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Abstract

with seasonal changes in environmental conditions.

populations used a similar number of stopover days.
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Background: Recent studies have proposed that birds migrating short distances migrate at an overall slower pace,
minimizing energy expenditure, while birds migrating long distances minimize time spent on migration to cope

Methods: We evaluated variability in the migration strategies of Herring Gulls (Larus argentatus), a generalist
species with flexible foraging and flight behaviour. We tracked one population of long distance migrants and three
populations of short distance migrants, and compared the directness of their migration routes, their overall
migration speed, their travel speed, and their use of stopovers.

Results: Our research revealed that Herring Gulls breeding in the eastern Arctic migrate long distances to spend
the winter in the Gulf of Mexico, traveling more than four times farther than gulls from Atlantic Canada during
autumn migration. While all populations used indirect routes, the long distance migrants were the least direct. We
found that regardless of the distance the population traveled, Herring Gulls migrated at a slower overall migration
speed than predicted by Optimal Migration Theory, but the long distance migrants had higher speeds on travel
days. While long distance migrants used more stopover days overall, relative to the distance travelled all four

Conclusions: When taken in context with other studies, we expect that the migration strategies of flexible
generalist species like Herring Gulls may be more influenced by habitat and food resources than migration distance.

Keywords: Animal movement, Bird migration, Ecology, Migration strategy, Stopover, Migratory behaviour, Tracking,

Background

Migration strategies, the choices birds make about when
to migrate, what routes to take, and when and where to
stop, have evolved to maximize fitness in seasonal envi-
ronments [1]. Migration is a highly dynamic life phase in
which birds may travel great distances, often in relatively
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short periods of time. These journeys can be energetic-
ally costly and may entail an elevated risk of mortality
[2]. Birds use different migration strategies to minimize
these costs and risks; however, a bird’s internal state, its
physical capacity for motion, its navigational abilities,
and its external environment are perpetually changing
and interacting to shape its optimal movement path [3].
Optimal migration theory predicts that animals make
trade offs between energy, time, and predation risk when
migrating [4, 5]. To achieve high overall migration
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speeds, birds using a time-minimizing strategy are pre-
dicted to use more direct routes, travel long distances
per day by flying at higher airspeeds, and/or make fewer
stopovers in comparison to birds using an energy min-
imizing strategy [4]. They should depart with higher fuel
loads to permit longer flights [6] and tolerate less opti-
mal wind conditions to avoid delays [7], despite the add-
itional energetic costs these behaviours incur during
flight. An alternative approach for some birds may be to
minimize energy cost during migration rather than time
[4, 5]. Birds using an energy-minimizing strategy are
predicted to make more detours away from a direct
course to take advantage of the most energetically bene-
ficial conditions for flight or foraging [8]. They should
also travel shorter distances per day at lower airspeeds, but
conserve energy by optimizing the fuel loads they are carry-
ing [6], or by waiting longer at stopovers for ideal wind
conditions to minimize flight costs [9].

The factors that influence migration strategy may vary
across the geographic range of a species [10-12]. Long
distance migrants are generally predicted to have greater
constraints on the timing of their arrival and departure
than short distance migrants, and are therefore predicted
to minimize time rather than energy during migration
[13]. Differences in migration strategy between short
and long distance migrants are predicted to be most ap-
parent in autumn for species that are not territorial on
their wintering grounds, as there would be no competitive
advantage gained by arriving early [14]. Support for the
hypothesis that long distance migrants are more time con-
strained has been demonstrated in shorebirds [15] and
passerines [16, 17], and suggested in raptors [18, 19], but
some exceptions have been demonstrated [20].

What defines the time constraints on long distance
migrants and in what circumstances may they be re-
laxed? One time constraint for long distance migrants
may be the finite amount of time available in a year that
birds can budget for migration before the other activities
such as molt and breeding are affected [5, 21]. Another
major time constraint may be the availability of re-
sources. During autumn migration, there may be in-
creased selection pressure for long-distance migrants to
travel before ephemeral food resources are depleted by
competitors or diminished by seasonal weather shifts [22,
23], particularly for species specialized on particular prey or
habitats [21]. However, migration distance appears to have
less of an influence on migratory timing in omnivorous
birds, suggesting that dietary plasticity lessens time con-
straints generated by food scarcity [24].

