

overlap between these stimuli for 250 ms. Individual pairs of audio-visual stimuli were 

presented with equal frequency within each learning block and in randomized order. Stimuli 

were presented on a Tobii 1750 eye tracker screen measuring 33.7 by 27 cm and computer 

speakers placed directly below the screen but behind a black curtain. Sounds were presented 

between 64 and 67 dB using MATLAB for Mac (R2007b) and Psychtoolbox (3.0.8 Beta, 

SVN revision 1245).

The experiment included two types of stimulus presentation: learning blocks and single 

trials. Learning blocks consisted of six audio-visual events: three of each specific pairing, 

Kersey and Emberson Page 4

Dev Sci. Author manuscript; available in PMC 2020 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



randomly ordered and each separated by a jittered interstimulus interval, ISI, (1–1.5 seconds, 

a jittered ISI was also included after the last stimulus of a block; thus after every audio-

visual stimulus there was an ISI of 1–1.5 seconds). Between blocks, baseline stimuli were 

presented (dimmed fireworks video, Watanabe, Homae, Nakano & Taga, 2008), and a 

calming instrumental version of ‘Camptown Races’ Baby Music (album released 2010) for a 

jittered inter-block interval, IBI, of 4–9 seconds (mean = 6.5 seconds). This IBI length has 

been previously shown to be sufficiently long to allow the neural response in infants to 

return to baseline (Plichta, Heinzel, Ehlis, Pauli & Fallgatter, 2007).

The experiment started with the presentation of three learning blocks. Then, single event 

trials were presented intermittently between learning blocks. The same IBI separates single 

trials and learning blocks to separate neural signals to each. Single trials consisted of either 

an audio-visual event as seen six times in a learning block (one of the audio-visual pairings; 

AV) or the audio presented without the cartoon smiley face (visual omission trials; AV–). 

That is, the auditory stimulus began at the onset of the trial, but the cartoon smiley face did 

not move in and out of the white rectangle (see Figure S1). After the initial three learning 

blocks, four single trials were presented per subsequent learning block in randomized 

temporal order with two of each single trial type (equal frequency). The primary analyses 

here focus on the learning blocks; see Emberson et al. (2015) for details and analyses of the 

single trials. In an exploratory analysis presented after the primary analyses, data from visual 

omission trials served as the dependent measure in an exploratory analysis to index the 

strength of infants’ learning and provide a link between these two types of analysis.

The experiment was conducted in a darkened room with dark floor-to-ceiling curtains 

surrounding the infant and their caregiver with only the monitor visible. Infants sat on their 

caregivers’ laps. Caregivers were instructed not to interfere with the infant’s watching of the 

video but to make sure that they did not grab at the cap on their head (see next section) or 

rub up against them with the cap to move it. We also asked that they encourage the infant to 

be as still as possible but to allow the infant to move and stand up if it was necessary to keep 

the infant contentedly watching the video. The researchers watched the caregiver and infant 

from a video camera underneath the monitor.

fNIRS recordings

fNIRS recordings were conducted using a Hitachi ETG-4000 with 24 possible NIRS 

channels: 12 over the back of the head to record bilaterally from the occipital lobe, and 12 

over the left side of the head to record from the left temporal lobe and prefrontal cortex. The 

channels were organized in two 3 × 3 arrays, and the cap was placed so that, for the lateral 

array, the central optode on the most ventral row was centered over the left ear and, for the 

rear array, the central optode on the most ventral row was centered between the ears and 

over the inion. This cap position was chosen based on which NIRS channels were most 

likely to record from temporal and occipital cortex in infants. Due to curvature of the infant 

head, a number of channels did not provide consistently good optical contact across infants 

(the most dorsal channels for each pad). We did not consider the recordings from these 

channels in subsequent analyses and only considered a subset of the channels (seven for the 

lateral pad over the ear and five for the pad at the rear array).
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fNIRS recordings were collected at 10 Hz (every 100 ms). Using a serial port, marks were 

presented from MATLAB on the stimulus presentation computer to the Hitachi ETG-4000 

using standard methods. Marks were sent for the start and end of each presentation type for 

the given experiment (e.g. blocks of AV trials). The raw data were exported from the Hitachi 

