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ABSTRACT: Multitarget ligands are interesting candidates for
drug discovery and development due to improved safety and
efficacy. However, rational design and optimization of multitarget
ligands is tedious because affinity optimization for two or more
targets has to be performed simultaneously. In this study, we
demonstrate that, given a molecular fragment, which binds to two
targets of interest, computer-aided fragment growing can be
applied to optimize compound potency, relying on either ligand- or
structure-derived information. This methodology is applied to the
design of dual inhibitors of soluble epoxide hydrolase and
leukotriene A4 hydrolase.
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Designed multitarget ligands (DMLs) are the focus of
modern drug discovery and offer the advantage of higher

efficacy compared to selective ligands.1,2 Diverse strategies exist
to generate a lead structure which affects two (or even more)
targets of interest.3,4 However, classical approaches such as
pharmacophore linking often yield DMLs with unfavorable
pharmacokinetic properties due to high molecular weight.5

Fragment-based approaches are very successful to generate high-
quality leads with acceptable ligand efficiency, and several
studies demonstrated the feasibility of fragment-based discovery
of DMLs.6,7 The initial step of fragment identification is often
successful and delivers a starting point for further optimization.8

However, established strategies such as fragment growing or
merging are much more demanding for two or even more
targets. The study on the discovery of indeglitazar, a pan-
peroxisome proliferator-activated receptor agonist,9 as well as
the study on PLX647, a dual FMS and KIT kinase inhibitor,10

demonstrated fragment growing for simultaneous optimization
of potency. The aforementioned studies were performed on
related targets in the presence of experimental structural
information. However, in many cases, the binding modes of a
fragment in complex with all targets of interest are not available.
In this case, screening of available derivatives can lead to
success,8 while computational approaches offer a rational
method for fragment growing.11 Shang et al. implemented an
iterative fragment growing strategy, which led to the design of
moderately potent dual cyclooxygenase-2 (COX-2)/leukotriene
A4 hydrolase (LTA4H) inhibitors.12

In this study we present that fragment growing for DMLs is
possible by using ligand-based or structure-based information.
We developed two different in silico strategies to identify a DML
affecting soluble epoxide hydrolase (sEH) and LTA4H. Both

enzymes hydrolyze epoxides of the arachidonic acid. sEH
converts the epoxyeicosatrienoic acids toward their correspond-
ing vicinal diol,13 while LTA4H hydrolyzes the instable
leukotriene A4 toward the 5,12-dihydroxy derivative leukotriene
B4.14 The simultaneous inhibition of both enzymes might lead
to synergistic anti-inflammatory effects, which have already been
demonstrated for simultaneous inhibition of sEH and 5-
lipoxygenase activating protein (FLAP).15 Recently, we
demonstrated the feasibility of dual sEH/LTA4H inhibitors
which bear the potential as novel anti-inflammatory agents.16

As a first step, a fragment, which can act as a starting point for
optimization, was identified. In a previous study by Achenbach
et al.8 we demonstrated that self-organizing maps17 (SOMs)
offer an opportunity to identify fragments binding to both
targets. Therefore, we extracted reported sEH and LTA4H
inhibitors from ChEMBL DB18 v24 and trained a SOM using
OSIRIS DataWarrior (Idorsia Pharmaceuticals). The analysis of
the SOM revealed that LTA4H (blue circles) and sEH (red
circles) ligands build distinct clusters (Figure 1). The few
compounds which were assigned to the opposite cluster were
manually examined. One of these compounds was fragment 1,
which was initially identified by Amano et al. as a fragment that
binds to sEH and exhibits moderate potency and ligand
efficacy.19 The published cocrystal structure of 1 in complex
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with sEH shows that the highly lipophilic benzyloxy phenyl
moiety occupies a lipophilic tunnel in the active site (PDB code
4Y2T; Figure 2A). The hydroxyl group exhibits directed
hydrogen bonds toward Asp335, Tyr383, and Tyr466, three
residues important for the catalytic activity of sEH. The
lipophilic pocket, which is located behind the three afore-
mentioned residues (Figure 2A, gray dashed circle), offers space
for fragment growing.We evaluated the inhibition of sEH by 1 in
a fluorescence-based enzyme activity assay20 and could measure
an IC50 of 79 ± 16 μM. Given the MW = 242 and heavy atom
count (HAC) of 18, the ligand efficiency results in LE =
1.4pIC50/(HAC) = 0.31,21 which qualifies it as an acceptable
starting point for fragment growing.21 However, the ligand-
lipophilicity efficiency LLE = pIC50 − clogP = 0.34 is very low
and needs to be improved during optimization.22

