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ABSTRACT: We designed and synthesized a novel 1,2-deoxy-pyranose and terminal
epoxide methyl substituted derivatives of spliceostatin A using Julia−Kocienski
olefination as a key step. With respect to the biological activity, the 1,2-deoxy-pyranose
analogue of spliceostatin A suppressed AR-V7 expression at the nano level (IC50 = 3.3
nM). In addition, the in vivo toxicity test showed that the 1,2-deoxy-pyranose analogue
was able to avoid severe toxicity compared to spliceostatin A.
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In men, one of most common cancers is prostate cancer,
which is treated with androgen deprivation therapy (ADT).

However, after ADT, most of them develop castration-resistant
prostate cancer (CRPC). These CRPC patients are then
treated with hormonal therapies using androgen receptor (AR)
signaling pathway inhibitors such as enzalutamide or
abiraterone, but many CRPC patients become resistant to
these medicines after a few years.1−3 One of the reasons for the
resistance is the expression of the splicing variant of AR,
specifically AR-V7, which gets activated constitutively without
hormone ligands and promotes prostate cancer growth.4,5

Therefore, the development of inhibitors targeting AR-V7
expression is important for drug resistant CRPC therapy, and,
to this end, some inhibitors have been developed (SF3b
complex inhibitor and ROR-γ antagonist).6−10

Previously, it was discovered that the target protein of the
splicing modulators spliceostatin A (1) (Figure 1), pladieno-
lide B, and GEX1A (herboxidiene) (Scheme S1), which
showed strong antitumor activity toward solid tumors in mice
and several cancer cells, was an SF3b complex in U2SnRNP
(main factor of pre-mRNA splicing).11−19 Until now, several
synthetic studies (including analog synthesis) and mRNA
splicing inhibition activity studies of 1, pladienolide B, and
GEX1A have been conducted by several research groups,20−37

but there are only a few reports of splicing modulators which
can inhibit the expression of AR-V7.
Recently, our group and the Hsieh group discovered that 1

and its relative pladienolide B and thailanstatins (Scheme S1)
can inhibit the expression of AR-V7.6−8 Specifically pladieno-
lide B significantly reduced the tumor volume of CRPC model
mice overexpressing AR-V7.7 However, pladienolide B
analogue E7107 entered phase I clinical trials, and as a result
some patients suffered from vision loss.38,39 Consequently, we

focused our research on 1 and its derivatives.40 Very recently,
we designed and synthesized 2 which was more easily
synthesized and acid stable than 1 but had weak AR-V7
suppression inhibitory activity (IC50 = 132 nM).8 To discover
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Figure 1. Structure of spliceostatin A and its derivatives (1−5).

Letterpubs.acs.org/acsmedchemlett

© 2020 American Chemical Society
1310

https://dx.doi.org/10.1021/acsmedchemlett.0c00153
ACS Med. Chem. Lett. 2020, 11, 1310−1315

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yusuke+Yoshikawa"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Airi+Ishibashi"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Tsunayoshi+Takehara"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Takeyuki+Suzuki"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Kenichi+Murai"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yasufumi+Kaneda"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yasufumi+Kaneda"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Keisuke+Nimura"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Mitsuhiro+Arisawa"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acsmedchemlett.0c00153&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmedchemlett.0c00153?ref=pdf
https://pubs.acs.org/doi/10.1021/acsmedchemlett.0c00153?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmedchemlett.0c00153?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acsmedchemlett.0c00153?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmedchemlett.0c00153?fig=agr1&ref=pdf
https://pubs.acs.org/toc/amclct/11/6?ref=pdf
https://pubs.acs.org/toc/amclct/11/6?ref=pdf
https://pubs.acs.org/toc/amclct/11/6?ref=pdf
https://pubs.acs.org/toc/amclct/11/6?ref=pdf
https://pubs.acs.org/doi/10.1021/acsmedchemlett.0c00153?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmedchemlett.0c00153?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmedchemlett.0c00153?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmedchemlett.0c00153?fig=fig1&ref=pdf
pubs.acs.org/acsmedchemlett?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://dx.doi.org/10.1021/acsmedchemlett.0c00153?ref=pdf
https://pubs.acs.org/acsmedchemlett?ref=pdf
https://pubs.acs.org/acsmedchemlett?ref=pdf


easily synthesizable derivatives of 1 with potent AR-V7
suppression inhibitory activity, we designed and synthesized
new derivatives 3−5 based on much more detailed theoretical
considerations.41

Our considerations in designing derivatives 3−5 are shown
in Figure 2.