ETG-4000 to MATLAB (version 2006a for PC) for subsequent analyses with HomER 1 

(Hemodynamic Evoked Response NIRS data analysis GUI, version 4.0.0) using the default 

preprocessing pipeline of the NIRS data. First, the raw intensity data are normalized to 

provide a relative (percent) change by dividing by the mean of the data (HomER 1.0 

manual), thus any change from zero is meaningful and does not require an explicit baseline 

period. Then the data were low-pass and high-pass filtered (two separate steps) to remove 

high frequency noise such as Meyers waves and low frequency noise such as changes in 

blood pressure. Second, changes in optical density were calculated for each wavelength, and 

a PCA analysis was employed to remove motion artifacts. Finally, the modified Beer-

Lambert law was used to determine the changes in (delta) concentration of oxygenated and 

deoxygenated hemoglobin for each channel (the DOT.data.dConc output variable was used 

for subsequent analyses, see the HomER Users Guide for full details; Huppert, Diamond, 

Franceschini & Boas, 2009). Timing information (mark identity and time received by the 

ETG-4000 relative to the fNIRS recordings) was also extracted from the ETG-4000 data 

using custom scripts run in MATLAB R2007b.

fNIRS data analysis

Extraction of the mean hemodynamic response for each learning block was conducted in 

MATLAB (version R2013a) with custom analysis scripts. First, we removed any additional 

motion artifacts. Following Lloyd-Fox, Blasi, Volein, Everdell, Elwell et al. (2009), an 

algorithm was written such that for each trial when the concentration (either oxygenated or 

deoxygenated hemoglobin) was greater or less than ± 5 mM mm, the duration of the signal 

over ± 5 mM mm was determined. Then moving forward and backward, the algorithm 

searched for the place where the signal changes sign, if there had been 15 consecutive points 

where the slope between points has been less than 0.5 (indicating that the rapid change in 

signal has ceased), and if neither of these criteria are met, when there have been more than 

200 points since the signal was greater or less than ± 5 mM mm. The benefits of this 

algorithm are that it does not rely on potentially biased and non- replicable ‘handcoding’ of 

motion, and that it not only determines when motion was likely to have occurred (signal 

values beyond ± 5 mM mm), but also identifies the places where motion likely started (the 

steep rise or fall of the signal). An appropriate analogy is that you might use the peaks to 

identify mountains, but if you want to remove them, you need to also find out where their 

bases are. Once the segments of signal that were likely contaminated by motion were 

identified, they were removed by zeroing the signal. This is an appropriate method because 

the signal has been normalized in homER and has the benefit of maintaining timing and 

‘complete’ data collection during the trial. This method was applied to all infants included in 

the study, resulting in an average of 0.58% of the data being excluded due to motion (SD = 

0.72%; six infants had no data excluded, the maximum excluded for a single infant is 

1.88%).

Kersey and Emberson Page 6

Dev Sci. Author manuscript; available in PMC 2020 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Next, the continuous data were segmented and sorted into individual trial types based on the 

timing of marks. Because the experiment ended when the infant became inattentive or fussy, 

we excluded any blocks at the end of the experiment that the infant did not fully attend to. 

Infants were required to watch a minimum of five AV blocks to be included in the 

experiment (see Participants for the number of infants excluded for not watching a sufficient 

amount of time). Five blocks was chosen as a cut-off to ensure that enough neural data were 

available for each infant. After exclusion, infants looked on average for 6.29 learning blocks 

(minimum = 5 blocks, maximum = 8 blocks, SD = 0.99, 5 blocks: n = 4, 6 blocks: n = 6, 7 

blocks: n = 5, and 8 blocks: n = 2).

Then, for each infant, the average concentration of oxygenated hemoglobin per channel was 

determined for each condition. Infants were excluded at this point if the data collected were 

still noisy. Noisiness of the data was based on a combination of visual inspection, notes on 

optical contact and the presence of hair, and output from the otparex.m script, which 

provided a measure of the number of bad channels. These infants were not excluded at the 

point where meaningful average information could be seen in order to minimize 

experimenter bias to include or exclude participants who confirmed or denied experimental 

hypotheses. Moreover, the decision to include or exclude infants was made before group 

averages were determined and was not revisited.