To test if the hypothesis that long distance migrants
are more time constrained applies to flexible generalist
species, we compare short and long distance migration
strategies of Herring Gulls. Gulls, as omnivorous for-
aging generalists, can take advantage of many types of
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food, and therefore can use a variety of terrestrial, fresh-
water, and marine habitats [25, 26]. Thus, their choice of
migratory route may be less constrained by the need to
target specific habitats compared to foraging specialists
[24]. Gulls are also flight generalists and can use a wide
range of flight modes: flapping flight, thermal soaring,
ridge soaring, and dynamic soaring [27]. This flexibility
allows them to have fewer restrictions on the terrain and
weather conditions in which they travel [5]. Gulls also
travel with small fuel loads, as they commonly use a fly-
and-forage migration strategy and feed along the way
[28]. Lastly, gulls have a relatively low risk of predation
during migration [29]. Most studies that have investi-
gated how migration distance influences migration strat-
egy have relied on interspecific comparisons [15, 16, 24,
30], where the effect of migration distance is difficult to
disentangle from differences in morphology. Migratory
strategies, flight behaviour, and related morphological
traits (e.g. body size, wing shape) have co-adapted. To
address the influence of migration distance on migration
strategy, assessing variation in migratory behaviour
within species could effectively control for many con-
founding physiological, morphological, and ecological
factors.

We examined the migratory movements of Herring
Gulls from four local breeding populations in eastern
North America to study the variation in their migration
strategies. The rich banding history of this species illus-
trates that adults breeding in the Great Lakes and on the
Atlantic coast of the United States are residents, while
adults from Atlantic Canada migrate short distances
along the coast, arriving in the northeast United States
around November and returning to their breeding sites
in April and May [29, 31, 32]. Little is known about the
migration of Herring Gulls that breed in the Arctic, but
they are presumed to be long distance migrants based
on a handful of band recoveries [33]. While banding re-
cords have provided information on population level
timing and range of migratory movements of some of
the Atlantic populations, this study uses tracking tech-
nologies to provide new information about how individ-
uals undertake their migratory travels.

Our objectives were: (1) to identify the migration
routes of these Herring Gull breeding subpopulations,
particularly for the Arctic-breeding Herring Gulls whose
wintering distribution was previously unknown; and (2)
to test for differences in migration strategies between
short and long distance migrants. If long distance mi-
grants are more time constrained than short distance
migrants, we predicted that long distance migrants
would use more direct travel routes, would travel at
higher overall migration speeds in autumn, would make
shorter stopovers, and/or would use fewer stopovers per
unit of distance [7, 14, 34]. If migration distance does
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not have a strong influence on the migratory behaviour
of Herring Gulls, owing to their ecological flexibility, we
expect that both short and long distance migrants would
use an energy minimizing strategy. In this case, we
would expect each of the Herring Gull populations
would follow coastal routes given their preference for
aquatic habitats [35], even if this meant detouring from
direct routes [28]. For an energy minimizing strategy, we
predicted that both long and short distance migrants
would have low overall migration speeds, and spend a
large proportion of the migration at stopover sites.

Methods

Tracking

Between 2008 and 2016, we tracked individuals from
four populations of Herring Gulls breeding in eastern
Canada (Table 1). Breeding Herring Gulls were captured
at one site in the eastern Arctic (Southampton Island,
NU, 64.01°N, 81.75° W), two sites in the Bay of Fundy
(Kent Island, NB, 44.57°N, 66.75° W; Brier Island, NS,
44.25°N, 66.33°W), on Sable Island, NS (43.92°N,
60.00° W), and at one site in Newfoundland (Witless
Bay, 47.26°N, 52.77° W). We also captured wintering
Herring Gulls within 75 km of the Quabbin Reservoir in
Massachusetts (42.40° N, 72.31°W), which were subse-
quently tracked to two additional breeding locations in
Newfoundland and were assigned to the Newfoundland
population in our analyses (Fig. 1).

Herring Gulls were equipped either with Ecotone de-
vices, which archive global positioning system (GPS)
data internally and transmit data to a base station at the
breeding site, or with platform terminal transmitters
(PTTs), which derive location data from either GPS or
Doppler shifts and transmit through the Argos satellite
system [36]. Doppler-derived data were collated and
processed by Argos, and categorized into four location
error classes [36]. Data from GPS were considered to
have a fixed location class F, with an error radius of 0 m
[37]. Tracking devices weighed 11.5g to 30g (<3% of
average Herring Gull body mass; > 800 g, [29]) and were
programmed with a variety of duty cycles (Table 1). The
effect of tagging on gull behaviour, survival, and repro-
ductive success is generally negligible [38—40], however
we suspect that the amount of tension the harnesses
were attached with at the Eastern Arctic site may have
affected the bird’s survival due to their low return rate in
subsequent years.

