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ABSTRACT: B-cell lymphoma 6 (BCL6) is a transcriptional repressor frequently deregulated in lymphoid malignancies. BCL6
engages with number of corepressors, and these protein−protein interactions are being explored as a strategy for drug development.
Here, we report the development of an irreversible BCL6 inhibitor TMX-2164 that uses a sulfonyl fluoride to covalently react with
the hydroxyl group of Tyrosine 58 located in the lateral groove. TMX-2164 exhibits significantly improved inhibitory activity
compared to that of its reversible parental compound and displays sustained target engagement and antiproliferative activity in cells.
TMX-2164 therefore represents an example of a tyrosine-directed covalent inhibitor of BCL6 which demonstrates advantages
relative to reversible targeting.
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B-cell lymphoma 6 (BCL6) is an essential protein for the
formation and maintenance of the germinal center (GC)

during the humoral immune response1−3 and is therefore
important for B-cell development. GCs are transient and
dynamic substructures of lymph nodes that are dedicated to
the selection of B-cells expressing high-affinity antibodies in
response to T-cell-dependent antigen stimulation.4,5 Within
GCs, BCL6 represses the expression of genes that are required
to sustain mutagenic activity without activating the DNA
damage response or apoptosis,6−8 ensuring that GC B-cells
undergo immunoglobulin affinity maturation.6,9 BCL6 also
represses genes required for exit from the GC cycle, ensuring
that GC B-cells have sufficient time to acquire somatic
hypermutation of their immunoglobulin genes.6 The activity of
BCL6 must be switched off once GC B-cells acquire
appropriate affinity for the inciting antigen, which allows
their differentiation into memory B-cells and plasma cells.10

However, deregulation of BCL6 results in a highly proliferative
GC phenotype with accumulating DNA damage, eventually
leading to malignant transformation of B-cells.11,12 Over-
expression of BCL6 has been found in diffuse large B-cell
lymphoma (DLBCL), nodular lymphocyte predominant

Hodgkin lymphomas (NLPHL), and follicular lymphoma
(FL). Transgenic IμHA-BCL6 mice developed DLBCL-like
tumors,11 and genetic knockdown of BCL6 with shRNA
induced lethality in DLBCL cell lines,13 suggesting that BCL6
represents a therapeutic target for cancer treatment.
Mechanistically, BCL6 regulates gene transcription through

recruiting corepressor proteins such as BCL6 corepressor
(BCOR). BCL6 functions as an obligatory dimer, and this
dimerization, which is mediated by the BTB domain, creates
two identical lateral grooves that engage binding partners.14,15

The lateral groove also is a hotspot for small molecule inhibitor
binding, such as compound 79-6 which was the first reported
small molecule inhibitor of BCL6.16 Further optimization
efforts resulted in inhibitors with improved activity, including
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compound 1,17 BI-3812,18 and macrocyclic compound 2.19 All
of these compounds employ a reversible mode of binding.
Recently, Sameshima et al. reported an irreversible BCL6
inhibitor BCL-i that targets cysteine 53 (Cys53) located within
a cavity found in the BTB domain.20 In addition to these
compounds that bind BCL6 and inhibit protein−protein
interactions, more recently, several compounds that induce
BCL6 degradation have also been reported. For example, BI-
3802 was serendipitously identified as a BCL6 degrader,18

whereas heterobifunctional molecule 3 that hijacks E3 ligase
cereblon (CRBN) to induce proteasome-mediated degradation
of BCL6 was rationally designed21 (Figure 1). Here, we report

the rational design of TMX-2164, a covalent inhibitor that
targets tyrosine 58 (Tyr58) located in the lateral groove of
BCL6. We validate that TMX-2164 covalently binds Tyr58
using a range of in vitro assays and confirm that it engages
BCL6 in cells. TMX-2164 exhibits single digit micromolar
antiproliferative activity in DLBCL cells and outperforms the
reversible parental compound.
The cocrystal structure of compound 1 with BCL6 (PDB:

5X4Q) (Figure 2) provided the basis for the design of a
covalent inhibitor. Tyr58 of BCL6 is favorably located within
4.2 Å as measured by the distance between Tyr58 −OH group

and meta-carbon of pyridine ring. We also noted that the
guanidinium group of Arg28 is within 2.4 Å of the Tyr58 −OH
and likely to facilitate deprotonation of the Tyr58 −OH, as was
previously observed in reports that describe covalent targeting
of tyrosines.22−24 Additionally, we observed that the pyridine
moiety was solvent-exposed and disordered, suggesting that
there should be no steric hindrance to reach the phenol group.
Taken together, we reasoned that introducing sulfonyl fluoride,
a previously used electrophilic warhead for targeting
tyrosines22,25−27 to compound 1, would potentially yield a
covalent inhibitor for BCL6. Thus, compound TMX-1120
(Figure 3) was designed and docked into the BCL6 crystal

structure. As shown in Figure 2, TMX-1120 is predicted to
bind to BCL6BTB in a binding mode similar to that of
compound 1. The carbonyl oxygen of the cyclic amide moiety
was observed to interact with Glu115; the linker nitrogen
formed a hydrogen bond with the main-chain oxygen of
Met51, and one of the pyrimidine nitrogen atoms interacted
with Arg28. Importantly, the original interaction of Tyr58
−OH with Arg28 was replaced by the oxygen of the sulfonyl
moiety, strongly suggesting the potential for covalent bond
formation.
To validate that TMX-1120 binds and inhibits BCL6, we

performed a series of in vitro experiments. To assess the
binding, we used a TR-FRET-based biochemical assay where a
BodipyFL-labeled BCOR peptide was displaced from BCL6
upon titration with increasing concentrations of TMX-1120.
At a fixed time point of 30 min, TMX-1120 exhibited an IC50
of 251 nM and, in contrast, the reversible compound 1
demonstrated an IC50 of only 2699 nM (Figure 4). To examine

whether the improved activity was due to the covalent bond
formation with Tyr58, we analyzed recombinant expressed
BCL6 protein by LC-MS after incubation with a 10-fold molar
excess of TMX-1120 for 2 h at room temperature. We
observed a mass shift consistent with the stoichiometric
modification of the protein by TMX-1120 (accompanied by
the loss of HF as expected for the reaction between Tyr −OH
with the sulfonyl fluoride warhead, Figure 5A). To determine
the site of modification, the labeled protein was digested with
trypsin, and peptides were analyzed by capillary electro-

Figure 1. Chemical structures of published BCL6 inhibitors and
BCL6 degraders.

Figure 2. (Left) Co-crystal structure of compound 1 in complex with
BCL6BTB (PDB code: 5X4Q). The side chain of Tyr58 (colored
pink) is located near the 5-position of the pyridine ring (4.2 Å).
(Right) Docking-based structure of TMX-1120 bound to BCL6BTB.

Figure 3. Chemical structures of covalent BCL6 inhibitors and
nonreactive methylsulfonyl-bearing control compound used in this
study.

Figure 4. BCL-6 corepressor peptide displacement assay.
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phoresis-mass spectrometry (CE-MS). Database search
revealed exclusive modification of BCL6 Tyr58 (Figure 5B).
Taken together, our mass spectrometry-based analysis
confirmed that TMX-1120 forms a covalent adduct with
BCL6 by reacting with Tyr58. Next, we took advantage of the
well-established structure−activity relationship (SAR) for this
scaffold to hybridize the sulfonyl fluoride warhead with BI-
3812, which is a more potent reversible BCL6 inhibitor
compared to compound 1. This resulted in the design of
compound TMX-2164 and its reversible counterpart com-
pound TMX-2177 (Figure 3). After confirming the covalent
binding of TMX-2164 with BCL6 by mass spectrometry
(Figure 5C and D), we measured the affinity of TMX-2164
using the TR-FRET-based displacement assay described above.
As shown in Figure 4, TMX-2164 displayed an IC50 of 152
nM. The reversible counterpart, TMX-2177, showed a
comparable activity, in agreement with a stronger reversible
binding with BCL6 compared to compound 1.
To determine whether our compounds indeed function as

covalent inhibitors in cells, we developed a fluorescence-
activated cell sorting (FACS)-based reporter assay in
HEK293T-cells, which allows quantification of BCL6 levels
by monitoring the eGFP to mCherry ratio (Figure 6A).28 Cells
were treated with either covalent inhibitors TMX-1120 and
TMX-2164 or reversible compounds 1 and TMX-2177 at a
fixed concentration of 5 μM for 30 h, and excess compound
was then washed away. The cells were then exposed to BCL6
degrader BI-3802 at various concentrations, and BCL6 protein
levels were monitored using the ratio of eGFP over mCherry.
As shown in Figure 6B, while TMX-1120 and TMX-2164
rescued BCL6 from BI-3802-induced degradation, compound
1 and TMX-2177 did not, demonstrating a prolonged
occupancy on BCL6 protein by a covalent inhibitor.
Furthermore, we evaluated the antiproliferative activity of
these covalent inhibitors in SU-DHL-4 cells (Figure S1), a
DLBCL model system. With 5-day treatment, TMX-2164
showed the most effective cell growth inhibition with single
digit micromolar GI50 (Figure 6C). However, all the reversible