Despite the low LLE, 1 bears a benzyloxy phenyl moiety, a
typical feature of LTA4H inhibitors, described by Kirkland et
al.23 We measured the inhibitory activity of 1 toward LTA4H by
using a fluorescence-based enzyme activity assay24 yielding an
IC50 of 5 ± 1 μM (LE = 0.40; LLE = 1.54). We used the
published X-ray structure of an inhibitor bearing the benzyloxy
phenyl moiety (PDB code 3CHP) to predict the binding mode
of 1 in complex with LTA4H (Figure 2B).23 The lipophilic
tunnel in the binding site of LTA4H, which is important for
potent and thermodynamically favorable binding,25 is fully
occupied by the lipophilic benzyloxy phenyl residue. The
hydroxyl moiety exhibits an H-bond toward the backbone
carbonyl of Gly269, which is located near the catalytically
important zinc ion. The adjacent pocket is not occupied and can
be potentially used for fragment growing (Figure 2B, gray
dashed circle).
Given the bindingmodes of 1 to both enzymes, we decided on

bioisosteric replacement of the hydroxyl group by a secondary
amide (Figure 2C). This amide exhibits similar H-bond donor

and acceptor features and allows the extension of the fragment 1
by coupling of amine building blocks to 3-(4-benzyloxy) phenyl
propionic acid 5 (Figure 3C). Therefore, we prepared a virtual
combinatorial library of secondary amides extending 5.
Commercially available amine building blocks, from six vendors
most frequently used in our lab (Acros, Alfa-Aesar, Apollo
Scientific, Fluorochem, Sigma-Aldrich, TCI), were extracted
from ZINC database26 and duplicates were removed. Filtering
for amides and sulfonamides has been performed, in order to
remove these epoxide mimetics, which would bias the virtual
library toward sEH. The combinatorial library was generated
using the Combinatorial Library application in the MOE GUI.
The two fragments were combined using a virtual amide
condensation reaction. After applying a molecular weight filter
(MW ≤ 500 Da) and removing tertiary amides resulting from
the condensation procedure, the final combinatorial library
contained 20,630 compounds for subsequent computer-aided
prioritization (Figure 3A).
In order to demonstrate the applicability of computer-aided

design to fragment growing of multitarget ligands, we chose two
complementary strategies. The ligand-based strategy relies
solely on the information on previously published active ligands.

Figure 1. Identification of dual fragments using a self-organizing map.
Training a SOM (50 × 50 neurons) with known active sEH (red
circles) and LTA4H (blue circles) ligands led to identification of 1, a
previously reported sEH inhibitor, which is located within the LTA4H
cluster. The reference sEH inhibitor 2 (TPPU) and the LTA4H
inhibitor 3 (bestatin) were located within the respective cluster.

Figure 2. Starting point for fragment growing. (A) Cocrystal structure
of 1 with sEH hydrolase domain (PDB code: 4Y2T). (B) Proposed
binding mode of 1 in complex with LTA4H, based on cocrystal
structure of a similar fragment (PDB code: 3CHO). 1 is shown as
orange sticks, the molecular surface of the binding site is colored by
lipophilicity (green: lipophilic; magenta: hydrophilic), and a gray
dashed circle indicates an unoccupied space in the binding site. (C)
Fragment growing strategy toward amides 4a−k. Red arrows indicate
H-bond acceptor, and blue arrows indicate H-bond donor capabilities
of the hydroxyl moiety, which is bioisosterically replaced by the
secondary amide.
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The structure-based design strategy relies on the information
contained in the X-ray structures of both enzymes in complex
with various inhibitors. Therefore, we compiled data sets
(Figure 3A) to train machine learning algorithms to predict the
activity toward sEH and LTA4H. First, all cocrystallized ligands
for LTA4H and sEH were retrieved from the Protein Data
Bank.27 This resulted in 43 unique cocrystallized LTA4H
compounds and 92 cocrystallized sEH compounds in complex
with the respective targets. Furthermore, active compounds
from the ChEMBL database were retrieved. The 1,022 active
LTA4H compounds (Target ChEMBL ID: CHEMBL4618)
and 2,453 active sEH compounds (Target ChEMBL ID:
CHEMBL2409) were further processed. Duplicates and
compounds with a binding affinity larger than 1 μM were
removed. This results in 382 unique active LTA4H compounds
and 1,384 unique active sEH compounds. A data set of random
compounds, which were considered to be inactive, was retrieved
from ChEMBL. On the 1,727,112 compounds, a molecular
weight filter was applied (200−500 Da). A sample of 1,000
randomly selected compounds served as the inactive data set.
For both strategies, ligand-based and structure-based design,