For 3, the AR-V7 expression inhibitory activity of phenyl-C-
glycoside derivative 2 was weaker than that of 1. We
hypothesized that the weaker biological activity could be due
to the presence of the bulky phenyl group, and therefore, we
designed 1,2-deoxy-pyranose derivative 3 which had no
functional group at the anomeric site and could have higher
acid stability than 1. In addition, it was considered that the C1
unsubstituted pyran fragment of 3 could be synthesized more
easily than the C1 methyl ketal pyran fragment of 1. (Figure
1a).
For 4 and 5, we hypothesized that the presence of the

terminal epoxide of 1 and/or 2 was required for biological
activity expression. However, the epoxide is typically associated
with instability or toxicity derived from off-target effects
(forming covalent bonding with amino acid residues of other
proteins).42 Thus, we designed derivatives 4 (3′R) and 5 (3′S)
to a methyl group on the epoxide of derivative 3 (Figure 2b),
which could improve the stability of the epoxide.
Scheme 1 illustrates our retrosynthetic analysis for 3−5. An

internal double bond on C7 and C8, was constructed by Julia−
Kocienski olefination between an appropriate aldehyde 9, 10,
or 128) and a sulfone (1121 or 6−8). The structures 6−10
were prepared from the corresponding olefins 13−15 by
diastereoselective direct epoxidation, and the olefins 13−15
could be prepared by a Wittig reaction of the corresponding
ketone, which was derived from D-glucal.
The synthesis of olefin key intermediates 13−15 is

summarized in Scheme 2.
For 13 in Scheme 2a, the hydroxy group of the protected

1,2-deoxy pyranose 16, which was prepared from commercially
available D-glucal,43 was oxidized to the corresponding ketone
with Dess−Martin periodinane (DMP) and the subsequent
Wittig reaction produced the olefin 17 in 55% yield over two
steps. The p-methoxy benzyl acetal 17 was reduced to the

corresponding primary alcohol by i-Bu2AlH (DIBAL) at −10
°C, and the generated primary alcohol was protected with t-
BuCOCl (PivCl) to generate 13 in 87% yield (two steps).
For 14 and 15 in Scheme 2b, the acetal 16 was reduced by

DIBAL in the same manner as described above, the primary
hydroxyl group was protected with a Si-t-BuMe2 (TBS) group
and the generated secondary alcohol was oxidized with DMP
to produce ketone 18. Subsequent Wittig reaction proceeded
to furnish internal olefins 19 and 20. The reaction proceeded
smoothly (EtPPh3

+Br−, n-BuLi, THF, 0−40 °C) to create the
geometric isomer 19 (Z) and 20 (E) in 47% yield, respectively.
To construct trisubstituted olefins on the C3 position, other
reaction conditions are actually applied (changing reaction
temperature, base, substrate). The details of the reaction
conditions are shown in Scheme S2. Finally, the TBS groups of
19 (Z) and 20 (E) were removed with Bu4NF (TBAF) to
synthesize the corresponding primary alcohol. The alcohol was
further protected with PivCl to produce ester 14 (Z) and 15
(E) in 59% and 74% yield over two steps, respectively.
The synthesis of benzothiazoles 6−8 is summarized in

Scheme 3. The p-methoxy benzyl groups of 13−15 were
removed by 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ)
to produce the corresponding alcohol. Subsequent diaster-
eoselective epoxidation of the double bond with catalytic
vanadyl acetylacetonate (VO(acac)2) (10 mol %) and t-
BuOOH afforded the corresponding epoxide 21−23 as a single
diastereomer in 82%, 95%, and 82% yield over two steps,
respectively. The relative configuration of 22 was determined
by X-ray crystal structure analysis (See SI CIF file). Next, the
secondary hydroxyl groups of 21−23 were protected as TBS-

Figure 2. Design strategy for derivatives 3−5.