compounds, including TMX-2177 that had a biochemical
activity comparable to that of TMX-2164, significantly lost
ability to protect BCL6 from degradation as well as
antiproliferative activity, suggesting that a covalent inhibitor
may be superior to a reversible one under the conditions
tested.

■ EXPERIMENTAL SECTION
Synthetic methods for compounds TMX-1120, TMX-2164, and
TMX-2177 are shown in Scheme 1. 5-((2,5-Dichloropyrimidin-4-

yl)amino)indolin-2-one (4) and 2-[(6-((2,5-dichloropyrimidin-4-yl)-
amino)-8-methoxy-1-methyl-2-oxo-1,2-dihydroquinolin-3-yl)oxy]-N-
methylacetamide (7) were used as staring materials. N-(3-
Bromobenzyl)pyrimidin-2-amines 6 and 9 were then generated
through aromatic nucleophilic substitution of 2-chloropyrimidine 4
or 7, respectively, by using benzylamine as the nucleophile. Next, a
one-pot palladium-catalyzed synthesis of sulfonyl fluoride from aryl

Figure 5. Mass spectrometry analysis reveals that TMX-1120 and
TMX-2164 react with BCL6 protein at Tyr58. (A) Mass spectra (left)
and zero-charge mass spectra (right) of BCL6 protein treated with
DMSO (top) or 10-fold molar excess of TMX-1120 (bottom) for 2 h
at room temperature. The observed mass shift of 429 Da is consistent
with covalent addition of a single molecule of TMX-1120 (with loss
of HF). (B) CE-MS/MS spectrum of tryptic BCL6 peptide (residues
48−66) with Y58 modified by TMX-1120. Ions of type b and y are
indicated with blue and red glyphs, respectively. Y*, TMX-1120-
modified tyrosine. Panels C and D are the same as panels A and B
except with TMX-2164 (mass shift of 572 Da is consistent with
TMX-2164 with loss of HF).

Figure 6. (A) A schematic cartoon describing the washout assay in
BCL6-eGFP reporter cells. (B) The BCL6 target engagement for the
covalent (irreversible) and reversible BCL6 inhibitors in HEK293T-
cells. (C) Antiproliferative effects of the covalent and reversible BCL6
inhibitors after 1-day, 3-day, and 5-day treatment in SU-DHL-4 cells
at a fixed dose of 6.2 μM. See also Figure S1 for additional
information.

Scheme 1. Synthesis of Compounds TMX-1120, TMX-2164,
and TMX-2177a

aReagents and conditions: (a) 5, TEA, DMSO, 95 °C, 67%; (b)
DABSO, PdCl2(AmPhos)2, TEA, i-PrOH, 75 °C; then NFSI, rt, 6%
(for TMX-1120) or 7% (for TMX-2164); (c) 5 or 8, TEA, DMF,
MeOH, 70 °C, 59% (for 9) or 9% (for TMX-2177).
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bromide, an elegant methodology recently developed by the Willis’s
group,29 was applied to successfully generate both TMX-1120 and
TMX-2164, albeit in low yields.
In summary, here we report the development of a covalent BCL6

inhibitor, TMX-1120. We used a structure-guided rational design
strategy that introduced a tyrosine-directed covalent warhead, sulfonyl
fluoride, to a reversible BCL6 inhibitor 1. We validated that TMX-
1120 forms a covalent bond with Tyr58 on BCL6 and sustainably
inhibits BCL6 in cellular context after washout, whereas the reversible
inhibitors required continuous exposure. Further optimization
resulted in the development of TMX-2164, which showed an
improved antiproliferation activity in SU-DHL-4 cells, a DLBCL
model system. Thus, the covalent inhibitor TMX-2164 represents a
new example of tyrosine-directed covalent targeting strategy applied
to BCL6 with advantages over reversible targeting.
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