At the eastern Arctic, Bay of Fundy, Sable Island, and
Newfoundland-Witless Bay sites, breeding birds were
captured during the incubation period using a self-
triggering wire mesh drop trap over their nest [41]. De-
vices were attached using a leg loop harness, with the
transmitter resting on the lower back and secured with
loops around the bird’s legs [42]. At the Massachusetts
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sites, wintering birds were captured using a Coda net
launcher hidden under a pickup truck. Bait was placed
in front of the net, and the launcher was detonated from
inside the truck’s cab [43]. These devices were attached
using variations of a chest harness, with the transmitter
resting on the upper back, secured with loops around
the wings and joined at the chest [44].

Data processing

We deployed tracking devices on 41 individual Herring
Gulls between 2008 and 2016. Of those, we recorded at
least one full autumn migration for 33 individuals.
Eleven birds were tracked for 2-5 years, giving a total of
48 autumn migration tracks (Table 1).

Tracking data (Argos Doppler data in particular) were
recorded at irregular time intervals, and are known often
to be less precise than the location error estimates pro-
vided by the manufacturer [45]. The data we collected
from different sites varied greatly in their sampling fre-
quency, which in turn can strongly influence the inter-
pretation of movement metrics such as distance and
directness [46]. To compensate for these issues, we used
Bayesian hierarchical switching state-space models to es-
timate locations at regular 24 h intervals [47, 48]. State-
space models estimate the most probable movement
path of an individual using two linked components, a
process model and an observation model. First, the
process model describes the movement path of an indi-
vidual as a first-difference correlated random walk,
switching between two data-driven behavioural states
(travelling and foraging) that dictate the distributions of
speed and turning angles between locations. Second, the
observation model relates the observed data points to
the animal’s unobserved location from the process
model. The observation model characterizes measure-
ment error by using independently verified data from
Vincent et al. [45] to determine the distribution of each
Argos location error class. Fitting all individuals within a
population using the same state-space model improves
the accuracy of location estimates. Additional details
about the general parameterization of these models are
described in Jonsen et al. [49].

Prior to modelling, we removed duplicate locations
and applied a speed filter of 200 km/h. to remove outlier
locations from each dataset, enabling more accurate esti-
mates [50, 51]. Based on run length diagnostics of model
test-runs [52], we fit state-space models to the dataset
using two chains of 400,000 Monte Carlo Markov Chain
(MCMC) samples. We discarded the first 50,000 samples
as a burn-in, and retained only every 50th sample of the
remaining 350,000 samples to reduce autocorrelation.
Using the R package CODA [53], we checked the par-
ameter estimates from the remaining 7000 samples for
convergence by examining: (1) trace plots of model
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Fig. 1 Map of migration routes used by Herring Gulls, predicted by state-space models of tracking data. Breeding colonies are represented by a
large red square. All individuals were captured at their breeding colony, except three individuals that bred in Newfoundland were captured
during the winter in Massachussets, represented by a white star in panel B. Autumn migration tracks are shown in blue for Herring Gulls breeding
in a) eastern Arctic (n=8); b) Newfoundland (n=12); ¢) Sable Island (n=17); and d) the Bay of Fundy (n=11). Stopover days are represented by
yellow circles

parameters for good mixing and stationary chains; (2)
autocorrelation plots for independence between loca-
tions; and (3) density plots, (4) Gelman and Rubin diag-
nostics [54], and (5) Geweke diagnostics [55] for
evidence that posterior distributions were unimodal. We
also visually compared the modeled locations to the ob-
served locations. We removed locations that were mod-
eled beyond 1 day of an observed location point, because
the state-space model tended to provide biologically un-
realistic estimates during large data gaps greater than 1
week [47].