Finally, the average and variance of responses for oxygenated hemoglobin were determined 

within each ROI for each infant for the 31 seconds of the learning block (defined a priori to 

start with initial stimulus presentation and continue into the jittered ISI interval to capture 

the entire hemodynamic response to the learning block). Analyses were conducted on the 

mean hemodynamic responses in RStudio (version 0.98) using the lmer (Bates, Maechler, 

Bolker & Walker, 2015) and lmertest (Kuznetsova, Brockhoff & Christensen, 2013) 

packages for R (version 3.1.1).

Results

Our goal was to identify differences in neural activity (measured by functional changes in 

blood oxygenation) across learning blocks. The magnitude of the hemodynamic response for 

each learning block for each infant (average of the normalized changes in blood oxygenation 

from 0 to 31 seconds from the onset of the first stimulus) was calculated in each of our three 

regions of interest (ROIs): temporal cortex (five NIRS channels), occipital cortex (three 

NIRS channels), and frontal cortex (two NIRS channels). Our analyses unfolded in three 

stages. First, we tested for a linear relation between learning blocks and blood oxygenation. 

Next, we tested for a nonlinear relation between learning blocks and blood oxygenation. 

These analyses are primarily regression analyses, but we also include complementary post-

hoc t-tests to clarify the main effects. Finally, we conducted exploratory analyses to test for a 

relation between individual differences in the shape of the learning trajectory and learning 

outcomes. Making connection to the broader literature, we used neural response to 

violations of the learned association as our measure of learning outcomes.2

2Specifically, we measured neural activity during the presentation of an auditory cue without a visual cue (visual omission), which 
allowed us to measure how well infants were able to learn that auditory cues generally predict visual cues. Neural activity to a novel 
visual event could arise from a number of sources (e.g. a release from low-level visual adaptation vs. a violation of the audio-visual 
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Linear modeling of learning trajectory

To determine whether there was a linear relation between successive blocks and blood 

oxygenation, we fit linear mixed effects models to our data. We predicted mean oxygenation 

in each ROI using block number as the predictor. In each model, we also included random 

factors of infant and infant by block (e.g. 1 + Block | Infant) to control for any differences 

across participants and to consider changes by block as a within-Infant comparison (i.e. not 

treating each successive block as an independent observation). The linear mixed effect 

models revealed a main effect of block in both the temporal and frontal ROIs (Temporal: β = 

0.04, t = 2.61, p3 = .02; Frontal: β = 0.03, t = 2.49, p = .03; Occipital: β = 0.03, t = 1.66, p 
= .12). The fixed effect of block in temporal and frontal ROIs indicates that the mean 

oxygenation increased across successive learning blocks of the experiment (Figure 3). The 

results from the occipital ROI are suggestive of a linear effect but do not reach significance 

in this model.

We further validated this increase in oxygenation across learning blocks by comparing the 

amount of oxygenation at the beginning and ending of learning. Because each infant 

watched between five and eight blocks, we performed two t-tests in each ROI (Figure 4): 

The first compared the oxygenation during the first block of learning to the oxygenation 

during the fifth block of learning, which was the minimum number of learning blocks 

completed by all infants (4/17 infants completed only five blocks); the second compared 

oxygenation during the first block of learning to oxygenation during each infant’s last block 

of learning. This latter test allowed us to take into account that some infants may take longer 

than others to learn the audiovisual pairing and thus a longer learning time-course could 

result in a more lengthy change in the neural signal. In the temporal cortex, both the t-test 

comparing block 1 to block 5 and the t-test comparing block 1 to each infant’s final block 

were significant (block 1 vs. block 5: block 1 mean = −0.13, block 5 mean = 0.18, t(16) = 

−3.65, p < .01; block 1 vs. end block: end block mean = 0.05, t(16) = −2.66, p = .02), 

indicating that oxygenation increased across the learning blocks. In the occipital blocks, the 

t-test comparing block 1 to block 5 was significant (block 1 mean = −0.08, block 5 mean = 

0.12, t(16) = −2.13, p < .05) but, although the t-test comparing block 1 to each end infant’s 

end block revealed a similar pattern, the test was only marginally significant (block 1 mean 

= −0.08, end block = 0.11, t(16) = −1.84, p = .08). A similar result was found in the frontal 

region: the comparison of oxygenation in block 1 to block 5 revealed a significant increase 

over time (block 1 mean = −0.15, block 5 mean = 0.08, t(16) = −3.65, p < .01), and although 

the comparison of oxygenation in block 1 to each infant’s final block revealed a similar 

pattern, again it was only marginally significant (block 1 mean = −0.15, end block mean = 

