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ABSTRACT: Novel tricyclic analogues were designed, synthesized, and evaluated as RORγt
inverse agonists. Several of these compounds were potent in an IL-17 human whole blood assay
and exhibited excellent oral bioavailability in mouse pharmacokinetic studies. This led to the
identification of compound 5, which displayed dose-dependent inhibition of IL-17F production in
a mouse IL-2/IL-23 stimulated pharmacodynamic model. In addition, compound 5 was studied in
mouse acanthosis and imiquimod-induced models of skin inflammation, where it demonstrated
robust efficacy comparable to a positive control. As a result of this excellent overall profile,
compound 5 (BMS-986251) was selected as a clinically viable developmental candidate.
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Retinoic acid-related orphan receptor γt (RORγt) is a
nuclear hormone receptor (NHR) and a member of the

RORγ subfamily.1,2 RORγt is expressed in the thymus and is
responsible for the differentiation of CD4+T cells into Th17
cells.3 Hence, RORγt plays a significant role in the production of
the pro-inflammatory cytokine IL-17 as well as other cytokines
(GM-CSF, IL-21, and IL-22).4 Recently, anti-IL-17 biologics
have been shown to be clinically effective against autoimmune
diseases such as psoriasis.5−8 As these clinical agents are
monoclonal antibodies, there is still a need for small molecule
oral therapies modulating IL-17. As a result, there has been
much interest in small molecule inhibitors of RORγt, including
inverse agonists, as a strategy to suppress IL-17.9−18 Herein, we
report our continued optimization of tricyclic19 inverse agonists
of RORγt, which culminated in the identification of a viable
clinical candidate.
As shown in Figure 1, we recently19 reported the synthesis and

evaluation of the potent tricyclic RORγt inverse agonists 1 and 2.
In an effort to optimize the potency and overall profile of these
RORγt inverse agonists, we examined the X-ray crystal structure
of 219 in RORγt and observed that the cyclohexane ring of 2
came in close proximity to helix 5 of the receptor (Figure 2).
This region of helix 5 contains some lipophilic amino acids,
including Ala368. We reasoned that a moiety substituted off the
C2 or C3 position of the cyclohexane ring (or cyclic sulfone ring
of 1) might bring about a favorable interaction with residues of

helix 5 and thereby provide an opportunity to improve affinity
for RORγt. From this model, the new C2 or C3 vectors did not
appear to disrupt the key carboxylate (or sulfone of compound
1) interactions with Arg367 and Arg364. Likewise, the amide
carbonyl of 1 or 2 was still able to engage the backbone NH of
Phe377.
Based on this rationale, we synthesized and evaluated

analogues of compound 1 and 2 as outlined in Table 1. These
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Figure 1. Our previously reported RORγt inverse agonists.
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compounds were assessed in our RORγt inverse agonist assay
(RORγt GAL4 EC50, GAL-4 reporter assay in Jurkat cell line),

19

in an IL-17 human whole blood assay (IL-17 hWB EC50),
19 and

in liver microsomes (LM t1/2) to assess stability. As shown
previously,19 compound 1 was active in both the GAL-4 assay
and the whole blood assay with excellent liver microsome
stability. Starting with compounds substituted at the C2 of the
cyclic sulfone, the first diastereomer 3 was almost 3-fold more

active in the GAL-4 assay than compound 1, indicating that a
new interaction with the receptor was possible. The second
diastereomer 4 also had excellent GAL-4 activity similar to that
of compound 3, but neither compound offered a real advantage
over compound 1 as far as whole blood activity or liver
microsome stability. For this reason, we shifted focus to our

Figure 2. Crystal structure of compound 2 in RORγt (pdb id: 6U25).