To define when the migrations started and finished,
we developed criteria to classify the movement

behaviour of each individual as migratory or non-
migratory. A position was categorized as a travel day if
either: (1) the bird moved more than 0.3° of latitude in
the same direction for 2 of 3 days in a sliding window,
indicating sustained travel; or (2) the bird moved more
than 75 km in a single day, indicating large jumps. Hav-
ing both of these criteria allow us to exclude days where
birds make moderate movements during a stopover, but
then return and continue to remain in the stopover area
without directed migration movements. This approach
has been used by other studies of migratory seabirds; we
chose the 90th percentile of change in latitude and dis-
tance travelled as our threshold because these criteria
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categorized the differences in behaviour when visualized
and fell within the range of values used in other studies
[10, 56, 57]. If the position did not meet either of these
criteria, it was categorized as a stopover day. Autumn
migration was considered to start on the first day of a
period of travel moving beyond a 200 km radius from
their breeding colony, and therefore do not include any
pre-migratory fueling that may have occurred near the
colony. Autumn migration was considered to end when
a period of travel finished at a latitude where the individ-
ual remained during the winter.

Migratory strategies

We calculated ten characteristics for each migration
track. The orthodromic migration distance was calcu-
lated only for travel days, as the distance traveled during
stopover days varied greatly depending on the length of
stopovers and tended not to be directed movement. The
duration of each migration was the total number of days
between the start date, when the bird departed the
breeding area, and the end date, when the bird arrived
at it’s wintering latitude. Directness was the ratio of an
individual’s migration distance to the shortest possible
route between their starting and ending location, calcu-
lated as the great circle distance (shortest distance be-
tween two points on the surface of the earth) using the
Vincenty ellipsoid method [58]. The overall migration
speed was the migration distance divided by the duration
of migration, while travel speed was the migration dis-
tance divided by the number travel days; both are re-
corded as kilometers per day. We calculated three
different aspects of stopover behaviour: total stopover
days were categorized using the stopover criteria de-
scribed above, travel:stopover ratio was the distance trav-
elled divided by the number of stopover days, and
stopover length was the number of days spent at each
stopover site.

The ten characteristics described above were modeled
as the response variables in a set of generalized linear
mixed model (GLMM). Breeding population was in-
cluded as a fixed effect to assess if migration strategy dif-
fered between populations. Because gulls have a high
degree of individual variation, and some individuals were
tracked for 2-5 years, we included individual as a ran-
dom effect to control for these differences, except in the
model for directness where including the random effect
resulted in a singular fit. We used Gaussian (migration
distance, start date, end date, directness, migration speed,
travel speed, travel:stopover ratio), or Poisson (duration,
total stopover days, stopover length) distributions, and
their respective canonical link functions [59, 60]. Distribu-
tional assumptions about the data were checked through
graphical analysis of scaled residual plots [61]. We used a
likelihood ratio test on these GLMMs against null models
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with the fixed effect removed, and considered there to be
significant differences between populations when p < 0.05.
We assessed the explanatory power of these models with
marginal R? (fixed effect only) and conditional R? (fixed
and random effects [62, 63]). Means are presented +
standard deviation unless otherwise noted.

Results

Migratory routes, timing and stopover locations

We analyzed the autumn migrations of 33 Herring Gulls,
of which 11 were tracked for 2-5 years, giving a dataset
of 48 migration tracks. Herring Gulls from the eastern
Arctic traveled an average of four times further than At-
lantic Herring Gulls (x*3 = 66.79, p < 0.01; Fig. 2a). Gulls
from the eastern Arctic traveled 7361 +1815km (n
tracks = 8) during their autumn migrations. By compari-
son, gulls from Newfoundland migrated 2366 + 936 km
(n=12), gulls from Sable Island migrated 1760 + 631 km
(n=17), and gulls from the Bay of Fundy migrated
1023 + 374 km (n = 11).

Four of the eight of the Herring Gulls breeding in the
eastern Arctic made stopovers of 2 weeks or more in
Hudson Strait and Foxe Channel at the beginning of
their autumn migration. Herring Gulls breeding in the
eastern Arctic appeared to use two distinct autumn mi-
gration routes. Two individuals migrated using a strictly
coastal route, passing east through Hudson Strait, south
along the coast of Labrador, and then following the At-
lantic coast to their wintering range offshore from Lou-
isiana, Texas, and Mexico [35]. By contrast, six
individuals migrated south from their breeding colony
through Hudson Bay, made overland crossings of
1588 +433km to the Atlantic Coast between the St.
Lawrence River Estuary and Chesapeake Bay, and then
followed a coastal route to the same wintering range.
Flights from Hudson Bay to the Atlantic coast covered
2000 km or more in 3 days, with only two of these indi-
viduals making short stopovers on major freshwater
bodies in Québec (St Lawrence River, Lac St. Jean, La
Grande River). Migratory stopovers were not concentrated
in any particular area, but were spread across the Atlantic
coast from Newfoundland to Florida (Fig. 1a). However,
four of eight birds made at least one stopover on the Atlan-
tic coast between Maine and Cape Cod, the same area cov-
ered by the Atlantic Canada populations’ wintering ranges.