−0.04, t(16) = −1.80, p = .09). Thus, we see evidence in all three ROIs of linear increases in 

activation over learning. This evidence is strongest in the temporal ROI where both the 

comparison between the first and fifth as well as the last blocks is significant, but in all ROIs 

we see that activation in the fifth block is higher than the first block.

pair). However, the omission of visual information cannot lead to neural changes separate from the expectations produced by the audio 
cue and therefore this is a suitable measure of learning at the same level of specificity as the neural data during familiarization.
3Because degrees of freedom are difficult to estimate for coefficients in mixed effects models, all p-values reported throughout the 
results section are estimated p-values. These values were estimated using the lmetest package for R.
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Thus far, we have used convergent statistical methods (mixed effect linear models and t-test 

for key points along the time-course) to show that there are systematic increases in activity 

for three ROIs throughout exposure in a learning task. This is suggestive of a progressive 

repetition enhancement during learning in an audiovisual associative task in infancy. 

However, the most robust results were found when comparing the first and the fifth blocks, 

with only marginal results for both the occipital and frontal ROIs when comparing the first 

and end blocks. We also find significant linear effects of block in only two of the three ROIs. 

These results combined with a visual inspection of individuals’ oxygenation curves across 

learning blocks suggest that perhaps instead of a linear trend, infants exhibited an inverted 

U-shaped response, characterized by a peak towards the middle (between blocks 4 and 5), 

followed by a decrease in the remaining blocks.

Non-linear modeling of learning trajectory

To examine the possibility of a non-linear relation between learning time-course and neural 

activity, we used a second mixed effects model to fit mean oxygenation per block with both 

a linear term of block (as in the previous models) as well as a non-linear term of block (2-

degree polynomial). This model allows us to determine whether activation over learning 

blocks is non-linear and, if so, whether there is both a linear and a non-linear change over 

time. As with the previous models, we also include a random effect of individual infants and 

individual infants by block. The results of these models suggest both linear (block) and non-

linear (block squared) changes in activation over block in all ROIs (Temporal: block: β = 

0.21, t = 6.60, p < .01; block squared: β = −0.02, t = −5.92, p < .01; Occipital: block: β = 

0.14, t = 3.99,4 p < .01; block squared: β = −0.01, t = −3.72, p < .01; Frontal: block: β = 

0.18, t = 6.00, p < .01; block squared: β = −0.02, t = −5.40, p < .01). A direct comparison of 

the simple models with only a linear effect of learning and the current models with both 

linear and non-linear effects of learning reveal that the models that included a U-shaped 

response over the course of learning fit significantly better than those models that only 

account for a linear change (Temporal: χ2 = 30.03, p < .001; Occipital: χ2 = 12.95, p < .001; 

Frontal: χ2 = 25.15, p < .001). The significantly better fit of the time-course by models with 

a non-linear term suggests that not only do the responses generally increase over the course 

of learning, but they also exhibit an inverted U-shaped pattern in which oxygenation peaks 

(between blocks 4 and 5) and then decreases throughout the remaining blocks (Figure 5). 

This pattern is consistent with the infant brain exhibiting repetition enhancement during 

early stages of learning, followed by repetition suppression once encoding or learning is 

complete. However, given the sharp decrease in the number of infants contributing data after 

five blocks (13/17 infants contributing data after five blocks), it is possible that the reduction 

in activity after the five blocks is because of the 4 greater uncertainty in the sample. We 

return to this point in the Discussion.

To validate the inverted U-shaped pattern we conducted additional t-tests comparing the 

middle of learning to the beginning and ending of learning. Learning block 4 was selected as 

the middle of learning because the inverted U-shaped pattern peaked between blocks 4 and 5 