Table 1. Evaluation of Methyl Substituted Analoguesa

# R RORγt GAL4 EC50 (nM) IL-17 hWBb EC50 (nM) LM t1/2: h, m, rc (min)

1 Figure 1 24 ± 12 43 ± 17 >120, >120, >120
2 Figure 1 7 ± 6 19 ± 8 >120, >120, >120
3 4-F-Ph 9 ± 6 (2) 37 ± 19 (6) >120, >120, >120
4 4-F-Ph 9 ± 3 (2) 44 ± 17 (4) >120, 98, 33
5 4-F-Ph 12 ± 6 (3) 24 ± 6 (8) >120, >120, >120
6 3-F-Ph 11 ± 3 (2) 38 ± 9 (6) >120, >120, 107
7 4-F-Ph 39 (1) 44 ± 25 (2) >120, >120, >120
8 3-F-Ph 7 (1) 27 ± 9 (4) >120, >120, >120
9 3-F-Ph 85 (1) NDd ND
10 4-F-Ph 7 ± 1 (2) 40 ± 15 (3) >120, >120, 73
11 4-F-Ph 106 (1) ND ND

aEC50 values (n) are displayed as ± standard deviation. bHuman whole blood assay (hWB). cLiver microsomes (LM) incubation: human (h),
mouse (m), and rat (r). dND = not determined.

Table 2. Mouse PK Data for Select Compoundsa

# Cmax (μM) AUC24h (μM*h) C24h (μM)

5 11 ± 8 68 ± 5 0.52 ± 0.13
8 12 ± 2 72 ± 18 0.78 ± 0.65
10 9 ± 1 134 ± 10 2.2 ± 0.47

aBalb/c mice dosed at 10 mg/kg PO. Values are means from three
mice. Vehicle: 5% NMP; 76% PEG 400; 19% TPGS.

Table 3. Compound 5 Profilea

Assay Result

RORγt GAL4 EC50 12 ± 6 nM
RORα GAL4 EC50 >10000 nM
RORβ GAL4 EC50 >10000 nM
IL-17 hWB EC50 24 ± 6 nM
mouse Th17 EC50 11 ± 2 nM
PXR/LXRα/LXRβ EC50

b >5000/>7500/>7500 nM
rCYP 1A2/2C8/2C9/2C19 IC50

c >20/16/>20/>20 μM
rCYP 2D6/3A4 BFC IC50 >20/>20 μM
Caco-2 A-B (nm/s) 240 nm/s
Caco-2 efflux ratio 0.5
Protein binding % free h/m/r 1.2/1.6/2.1

aProtein binding: human (h), mouse (m), rat (r). bPXR, pregnane X
receptor; LXR, liver X receptor. crCyP, recombinant cytochrome
P450.
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previously described carboxylate-based inverse agonists. Car-
boxylate 5 was 2-fold more active in both the GAL-4 assay and
the whole blood assay than compound 1 and equipotent with
compound 2. In addition, carboxylate 5 showed excellent
microsomal stability. Switching to the 3-fluoro-phenylsulfone of
compound 6 did not provide any additional advantage over
compound 5. The methyl diastereomer 7 was at least 2-fold less
potent in the GAL4/hWB assays as compared to compound 5.
Moving the methyl to the C2 position was advantageous, as
compound 8 retained the same excellent GAL-4 and whole
blood activity as compound 5. As anticipated, based on previous
structure−activity relationships (SAR),19 the 1,4-cis-cyclo-
hexane analogues 9 and 11 were less active. Diastereomer 10

was one of the more active GAL-4 compounds with reasonable
human whole blood activity.
With this activity information in hand, we selected three

compounds for oral pharmacokinetic (PK) studies in mice. As
shown in Table 2, all three compounds showed good oral
exposure. Compound 10 had the best 24-h AUC, whereas
compounds 5 and 8 were very similar and still promising. Even
though compound 10 displayed the best mouse PK of the three
compounds tested, it was about 2-fold less active in our human
whole blood assay as compared to compound 5. Therefore,
based on its overall profile, compound 5 was selected for further
evaluation.
Table 3 outlines the full in vitro profile of compound 5.

Compound 5 was selective not only against ROR family
members (RORα and RORβ) but also against other nuclear
receptors (PXR, LXRα, and LXRβ). Compound 5 was tested in
a mouse reporter assay, and this correlated very well with the
human values. The Caco-2 data confirms that compound 5 has
good permeability with a low efflux ratio, which is consistent
with the mouse PK study shown above. Compound 5 did not
inhibit any of the CYP’s tested. With this promising profile in
hand, compound 5 was selected for additional PK studies in
other species (Table 4).
As shown in Table 4, compound 5 displayed excellent oral

bioavailability across all the four species in addition to exhibiting
low clearance. The half-life in rodent was excellent (7.7 h to 11
h); however, the half-life in dog and cyno did trend high (33 h to
36 h). Given these favorable PK results, compound 5 was
selected for mouse in vivo efficacy studies.
Compound 5 was first assessed in an IL-2/IL-23 stimulated

mouse pharmacodynamic (PD) model.19 In this model, naiv̈e
C57BL/6 female mice (7−9 weeks of age from Charles River)
were injected intraperitoneally with 5 μg/ms of IL-2 at −24, 0,
and 23 h and 10 μg/ms at 7 h. In addition, IL-23 (dose of 1 μg/
ms) was injected intraperitoneally at 0, 7, and 23 h. Compound 5