Herring Gulls from the three regions of Atlantic
Canada made short distance migrations along the Atlan-
tic coast to their wintering range between coastal Maine
and Cape Cod (Fig. 1b-d). All wintering locations were
in coastal areas, except two individuals from Newfound-
land and one from Sable Island spent part of the winter
in the Finger Lakes region of New York State [35]. All
stopovers made by Herring Gulls breeding in Atlantic
Canada were spread across their migratory route, with
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Fig. 2 Boxplots illustrating variation in migration characteristics of Herring Gulls in eastern North America. Long distance migrants from the

eastern Arctic are shown in grey, and short distance migrants from Newfoundland, Sable Island, and the Bay of Fundy are shown in white.
Migration characteristics include a) distance, b) duration, ¢) start date, d) end date, e) directness, f) migration speed, g) travel speed, h) stopover

no particular stopover site attracting a large proportion
of individuals (Fig. 1b-d). Two individuals that bred in
Newfoundland moved north from their breeding colony,
spending 2—3 weeks at Hamilton Inlet, Labrador, before
turning southward for migration.

The duration of fall migration was longer for the birds
tracked from the eastern Arctic than for the birds tracked
from Atlantic Canada (x23 =66.79, p <0.01); Herring Gulls
from the eastern Arctic took an average of 57 + 36 days,
while gulls from Newfoundland, Sable Island and the Bay
of Fundy respectively took 29 + 19, 13 + 12, and 10 + 7 days
(Fig. 2b). There was no significant difference in the start
date of migration between short and long distance migrants
(X23 =2.69, p = 0.44), with an overall mean start date of Sept
22 +45days (n =33, Fig. 2c). However, long distance mi-
grants did have a later end date of their migration com-
pared to short distance migrants (x%;=9.75, p=0.02);
Herring Gulls from the eastern Arctic ended their migra-
tions on Nov 27 +32days. This was comparable to gulls
from Newfoundland, which ended their migrations on Oct
30 +28days, but was significantly later than gulls from
Sable Island and the Bay of Fundy ended their migrations
on, Sept 22 + 52 days, and Oct 17 + 67 days (Fig. 2d).

Migration strategy - directness, speed, and stopover
behaviour

Long distance migrants used less direct routes than
short distance migrants (X23 =10.93, p=0.01; Table 2).

Birds from the eastern Arctic used routes that were on
average 1.79x the length of a direct migration. In com-
parison, birds from Newfoundland, Sable Island and the
Bay of Fundy used routes that were respectively 1.30x,
143x, and 1.32x the length of a direct migration
(Fig. 2e).

There was no significant difference between the overall
migration speeds of the populations that migrated short
and long distances (x23:0.01, p=0.99; Table 2). The
mean migration speed of Herring Gulls from the eastern
Arctic was 185 + 127 km/day (n = 8), similar to the mean
migration speeds of Herring Gulls from Newfoundland
(152 £ 178 km/day, n=12), Sable Island (189 + 83 km/
day, n=17) and the Bay of Fundy (167 + 97 km/day, n =
11; Fig. 2f). However long distance migrants did travel at
higher speeds on travel days (X23 =9.61, p=0.02). Birds
from the eastern Arctic travelled at 366 + 107 km/day,
while birds from Newfoundland, Sable Island and the
Bay of Fundy respectively travelled at 235 +155k/day,
229 + 62 km/day, and 189 + 80 km/day (Fig. 2g).

