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The amygdala plays an important role in many aspects of social cognition and reward learning. Here, we aimed to determine
whether human amygdala neurons are involved in the computations necessary to implement learning through observation. We per-
formed single-neuron recordings from the amygdalae of human neurosurgical patients (male and female) while they learned about
the value of stimuli through observing the outcomes experienced by another agent interacting with those stimuli. We used a
detailed computational modeling approach to describe patients’ behavior in the task. We found a significant proportion of amyg-
dala neurons whose activity correlated with both expected rewards for oneself and others, and in tracking outcome values received
by oneself or other agents. Additionally, a population decoding analysis suggests the presence of information for both observed
and experiential outcomes in the amygdala. Encoding and decoding analyses suggested observational value coding in amygdala
neurons occurred in a different subset of neurons than experiential value coding. Collectively, these findings support a key role for
the human amygdala in the computations underlying the capacity for learning through observation.
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Single-neuron studies of the human brain provide a unique window into the computational mechanisms of cognition. In this
study, epilepsy patients implanted intracranially with hybrid depth electrodes performed an observational learning (OL) task.
We measured single-neuron activity in the amygdala and found a representation for observational rewards as well as observa-
tional expected reward values. Additionally, distinct subsets of amygdala neurons represented self-experienced and observa-
tional values. This study provides a rare glimpse into the role of human amygdala neurons in social cognition. j

Introduction others, in a form of learning known as observational learning
(OL; Cooper et al,, 2012; Van Den Bos et al., 2013; Dunne et al.,
2016; Charpentier and O’Doherty, 2018). The computational
and neural basis of reinforcement-learning through direct expe-
rience has been the focus of intense study, and much is known
about its neural underpinnings (Doya, 1999; Daw et al., 2005;
Lee et al, 2012; O’Doherty et al., 2017). In contrast, the neural
mechanisms of OL have been much less well studied, especially
in humans.
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Acquiring new information about rewards associated with differ-
ent stimuli is at the core of an animal’s ability to adapt behavior
to maximize future rewards (Sutton and Barto, 2018). In many
organisms, reinforcement learning (RL) can take place through
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through observing the actions taken and outcomes obtained by
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future outcomes learned about through experience (Malkovd et
al., 1997; Bechara et al., 1999; Schoenbaum et al., 2003; Hampton
et al,, 2007; De Martino et al., 2010), suggesting that value repre-
sentations in this area are causally relevant for driving value-
related behavior. The amygdala performs these functions in con-
cert with a broader network that regulates reward learning, mem-
ory, and emotion (Murray, 2007). Adaptive responses to reward
cues and devaluation depend on amygdala-orbitofrontal cortex
(OFC) connections in monkeys (Baxter et al, 2000) and mice
(Lichtenberg et al., 2017). The amygdala also receives significant do-
paminergic projections from the ventral tegmental area (VTA) and
the substantia nigra pars compacta (SN¢; Aggleton et al., 1980).

On the role of the amygdala in OL specifically, recent evi-
dence has suggested a role for amygdala neurons in non-human
primates in responding to the rewards obtained by others
(Chang et al., 2015) as well as to others’ choices (Grabenhorst et
al., 2019). However, much less is known about the role of the
amygdala in the human brain in processes related to OL. One
human single-neuron study reported amygdala neurons which
tracked observational outcomes (Hill et al., 2016), although the
most robust signals were found in rostral anterior cingulate cor-
tex (rACC). Building on evidence implicating the human amyg-
dala not only in reward processing but also in social cognition
more broadly (Rutishauser et al., 2015a), we aimed to address
how neurons in the human amygdala are involved in OL. We
asked a group of neurosurgery patients to perform an OL task
while we performed single-neuron recordings from electrodes in
the amygdala. This provided us with a rare opportunity to inves-
tigate the role of amygdala neurons in value prediction coding
and updating during OL. Since observational and experiential
learning differ in that learning by observation is necessarily pas-
sive, to control for equivalence between observational and expe-
riential learning, our task consisted of a passive Pavlovian
paradigm, including instrumental trials exclusively to test contin-
gency learning. We hypothesized we would find evidence for
reinforcement-learning signals in the amygdala during OL, espe-
cially concerning the representation of the value of stimuli
learned through observation. Furthermore, we also contrasted
the contribution of amygdala neurons to OL with that of the role
of these neurons in experiential learning. Of particular interest
was the question of whether an overlapping or distinct popula-
tion of neurons in the amygdala contributes to encoding rein-
forcement-learning variables in observational compared with
experiential learning.

Materials and Methods

Electrophysiology and electrodes

Broadband extracellular recordings were filtered from 0.1 Hz to 9kHz
and sampled at 32kHz (Neuralynx Inc). The data reported here was
recorded bilaterally from the amygdala, with one macroelectrode in each
side. Each of these macroelectrodes contained eight 40-um microelectro-
des. Recordings were performed bipolar, with one microwire in each
area serving as a local reference (Minxha et al., 2018). Electrode locations
were chosen exclusively according to clinical criteria.