Table 4. Pharmacokinetic Data for Compound 5 in Preclinical Speciesa

iv po

species dose (mg/kg) iv/po CL (mL min−1 kg−1) Vss (L/kg) t1/2 (h) Cmax (μM) AUC24h (μM h) F (%)

mouse 2/4 2.7 1.9 7.7 4.8 ± 0.3 37 ∼100
rat 2/4 1.3 ± 0.3 1.2 ± 0.3 11 ± 0.8 4.7 ± 0.5 64 ± 3.4 94
dog 1/1 0.18 ± 0.04 0.5 ± 0.1 36 ± 3 6.4 ± 1.0 120 ± 21 ∼100
cyno 1/1 1.1 ± 0.2 2.0 ± 0.4 33 ± 4 3.1 ± 0.3 35 ± 3.1 ∼100

aValues are means obtained from three or more animals.

Figure 3. Oral dosing of compound 5 inhibits IL-17F production in a
mouse PDmodel. *: P < 0.05 (one-way ANOVA) versus vehicle group.

Figure 4. Oral efficacy of compound 5 in mouse acanthosis model.

Figure 5. Efficacy of compound 5 dosed orally in IMQ mouse model.
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was dosed once a day orally at 0.13, 0.79, and 4.76 mg/kg
(vehicle: 1-methyl-2-pyrrolidinone (NMP):PEG300:TPGS,
5:76:19 v/v) 30 min prior to the 0 h time point. Blood was
collected for exposure and serum was collected for IL-17F
luminex analysis at the 30 h time point. As shown in Figure 3,
compound 5 displayed a dose-dependent reduction of the IL-
17F produced. Compound 5 also performed better than
compound 2 in this PD model (data not shown). These
promising PD results prompted us to take compound 5 into the
mouse acanthosis model (a preclinical model of psoriasis).

As shown in Figure 4, acanthosis20,21 was induced with
recombinant humanized IL-23 injected every other day into the
right ear of C57BL/6 female mice until the last injection on day
9. A starting “baseline” measurement of the ear (before first
injection) was made on day 0, and thereafter, ear thickness was
measured every other day prior to the next ear injection.
Compound 5 was dosed orally approximately 2 h before the first
IL-23 injection and continued twice daily until day 9 (study
ended on day 10). The placebo/control group was dosed with
blank vehicle, and a human anti-IL-23 was administered SC as a

Scheme 1. Synthesis of Compound 5a

aReagents and conditions: (a) (1R,2S)-2-methyl-4-oxocyclohexane-1-carboxylic acid, HATU, NMM, DMF, 78%; (b) KN(TMS)2, N-phenyl-
bis(trifluoromethanesulfonimide), THF, −78 °C; (c) Pd(PPh3)2Cl2, CO (1 atm), MeOH, DMF, 75%; (d) Crabtree’s catalyst, H2 (1 atm), DCM,
89%; (e) LiOH, MeOH, H2O, THF, 65%.

Figure 6. (A) Overlay of two crystal structures in RORγt: compound 5 (green; pdb id: 6VQF) and compound 2 (compound in purple and protein
excluded). (B) Overlay of the crystal structure ligands of compounds 5 and 2.
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positive control at doses of 3 mg/kg on days 0, 3, and 7 (human
anti-IL-23 dosed at maximal efficacy). As shown in Figure 4, all
doses of compound 5 resulted in reduced ear thickness, and the
15 mg/kg dose of 5 was comparable to the human anti-IL-23.
Compound 5 was also tested in the well-known imiquimod