Long distance migrants from the eastern Arctic used
an average of 34 + 26 stopover days during their migra-
tions. The short distance migrants used fewer stopover
days (x’s = 14.28, p<0.01; Table 2); birds from New-
foundland stopped for 18 + 16 days, birds from Sable Is-
land stopped for 5+ 11days, and birds from the Bay
Fundy stopped for 3 + 4 days (Fig. 2h). However, the dis-
tance travelled per stopover day taken was similar
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Table 2 Parameter estimates (3, 95% confidence intervals) for generalized linear mixed models examining the effects of population
on autumn migration characteristics of Herring Gulls. Long distance migrants were tracked from Eastern Arctic (NU; n =8), and short
distance migrants were tracked from Newfoundland (NL; n=9), Sable Island (SI; n =8), and the Bay of Fundy (n = 8). Individual is
included as a random effect in all models except for directness. The intercept is the predicted value for Herring Gulls from Eastern
Arctic, which then acts as the reference level for the other parameter estimates, which are relative differences from the intercept.
Bold font indicates estimates whose 95% confidence intervals do not cross 0, indicating a significant difference from the Eastern
Arctic population, and likelihood ratio test statistics (x2) where p < 0.05

Migration characteristic Population B (95% Cl) Marginal R? Conditional R? X3 p
Migration Distance (km) Intercept (NU) 6899 (6263, 7536) 0.84 094 67.16 <0.01
NL -4652 (-5515, -3778)
Sl -5190 (-6057, -4324)
BF -5934 (-6822, -5050)
Duration (days) Intercept (NU) 39 (34,44 047 0.95 23.33 <0.01
NL -0.9 (-1.6, -0.2)
SI -1.5 (-2.2, -0.8)
BF -2.0 (-2.8, -1.3)
Start Date (day of year) Intercept (NU) 267 (237, 298) 0.10 0.98 269 044
NL 8 (33, 50)
SI -23 (-65, 20)
BF 6 (-36, 49)
End Date (day of year) Intercept (NU) 330 (298, 363) 0.25 098 9.77 0.02
NL -26 (-70,18)
] -72 (-117,-27)
BF -48 (-94, -3)
Directness (> km/direct km) Intercept (NU 0.59 (047,0.71) 017 - 9.06 0.03
NL 0.23 (0.09, 0.38)
Sl 0.18 (0.03, 0.32)
BF 0.19 (0.04, 0.34)
Migration Speed (km/day) Intercept (NU) 185 (94, 275) 0.00 0.84 0.01 0.99
NL -2 (-126,123)
Sl -3 (-130,129)
BF 1 (-126, 129)
Travel Speed (km/day) Intercept (NU) 366 (-290, 441) 0.21 082 9.67 0.02
NL -104 (-207, -0.3)
Sl -144 (-248, -40)
BF -160 (-256, -54)
Total Stopover Days (days) Intercept (NU) 29 (1.8, 4.0) 037 097 14.61 <0.01
NL -09 (-24,0.6)
SI -2.6 (-4.2, -1.1)
BF -2.8 (-4.6, -1.3)
Travel:Stopover Ratio (km/day) Intercept (NU) 1187 (473, 1902)
NL -622 (-1598, 357) 0.07 0.79 248 048
N -93 (-1082, 896)
BF -561 (-1563, 441)
Stopover Length (days) Intercept (NU 24 (19,29
NL -0.7 (-14,0.1) 0.21 0.80 6.16 0.10
SI -1.0 (-1.8, -0.2)

BF -0.7 (-1.6,03)
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between long and short distance migrants. Gulls from
the eastern Arctic travelled 1187 + 1975 km per stopover
day, while gulls from Newfoundland, Sable Island and
the Bay of Fundy respectively travelled 465 + 593 km,
1103 +625km, and 634 +473km per stopover day
(Fig. 2i). There was also no significant difference in the
length of stopovers taken by long and short distance
migrants. Each stopover lasted 12+ 11 days for eastern
Arctic birds, 8 + 7 days for Newfoundland birds, 5+ 11
days for Sable Island birds, and 3t 4 days for Bay of
Fundy birds (Fig. 2j).

Discussion

Within the four populations we studied, Herring Gulls
showed a great deal of individual variation, but in gen-
eral the migration strategies used by long distance mi-
grants breeding in the eastern Arctic and short distance
migrants breeding in Atlantic Canada shared many simi-
larities. Each of the populations we studied generally
followed coastal migration routes that were at least 30%
longer than a direct course. The overall speeds of their
migrations, which encompasses both stopover and travel
periods, were not statistically different (Table 2). How-
ever, long distance migrants did travel at higher speeds
on travel days. Although long distance migrants used
more stopover days overall, there was no clear difference
between the stopover length or the ratio of distance
travelled to stopover days between the short and long
distance migrants.