4Note that the linear effect of block is now significant for the occipital ROI whereas it was not significant in the model with only the 
linear term. Similarly, the linear effects for both the temporal and frontal ROIs have much higher t-values in this model, suggesting 
independent linear and non-linear effects of block on neural activation.
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and we wished to avoid any instances in which the middle block and end block would be the 

same for individual infants (i.e. for 4/17 infants block 5 was the final block so we decided 

not to also use it as an index of the middle of learning). These t-tests revealed a significant 

increase from the first learning block to the fourth learning block in all ROIs (Temporal: 
block 1 mean = −0.13, block 4 mean = 0.16, t(16) = −4.02, p < .01; Occipital: t(16) = −2.53, 

p = .02, block 1 mean = −0.08, block 4 mean = 0.13; Frontal: block 1 mean = −0.15, block 4 

mean = 0.11, t(16) = −4.56, p < .01). Comparisons of the fourth learning block to each 

infant’s final block (ranging from block 5 to block 8) revealed a significant decrease from 

block 4 to the final block in the frontal channels (final block = −0.04, t(16) = 2.28, p = .04) 

and a marginal decrease from block 4 to the final block in the temporal channels (final block 

mean = 0.05, t(16) = 1.95, p = .07). There were no differences between the middle of 

learning and the end of learning in the occipital channels (final block mean = 0.11, t(16) < 

1.0, p > .1). These results are in line with the fits seen in Figure 5B, which depict the 

predicted data from a mixed effect model of mean oxygenation per proportion of learning 

blocks completed with both a linear term of proportion of learning as well as a non-linear 

term of proportion of learning squared (2-degree polynomial). Together the results of these t-
tests and the fits of the data using proportion of learning instead of number of blocks 

completed suggest that although the data do exhibit an inverted U-shaped pattern, the drop 

off at the end of learning may be subtle at best in occipital and temporal regions.

Relation between learning trajectory and learning outcomes

Finally, we conducted an exploratory analysis to determine whether individual differences in 

the changes of neural activity across the learning blocks could relate to the changes in neural 

activity elicited by the novel visual omission trials. As highlighted in the Introduction, the 

majority of studies of learning focus on the relation between learned stimuli and responses 

to violations or novel stimuli. As reported in Emberson et al. (2015), infants who have 

learned the AV association exhibit robust occipital lobe responses to the omission of the 

visual event. We conducted an exploratory analysis to determine whether individual 

differences in AV learning trajectory (as modeled in this paper) would predict an 

individual’s visual omission response within each neural region (i.e. whether trajectories in 

the occipital lobe predict the response of the occipital lobe to the visual omission). Such a 

relation would lend further support that these neural changes are leading to the development 

of new representations that an infant is using to process future stimuli. The response to the 

visual omission trials was obtained by averaging a single analysis time window of 5–9 

seconds after stimulus onset and then averaging across all visual omission trials in each ROI 

(see Emberson et al., 2015, for more detail). We then fit each infant’s data to a linear model 

with two terms (block and block-squared, see Figure S2 for a depiction of these fits) and 

extracted the coefficient for each term to index the shape of each infant’s learning trajectory 

in each ROI. These terms were then entered into a multiple regression for each ROI to 

determine whether these two coefficients could predict the visual omission response. This 

model, in which the response to the visual omission trial was the dependent variable and the 

coefficients for block and block-squared were the two independent variables, was significant 

in the temporal and occipital ROIs (Temporal: R2 = 0.58, F(2, 14) = 9.64, p < .01, block 

coefficient = 1.19, t = 4.21, p < .01, block-squared coefficient = 8.06, t = 3.66, p < .01; 

Occipital: R2 = 0.42, F(2, 14) = 5.05, p = .02, block coefficient = 0.94, t = 3.14, p < .01, 
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block-squared coefficient = 7.77, t = 3.07, p < .01; Frontal: R2 = 0.19, F(2, 14) = 1.60, p > 

0.1).5 This indicates that the shape of the learning trajectory predicts the visual omission 

responses in both the occipital and temporal ROIs. It is important to note that these models 

are all predicting responses within ROIs. Between ROI analyses where learning trajectories 

in the frontal or temporal ROIs were used to predict the occipital lobe response to visual 

omission trialswere not significant.

Discussion

The current study investigates changes in infant neural activity during audio-visual (AV) 

associative learning. To that end, we estimated the amount of neural activity during each 

learning block (exposure to six AV 5 trials, Figure 1) and employed regression-based 

statistical methods to determine the shape and direction of neural changes for each infant’s 

learning time-course. We considered three possible relations between learning and neural 

changes. Across repeated learning experiences, we predicted that infants would exhibit (1) a 

decline of neural activity similar to repetition suppression; (2) an increase in neural activity 

similar to repetition enhancement; or (3) a non-linear change to neural activity where infants 

will first exhibit repetition enhancement followed by repetition suppression.