(IMQ)-inducedmodel22−24 of skin inflammation. In this model,
IMQ cream was applied to the backs of C57BL/6 mice from day
0 to day 7. The percent change from baseline for skin thickness
was measured daily (except for day 5) over 8 days. Compound 5
was dosed orally at 2, 7, and 20 mg/kg BID each day from day 0
to day 7 (Figure 5). Compound 5 significantly reduced IMQ-
induced skin thickening at all dose levels compared to the
placebo/control group, which was dosed with blank vehicle. An
anti-mouse IL-23 antibody was dosed as a positive control at 10
mg/kg on day−1 and day 3. As shown in Figure 5, compound 5
dosed at 20 mg/kg BID was comparable in efficacy to the anti-
mouse IL-23 antibody.
The synthesis of compound 5 is illustrated in Scheme 1,

starting from the previously described tricyclic intermediate
12.19 Compound 12 was coupled to (1R,2S)-2-methyl-4-
oxocyclohexane-1-carboxylic acid,25 which was generated via a
pig liver esterase (PLE)26 cleavage of the corresponding ester.
The resulting ketone 13 was converted to a mixture of
regioisomeric enol triflates 14.27 A palladium-catalyzed carbon-
ylation28 of 14 in the presence of methanol gave a regioisomeric
mixture of methyl esters 15. This ester mixture 15 was
hydrogenated with Crabtree’s catalyst29,30 to give a single
diastereomer 16. As a last step, ester 16 was saponified with
LiOH to give the carboxylate 5.
As shown in Figure 6, we were able to obtain a crystal

structure of compound 5 in RORγt (pdb id: 6VQF), and it
confirmed the normal interactions of the carboxylate to Arg364/
Arg367 and amide carbonyl to Phe377 (Figure 6A). However,
the structure of compound 5was unique, as the cyclohexane of 5
was rotated approximately 75 degrees from that observed for the
cyclohexane in the crystal structure of compound 2 (see Figure
6B). It appears that the C3 methyl of compound 5 forces the
cyclohexane to rotate back away from helix 5 to make an
interaction with Ala368 (distance of C3-methyl of 5 to Ala368
side chain methyl is 3.6 Å). This in turn brings the bottom
portion of the cyclohexane of 5 in close proximity to helix 5 as it
packs up against the helix. As mentioned, this is a unique
orientation of the cyclohexane ring that we have not observed in
other crystal structures.
In summary, we have investigated the optimization of our

tricyclic RORγt inverse agonists via a potential interaction with
the receptor’s helix 5. Evaluation of these new analogues led to
the identification of compound 5 as a potent and selective
RORγt inverse agonist. Compound 5 demonstrated excellent
oral bioavailability and metabolic stability across species. In
addition, compound 5 was taken into a mouse PD model where
it showed a dose-dependent reduction of the pro-inflammatory
cytokine IL-17F. Compound 5 was also studied in mouse
acanthosis and imiquimod-induced models (preclinical models
of psoriasis), where it demonstrated robust efficacy comparable
to that of a positive control. As a result of the above profile,
compound 5 (BMS-986251) was selected as a viable clinical
candidate (clinical trial ID: NCT03329885).
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■ ABBREVIATIONS
Ala, alanine; Arg, arginine; AUC, area under the curve; bid, twice
a day; BMS, Bristol-Myers Squibb; Boc, butyloxycarbonyl; C,
concentration; CL, clearance; DCM, dichloromethane; DMF,
dimethylformamide; EC, efficacious concentration; F, bioavail-

ability; Glu, glutamic acid; GM-CSF, granulocyte-macrophage
colony-stimulating factor; HATU, hexafluorophosphate azabe-
notriazole tetramethyl uronium; hWB, human whole blood; IL,
interleukin; IMQ, imiquimod; iv, intravenous; Leu, leucine; LM,
liver microsome; LXR, liver X receptor; M, molar; ND, not
determined; NMP, N-methylpyrrolidinone; NR, nuclear
receptor; PD, pharmacodynamics; PEG, polyethylene glycol;
PBS, phosphate-buffered saline; Phe, phenyl alanine; PK,
pharmacokinetic; po, per os, oral dose; PXR, pregnane X
receptor; qd, once a day; rCyP, recombinant cytochrome P450;
ROR, receptor-related orphan receptor; SAR, structure activity
relationship; SC, subcutaneous; SFC, supercritical fluid
chromatography; Th17, T helper 17 cells; THF, tetrahydrofur-
an; TPGS, tocopheryl polyethylene glycol succinate; Vss,
volume of distribution.
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