we used the active ligands, the random data set of inactive
compounds from ChemblDB, and the cocrystallized com-
pounds as active ligands to train four different widely used
classifiers (XGBoost,28 Random Forest,29 AdaBoost,30 and
Support Vector Classification31). For the ligand-based strategy,
the compounds were encoded using four molecular fingerprints:
AtomPair,32 FeatMorgan,33 Morgan,34 and MACCS.35 For the
structure-based strategy, Protein Ligand Interaction Finger-
prints (PLIFs)36 were generated. Nine potential contacts are

integrated in the current PLIF version (side chain hydrogen
bonds (donor or acceptor), backbone hydrogen bonds (donor
or acceptor), solvent hydrogen bonds (donor or acceptor), ionic
interactions, metal binding interactions, and π interactions).
Each amino acid residue is classified into these categories
describing the binding of small molecules (ligand) in the binding
site. For each interaction between a ligand and a residue, the
interaction strength is calculated. All models were trained using
scikit-learn37 and evaluated by 10-fold cross validation. Accuracy
was used as the primary measure of model performance. To
calculate the accuracy of the fraction of correct predictions, the
accuracy_score function from scikit-learn was used:

∑̂ = ̂ =
=

−

accuracy y y
n

y y( , )
1

1( )
samples i

n

i i
0

1samples

where ŷi is the predicted value of the i-th sample, yi is the
corresponding true value, and nsamples is the overall sample size
(Figure 3B).37

First, the optimal partitioning scheme for splitting training
and test set was identified. The accuracies of the models were
tested with a partitioning scheme between 75% and 95% training
set size. The results can be found in the Supporting Information
(SI Table S2). Second, for each machine learning algorithm
different parameters were optimized to achieve the most
accurate prediction (SI Table S3). In the ligand-based approach,
the optimized Random Forest model in combination with the
AtomPair fingerprint (SI Table S4) was used to predict
compounds for synthesis. The number of predicted compounds
was reduced by limiting the fingerprint similarity to a minimum

Figure 3. Fragment growing. (A) Compilation of data sets for training various machine learning algorithms. (B) Computational workflow for
structure- and ligand-based fragment growing. (C) Reaction conditions for amide coupling. 4a, 4f, 4g, 4j (i) 1.1 equiv of PyBOP, 0.5−1.1 equiv of
HOBt·H2O, 1.5−3.0 equiv of DIPEA, THF, rt, 16 h; 4b−e, 4h, 4i (ii) 1.2 equiv of EDC·HCl, 4-DMAP, DCM, 60 °C μw irradiation, 1 h; 4k (iii) (a) 1.5
equiv of 3-(4-(benzyloxy)phenyl)propionic acid, 1.5 equiv of fluoro-N,N,N′,N′-bis(tetramethylen)formamidinium hexafluorophosphate, 4.5 equiv of
DIPEA, DCM, 50 °C, 4 h, (b) 1.0 equiv of 4-trifluoromethyl-oxazol-2-ylamine, DCM, 50 °C, 72 h.
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of 0.5 compared to the cocrystallized compounds. This
restriction led to the prediction of 116 compounds, from
which 6 compounds were cherry picked for synthesis. In the
structure-based approach, the optimized Random Forest model
in combination with the PLIF fingerprint (SI Table S5) was used
to predict compounds for synthesis. The fingerprint similarity
was limited to a minimum of 0.5 compared to the cocrystallized
compounds and the prediction confidence of the model to a
minimum of 0.7. These restrictions led to the prediction of 115
compounds from which 5 compounds were cherry picked for
synthesis. Synthetic accessibility, costs of the educts, and
uniqueness of the compounds were used as guidelines for
cherry picking in both strategies. In more detail, we discarded all
compounds bearing a additional primary or a secondary amine
or a carboxylate moiety because the synthesis would require
additional protection and deprotection steps. sEH pharmaco-
phore requires a NH hydrogen bond donor; therefore, we
removed all compounds with a tertiary amide. Furthermore,
sEHdoes not tolerate polar functional groups which are adjacent
to the amide, which were also discarded. Compounds which do
not exhibit polar groups at all were also not considered for
synthesis due to potentially poor solubility. After careful
inspection, very similar compounds which differ e.g. only in
the phenyl substituents were considered only once. Finally, we
removed all compounds for which the building blocks were
unavailable or too expensive.
The synthesis was accomplished by typical amide coupling