We do not find evidence that infants simply exhibit repetition suppression over the course of 

learning, and we find strong converging evidence that there are increases in neural activity 

across learning blocks. Specifically, regression-based statistics and targeted t-tests both 

reveal positive linear changes in neural activity over learning blocks regardless of whether 

we consider absolute block number or proportion of learning blocks for each infant (in order 

to accommodate the varying number of blocks viewed by the infants, 5–8 blocks). This 

extends the finding of increases in neural activity over learning from Gervain et al. (2008) to 

another learning task and numerous regions of the infant brain, suggesting that increases in 

neural activity with learning are part of a domain-general mechanism available early in life 

and not an example of domain-specific learning capacities.

While the evidence for increases in neural activity compared to block 1 are robust, there is 

also evidence that neural activity starts to decline at later stages of learning. In particular, we 

found that the fit of our statistical models significantly increased when we included a non-

linear predictor indicating the presence of a non-linear relationship between learning and 

neural activity. In addition, targeted t-tests found that following a significant increase 

between blocks 1 and 4 in all ROIs, there is a significant decrease from block 4 to an infant’s 

final block (which varied from 5 to 8) in the frontal ROI and a marginally significant 

decrease for the temporal ROI. Visual inspection of the data in these two ROIs also strongly 

suggests that neural activity starts to decline about two-thirds of the way through the 

learning task (regardless of whether we considered absolute block number or proportion of 

5It is important to note that the coefficients for the block and blocksquared predictors were highly correlated (Rs > 0.9) which presents 
the problem of colinearity in the model. To confirm that the current results are robust and to control for colinearity, we ran a 
complementary set of models, which employed residualization to control for the shared variance in the block and block-squared term. 
First, we constructed a model where one of the predictors is used to predict the other predictor (e.g. Temporal Block Coefficients ~ 
Temporal Block Squared Coefficients). Then the residuals from this model are used to predict the Visual Omission response. These 
models, which help control for the colinearity of the two predictors, indicate that effects above continue to be robust for the Temporal 
and Occipital ROIs and continue to be absent for the Frontal ROI.
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learning blocks to consider the learning trajectory for each infant). However, the evidence 

for a decline in occipital lobe activity is much weaker and both targeted t-tests and visual 

inspection suggest that the non-linear predictor is modeling a plateau or lack of increase in 

neural activity in later blocks and not repetition suppression.

Lending additional support to a non-linear relationship between learning and neural activity, 

we conducted an exploratory analysis intended to determine whether a non-linear learning 

trajectory of individual infants would predict the robustness of that individual’s novelty 

detection. The linking hypothesis here is that if a nonlinear learning trajectory is crucial to 

the acquisition of audio-visual representations through learning, the degree of non-linearity 

of an individual infant’s learning trajectory will predict how robustly an infant responds to a 

violation of the audio-visual pairing. The model of each infant’ s learning trajectory was 

used to predict their responses to a novel trial and find a significant relationship, but 

interestingly only in the temporal and occipital ROIs.

It is important to note that, even though we find robust evidence for non-linearity in the 

neural changes with learning in this task, we consistently find a significant linear predictor 

as well in these models. There are two major possibilities for the presence of both linear and 

a non-linear effects in these data. First, there could be a combination of processes underlying 

the relation between changes of neural activity and learning, with one being linear and 

positive and other being non-linear (starting with an increase and followed by a decrease or 

plateau in the case of the occipital lobe). A second and more parsimonious possibility is that, 

because the decline of neural activity later in learning is not as dramatic as the increase in 

neural activity early in learning, the linear term models this asymmetry. Moreover, it is 

possible that we simply do not have the methodological ability to capture the full decline of 

the neural activity, which depends on infant compliance after an infant has successfully 

learned the AV pairing and is no longer interested in the stimuli, since infants in this task 

effectively choose when they finish the task largely based on their interest and at the point of 

boredom. Indeed, it appears as if after a few blocks characterized by a decline or plateau in 

neural activity, they stop attending to the screen and the experiment is ended. Thus, if a 

decline or plateau in neural activity later in learning reflects the successful creation of a 

representation of the AV pairing and a decline in an infant’s interest in the AV stimuli, then 

the nature of our experimental method would predict that we would not fully capture 

decreases in neural activity in later stages of learning.