We found that regardless of migration distance, both
the Arctic and Atlantic Herring Gulls generally followed
indirect migration routes along the Atlantic coast. If
long-distance migrants were using an time-minimizing
strategy, we had predicted that they would use more direct
routes. In contrast, we found that the long distance mi-
grants used less direct routes than the short distance mi-
grants. Herring Gulls appeared to prefer coastal migration
routes, despite the fact that they are capable of acquiring
food from freshwater habitats and anthropogenic sources
like landfills, urban areas, and farm fields [64]. Gulls likely
prefer these coastal habitats both because these areas con-
tain predictable sources of food, and because coastal top-
ography creates opportunities for energetically-efficient
soaring [27, 65]. Lesser black-backed gulls (Larus fuscus)
from the Netherlands similarly followed the coast, using
indirect routes on their short distance migration [28]. By
contrast, lesser black-backed gulls from Norway appear to
use more direct routes on their long distance migration
[66]. However, it is important to note that this population
crosses the Sahara desert, an ecological barrier with scarce
food and water resources and a physiologically taxing cli-
mate [67]. It may be that habitat and food availability are
more important drivers of migration strategy for gulls
than migration distance. Furthermore, there is some
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evidence that gulls may prioritize neither time nor energy
expenditure during flight [68].

There was no statistical difference in the overall speed
of migration between the populations studied. Com-
pared to the closely related Lesser Black-backed Gull,
the overall autumn migration speed of Herring Gulls in
eastern North America (152—189 km/day) appears to fall
between that of short distance migrants (44 km/day [28];
) and long distance migrants (371km/day [66];). We
observed substantial individual variation in overall mi-
gration speed within each population, consistent with
the behavioural flexibility of Herring Gulls as general-
ists. Species with more specialized diets may have less
individual variation in their migration strategies,
which may be attributed to constraints on their for-
aging and stopover locations [69-71].

Given that overall migration speed was comparable be-
tween short and long distance migrants, it is not surpris-
ing that there was also not a clear relationship between
our stopover metrics and migration distance. A number
of recent studies have found that differences in overall
migration speed within a population are mostly driven
by differences in the extent to which birds use stopovers
during migration, while travel behaviour tends to be
more consistent [14, 28, 30, 72]. Although Herring Gulls
made extensive use of stopovers, individuals mostly did
not congregate in population-specific staging areas, but
rather individuals stopped throughout their migratory
routes. As foraging generalists, large gulls can find food
in a diversity of habitats, and are therefore much less re-
stricted in their selection of stopover sites than species
with specialized foraging habits such as shorebirds [73].

One case where long distance migrants did appear to
have notably different behaviour from short distance mi-
grants was during travel days. Herring Gulls from the east-
ern Arctic covered greater distances on travel days than
gulls from Newfoundland, Sable Island, and the Bay of
Fundy (Fig. 2g). However, we note that our measure of
travel speed was an estimate of net displacement distance
during a day of travel rather than an accurate estimate of
their instantaneous speed [46]. It is possible Herring Gulls
from the eastern Arctic were truly flying at faster speeds
to cover greater distances, but they may also simply be
travelling more direct routes to cover the distance more
efficiently or travelling more hours per day. These results
indicate that there is some differences in migration strat-
egy between long and short distance migrants, suggesting
that more information might help clarify what factors are
driving their behaviour.

It seems plausible that there may be other more subtle
differences in migration strategy between short and long
distance migrants that we would have been unable to de-
tect due to our relatively low sample sizes. For instance,
there may be a confounding influence of sex [74] or
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carry-over effects [75]. It is also interesting to note the
high amount of explanatory power of individual ID, indi-
cated by the high conditional R* values for our models.
This pattern suggests that despite flexibility within the
population, individual gulls appeared to be consistent in
their migratory strategies between years.

Conclusions

As generalists, Herring Gulls had flexible migration
strategies. Herring Gulls use indirect routes, regardless
of whether they are short or long distance migrants.
They tend to migrate at a moderate overall migration
speed with regular stopovers. This impression of their
migratory strategy suggests Herring Gulls are not min-
imizing the duration of their migration. By comparing
diverse populations within the same species, our findings
add to the list of exceptions to the idea that long dis-
tance migrants are necessarily time-limited. We
hypothesize that highly flexible generalist species such as
Herring Gulls are less likely to be constrained by time
when optimizing their migration strategies.
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