systems (Figure 3C). Either EDC·HCl with 4-DMAP or HOBt·
H2O and PyBOP were used. The carbon acid derivative 5 is a
weak electrophile, while most amines of the structure-based
fragment growing series are weak nucleophiles. This combina-
tion is challenging, which is reflected by the moderate yields.
Particularly, the coupling with 4-trifluoromethyl-oxazol-2-yl-
amine needed harsh conditions with fluoro-N,N,N′,N′-bis-
(tetramethylen)formamidinium hexafluorophosphate and a
prolonged reaction time.
Using the ligand-based strategy, the prediction algorithm

prioritized compounds exhibiting anN-substituted piperidine or
pyrrolidine moiety. These saturated heterocycles are common
elements in diverse series of LTA4H38 and sEH39 inhibitors.
The 6 selected compounds were subsequently tested in the
fluorescence-based enzyme activity assays (Table 1). LTA4H
tolerated different variations of the ring, substitution pattern,
and N-coupled lipophilic moiety, as long as it contained an
ionizable tertiary amine. In contrast, sEH was more restrictive;
only compound 4c exhibited submicromolar activity toward
both enzymes.
The compounds suggested to be active using the structure-

based strategy were structurally more heterogeneous than the
compounds proposed by the ligand-based approach and
exhibited diverse substitution patterns (Table 2). However, all
compounds share an aromatic ring directly attached to the
amide, a feature that seems to be recognized as important by
machine learning. Compound 4j containing a phosphonate
ester, which has been described as a tolerated moiety of sEH
inhibitors,40 showed moderate dual target activity. Most
interestingly, the oxazole-based compound 4k was identified
as the most potent compound with unprecedented chemotype
for both sEH and LTA4H. The identification of a novel scaffold
speaks in favor of using structure-based in silico approaches,
which are not biased by previously identified chemotypes.
This study, although successful in yielding dual active

structures, has some limitations, which should be kept in mind

when transferring the strategy to other target combinations.
First, both targets, sEH and LTA4H, convert similar ligands−
arachidonic acid epoxides−that leads to similar binding sites, at
least concerning the hydrophobicity patterns. It is unclear
whether the aforementioned strategy is applicable to completely
dissimilar targets. Furthermore, the machine learning algorithm
profits from the large number of available active ligands for both
targets. Given a novel target without numerous published
actives, machine learning will possibly fail to predict activity.
Finally, the computational approach just delivers ideas for
synthesis which have to be carefully selected by an experienced
medicinal chemist able to assess the synthetic accessibility,
familiar with the structure−activity relationships of the
respective targets, and estimate the potential physicochemical
properties of the suggested ligands. Incorporation of more
advanced in silico filters could simplify the crucial step of cherry
picking.
In this study, we developed a computer-aided fragment-

growing strategy for multitarget ligands. We applied it to the
design of dual inhibitors of LTA4H and sEH, epoxide hydrolase
enzymes located in the arachidonic acid cascade. Starting from
fragment 1, a lipophilic dual inhibitor of both proteins with
acceptable ligand efficacy, a large combinatorial library of
possible expanded ligands was prepared. Machine learning
technique, Random Forest, was applied to classify active and

Table 1. Synthesized Compounds from Ligand-Based
Fragment Growing

aAll values were measured at least thrice as triplicates (n ≥ 3), mean
± SD is displayed.
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inactive compounds based on either structure- or ligand-derived
fingerprints. Both, structure- and ligand-based prediction
models yielded dual-target ligands, which were confirmed by
synthesis in subsequent in vitro evaluation. Thus, this study
demonstrates that computer-aided fragment growing is
applicable to multitarget ligand design in the presence or
absence of structural information.
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