Relatedly, while we do not find any evidence for a repetition suppression type effect 

underlying infant learning in the current task, a non-linear trajectory suggests that repetition 

suppression may be present during learning but may simply characterize one phase or stage 

of learning and specifically the later stages of learning when representations are presumably 

largely formed. Thus, while on the surface our result runs counter to proposals by Mather 

(2013) and Turk-Browne et al. (2008), the current work simply places the link between 

repetition suppression and learning in infancy in a larger context by considering the entire 

learning time-course. It is important to note that we find no evidence of a significant decline 

in neural activity in the occipital ROI only in the frontal and temporal ROIs.
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How does the current work relate to previous demonstrations of repetition suppression in 

infancy? Nakano et al. (2009) presented robust evidence for repetition suppression in the 

infant brain. In this study, infants heard repeated blocks of a single stimulus (‘ba’) and many 

regions including the temporal and frontal cortices exhibited decreasing responses over these 

repeated blocks. The repetition of a single stimulus is more akin to classic repetition 

suppression studies in adults where simple stimuli are repeated with no embedded patterns 

to learn (e.g. Grill-Spector et al., 1999). As discussed in the Introduction, it has been 

demonstrated in adults that greater complexity can determine whether the experiment 

produces repetition enhancement vs. suppression (Muller et al., 2013; Turk-Browne et al., 

2007). Given the differences in complexity between Nakano et al. (2009; repetition of a 

single syllable) and the current experiment (the association of two related and complex 

audio-visual stimuli), uncovering suppression vs. enhancement across the two studies, 

respectively, follows directly from the adult literature.

However, it is important to note that while Nakano et al. (2009) present a robust finding of 

repetition suppression, recent studies in developmental populations reveal mixed results. 

Although some studies have found evidence of repetition suppression to numerical stimuli 

(e.g. dot arrays or Arabic digits) in children (Cantlon, Brannon, Carter & Pelphrey, 2006; 

Vogel, Goffin & Ansari, 2015), other results have demonstrated the difficulty in exhibiting 

repetition suppression to more complex stimuli (particularly visual repetition suppression) in 

developmental populations. In a particularly compelling example, Scherf, Luna, Avidan and 

Behrmann (2011) examine repetition suppression of two types of visual stimuli in children, 

adolescents and adults. While adults exhibit robust repetition suppression for both stimuli, 

there is no evidence for repetition suppression to either stimulus type in children and an 

intermediate amount in adolescents. Given that research with children facilitates neural 

recordings even after children have reached later stages of learning (compared to infants), 

the lack of evidence for repetition suppression for complex stimuli in children suggests that 

there may be broader developmental changes in neural suppression beyond differences in 

methodology. The developmental origins of such a difference in the neural response to 

repetition are currently unknown, but disentangling developmental and methodological 

differences across populations to address these questions directly will be an important 

direction for future research.

Concerning the relation between an infant’s visual preference and increases in neural 

activity, Watanabe et al. (2008) found increased activity in lateral portions of occipital lobe 

and the prefrontal cortex when infants viewed a mobile versus a checkerboard (preferred and 

non-preferred visual stimuli, respectively). The authors propose that this increase may 

reflect an infant’s visual preference or attention. Our current findings also suggest that visual 

preferences may correspond to increases in neural activity and, moreover, that neural 

changes during learning may mirror the canonical Hunter and Ames model of infant visual 

preference.

Finally, Watanabe, Homae, Nakano, Tsuzuki, Enkhtur et al. (2013) examined infant neural 

activity during either the visual only presentation of a novel mobile or the audio-visual 

presentation of this mobile. Broadly, the authors report greater responses to the audio-visual 

stimuli in many regions of the infant brain including some occipital regions and the frontal 
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cortex.6 While the authors attribute these increases to multisen- sory perception, it is also 

likely that these effects reflect audio-visual learning. This is particularly likely given that the 

infants were presented with a novel mobile that was quite complex. Certainly, current results 

suggest that these findings may reflect a learning process and not necessarily that the frontal 

cortex is supporting multisensory perception of known objects early in life.

The current results provide a foundation for building a more nuanced understanding of the 

neural processes that underlie learning in the infant brain. One potential direction of future 

work should evaluate the effects of task complexity on the shape of the learning trajectory. 