Scheme 1. Retrosynthetic Analysis for 3−5
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ether with O-(t-butyldimethylsilyl)benzanilide (TBS-BEZA)
and TfO−PyH+. The pivalic ester was removed by DIBAL in
THF at −30 °C to give the alcohols 24−26 in 59%, 66%, and
64% yield over two steps, respectively. Finally, the alcohols
24−26 were treated with 2-mercaptobenzothiazole (BtSH),
PPh3, and diisopropyl azodicarboxylate (DIAD) to afford the
benzothiazolyl sulfide, which was oxidized with m-chloroper-
oxybenzoic acid (m-CPBA) to generate the sulfones 6−8 in
73%, 78%, and 69% yield over two steps, respectively.
The sulfone 6 and aldehyde 12 were treated with

LiN(SiMe3)2 (LHMDS) at −78 °C in THF (Julia−Kocienski
olefination) to give the diene compound, which was treated
with HCl/MeOH (0.05%) to give alcohol 27 in 63% yield over
two steps (Scheme 4a).44 Next, to synthesize the coupling
compounds 28 and 29, we initially tried the Julia−Kocienski
olefination with sulfones 7, 8 and aldehyde 12, but the reaction
was unsuccessful. The details of the reaction conditions are
shown in Scheme S3. As shown in Scheme 4b, we tried another
coupling combination. The oxidation of the primary alcohols
24 and 25 with DMP afforded the corresponding aldehydes 9
and 10, and treatment of the sulfone 1121 and aldehydes 9 and
10 with LHMDS produced the corresponding coupling
product in acceptable yield, which was treated with HCl/
MeOH (0.05−0.1%) to give alcohols 28 and 29 in 39% and
59% yields over three steps, respectively.45 Acetylation of the
alcohols 27−29 with Ac2O, triethyl amine (TEA), and N,N-
dimethyl-4-amino pyridine (DMAP) gave the corresponding
acetate, and after removal of the TBS group with TBAF it
generated 3−5 in 72%, 82%, and 86% yields over two steps,
respectively (Scheme 4c).
The biological activity study is presented in Table 1.

Derivatives 3−5 suppressed AR-V7 splicing (IC50 = 3.3, 202,
and 187 nM, respectively). The biological activity of 4 and 5
was almost identical to that of 2 (IC50 = 132 nM), but the
activity of 3 was significantly improved over that of 2. The
result of 3 suggested that the phenyl group at the C1 position
could produce a steric hindrance within the SF3b complex and
removing the phenyl group considerably improved the
biological activity. The results of 4 and 5 suggested that the
introduced methyl group on the epoxide might block the
hydrogen bonding network around the epoxide and weaken
the interaction with the SF3b complex. Since there were
various amino acid residues that could interact with the
epoxide of 4 or 5, the difference of stereochemistry (R and S)
of the epoxy methyl did not affect the biological activity. With
respect to the in vivo toxicity test, wild type mice administered
1 (280 nM/body, n = 6) showed severe toxicity (mice died
within 24 h).
However, none of the mice treated with 3 (280 nM/body, n

= 7) died, and they did not show any significant weight loss
compared to mice that were treated with DMSO alone (n = 8)
(Figure 3).46−49

In conclusion, we designed, synthesized, and biologically
evaluated the derivatives of spliceostatin A, 1,2-deoxy-pyranose
derivative 3, and terminal epoxide methyl substituted
derivatives (4, 5). The 1,2-deoxy-pyranose fragment and its
terminal epoxide methyl substituted fragment were synthesized
from commercially available D-glucal, and the synthetic steps
for 24 were rather short.21 We also investigated Julia−
Kocienski olefination for appropriate combinations. Further-
more, the IC50 values on suppression of AR-V7 for compounds
3−5 were weaker than that of 1; however, compound 3
exhibited potency (IC50) in the low nanomolar range. The in

Scheme 2. (a) Synthesis of Intermediate 13 and (b)
Synthesis of Intermediates 14 and 15

Scheme 3. Intermediates 6−8
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vivo toxicity test showed that wild type mice treated with 1
died within 24 h, but those mice treated with 3 did not die for
14 days and did not show weight loss. Therefore, we
successfully created 3 with high AR-V7 expression inhibitory
activity and low in vivo toxicity.
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