This work would further test the predictions of the Hunter and Ames (1988) model as, for 

example, extremely easy tasks should reduce the amount of time that infants exhibit 

repetition enhancement before exhibiting repetition suppression. Future work should also 

consider measuring the outcome of learning in other ways. For instance, here we used 

response to visual omission trials as an index of learning, but the neural response to other 

types of learning violations (e.g. mismatches of audio and visual pairings) may provide 

additional insight. Finally, one important challenge is integrating more precise measures of 

infant attention or habituation and fNIRS recordings. Indeed, Aslin et al. (2015) highlight 

this as an important future advance for fNIRS. Integrating looking time measures of 

behavior and fNIRS is not trivial as the latter method considers neural activation for 

precisely timed and uniformly watched blocks of stimuli while the former relies on changes 

in looking time over the duration of the experiment. Thus, fNIRS studies end when looking 

time studies begin. Indeed, this difference in methodology could suggest that greater 

amounts of repetition suppression could have been seen if more controlled habituation 

techniques were employed in combination with fNIRS recordings. Indeed, the future 

integration of these methods will provide a powerful tool for considering the relationship 

between neural and behavioral changes involved in habituation and learning in infancy.

In sum, we find that during an audio-visual learning task, infants first show an increase in 

activation followed by a decrease in temporal, occipital, and frontal regions of the brain. 

This inverted U-shaped response during learning demonstrates that the infant brain shows 

evidence of both repetition enhancement and repetition suppression while building 

associations between audio and visual stimuli. Furthermore, we find that the shape of 

individual trajectories can be used to predict the response to novel stimuli in occipital and 

temporal ROIs, providing evidence that the shape of the learning trajectory is related to 

learning outcomes. These results are consistent with the canonical Hunter and Ames model 

of infant visual preference and are suggestive of a neural signature that may underlie looking 

preferences in infants.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

6There were differences in activity in the temporal cortex as well, but this effect is hard to interpret because these two conditions 
differed on the basis of whether sound was presented.
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Research highlights

• This study uses fNIRS to trace the patterns of activation during associative 

learning in infants.

• We find that, across multiple regions of the brain, infants show evidence of 

neural enhancement in the early stages of learning, followed by neural 

suppression in later stages of learning.

• These results mirror the canonical Hunter and Ames model of infant visual 

preference and may represent a neural signature that relates to infant looking 

preferences.

• Exploratory analyses find that the degree to which the infant brain exhibits 

these patterns can be used to predict the brain’s response to a violation of the 

expectations built during learning.
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Figure 1. 
Depiction of an audio-visual trial in a learning block. A learning block consisted of two 

separate audio-visual pairings: one sound was paired with the smiley face entering the box 

from the top, and a second sound was paired with the smiley face entering from the bottom 

of the box. Each trial was then repeated twice and present in a random order, resulting in six 

audio-visual trials per learning block.
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Figure 2. 
Left panel: Three regions of interest (ROI). The frontal ROI (teal) comprised two channels. 

The temporal ROI (blue) comprised five channels. The occipital ROI (red) comprised three 

channels. See Emberson, Richards and Aslin (2015) for details on the NIRS-MR co-

registration supporting the creation of these ROIs. Right panel: Each infant who participated 

in the study was photographed to help determine the relation between the NIRS optodes and 

anatomical markers.
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Figure 3. 
Predicted data from linear mixed effect models for data plotted by (a) number of learning 

blocks and (b) proportion of learning blocks completed (i.e. a normalized learning time-

course). Black line: Linear fit of the model; Colored lines: Individual data for each infant 

included in the analyses. Note: Excluding the infant in green with a sharp peak in the 

temporal channels did not qualitatively change these results.
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Figure 4. 
Mean activation for key blocks throughout the experiment. Activation was compared for the 

first block and the fifth block (the last block completed by all infants) and the last block 

(End) for each individual infant. Asterisks (*) denote significance at p < 0.05.
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Figure 5. 
Predicted data from mixed effect models with a non-linear (2-degree polynomial) predictor 

for data plotted by (a) number of learning blocks and (b) proportion of learning blocks 

completed (i.e. a normalized learning time-course). Black line: Non-linear fit of the model; 

Colored lines: Individual data for each infant included in the analyses. Note: Excluding the 

infant in green with a sharp peak in the temporal channels did not qualitatively change these 

results.
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