Patients

Twelve patients (four females) who were implanted with depth electro-
des before possible surgical treatment of drug resistant localization
related epilepsy volunteered to participate and gave informed consent.
Four of the patients performed two recording sessions, and the others
performed only one. One pilot session was not included in the analysis
and one session was discarded due to technical error. Protocols were
approved by the Institutional Review Boards of the California Institute
of Technology, the Cedars-Sinai Medical Center, and the Huntington
Memorial Hospital. Electrode location was determined based on preop-
erative and postoperative T1 scans obtained for each patient. We
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registered each patients postoperative scan to their preoperative scan,
which we in turn registered to the CIT168 template brain (Tyszka and
Pauli, 2016; which is in MNI152 coordinates) using previously published
methods (Minxha et al., 2017).

Electrode localization, spike detection, and sorting

Spike detection and sorting was performed as previously described using
the semiautomatic template-matching algorithm OSort (Rutishauser et
al., 2006). Channels with interictal epileptic activity were excluded.
Across all valid sessions, we isolated in total 202 putative single units in
amygdala [135 in right amygdala (RA) and 67 in left amygdala (LA)].
We will refer to these putative single units as “neuron” and “cell” inter-
changeably. Units isolated from electrodes localized outside of the amyg-
dala were not included in the analyses. Using the probabilistic CIT168
atlas of amygdala nuclei (Tyszka and Pauli, 2016), we determined the
subnuclei from which the unit was recorded from: deep or basolateral
(BL), with 117 units; superficial or corticomedial (CM), with 39 units;
and remaining nuclei (R), with 46 units, which contained neurons from
either the anterior amygdaloid area or the central nucleus (we were not
able to distinguish between the two). We characterized the quality of the
isolated units using the following metrics: the percentage of interspike
intervals (ISIs) below 3 ms was 0.49 = 0.63%; the mean firing rate was
1.98 * 2.74 Hz; the SNR at the mean waveform peak, across neurons,
was 5.12 + 3.24; the SNR of the mean waveform across neurons was
1.87 + 0.97; the modified coefficient of variation (CV2; Holt et al., 1996)
was 0.95* 0.11; and the isolation distance (Schmitzer-Torbert et al.,
2005) was 1.69 = 0.59 for neurons in which it was defined.

Experimental design

Patients performed a multiarmed bandit task (Dunne et al., 2016) with
288 trials in total, distributed across two experiential and two observatio-
nal blocks. Block order was chosen to always interleave block types, and
the type of the initial block was chosen randomly (Fig. 1A). Each block
had 72 trials, out of which 48 were no-choice trials and 24 were binary
choice trials. Choice and no-choice trials were randomly distributed
across each block. Experiential no-choice trials began with the presenta-
tion of a single bandit, whose lever was pulled automatically 0.5 s after
stimulus onset. Each block consisted of two possible bandits that were
chosen randomly in every trial. Subjects were told that the color of a
bandit allows them to differentiate between the different bandits.
Bandits were repeated across blocks of the same type, with the possibility
of contingency reversal. Reversals could happen only once in the entire
task. For the sessions that did include a reversal (nine out of the 14 ana-
lyzed sessions), it always happened right before the beginning of the
third block of trials, at the halfway point in the session. Patients were not
told in advance about the reversals, but were fully instructed about the
reward structure of the task (as explained below).

Outcome was presented 1 s after the automatic lever press, and sub-
jects received feedback on the amount of points won or lost in the trial,
which was added or subtracted to their personal total. The amount of
points for each trial was selected from a normal distribution, with spe-
cific means and variances for each bandit, truncating at —50 and +50
points. Subjects could not see their added points total during the task,
but were shown their overall points total after the end of the task.

Observational no-choice trials consisted in watching a prerecorded
video of another player experiencing the same trial structure. These vid-
eos contained the back of the head of a person (always the same individ-
ual), as he watched a screen containing a bandit playing out a no-choice
trial, including the outcome in points. The person did not move during
the video, but the bandit on the screen was animated to display the lever
press and outcome display, same as in experiential trials.

Points received by the other player in the prerecorded video were not
added or subtracted to subjects’ personal total, and subjects were
informed of this fact. Choice trials started with the presentation of two
bandits, and subjects had up to 20 s to select one via button press, which
would cause the lever on the corresponding bandit to be pulled. If sub-
jects failed to respond within 20 s, the trial was considered missed, and
subjects received a penalty of 20 points. In choice trials, after a 1-s pe-
riod, subjects observed closed curtains on the screen instead of outcome
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Figure 1. OL task. A, Block structure. The task had 288 trials in total, in four blocks of 72 trials. Each block contained either experiential or OL trials, as well as choice trials. Block order was

interleaved, and bandit values were reversed after the end of block 2. B, Reward structure. Reward was accrued to subjects’ total only in experiential trials, and reward feedback was only pre-
sented in leaming trials, both in experiential and observational blocks. €, Learning trials structure. Top row, Experiential learning trials. After a fixation cross of jittered duration between 1 and
2 s, subjects viewed a one-armed bandit whose tumbler was spun after 0.5 s. After a 1-s spinning animation, subjects received outcome feedback, which lasted for 2 s. Bottom row, OL trials.
Subjects observed a video of another player experiencing learning trials with the same structure. Critically, outcomes received by the other player were not added to the subject’s total. Lower
bar, Timing of trial events in seconds. D, Choice trials structure. Subjects chose between the two bandits shown in the learning trials of the current block. After deciding, the chosen bandit’s

tumbler spun for 1's, and no outcome feedback was presented.

feedback. Subjects were told they should attempt to maximize the amount
of received rewards and that they would still receive or lose the amount of
points displayed behind the curtain, despite the lack of feedback. This was
done to restrict learning to no-choice trials, to further dissociate the deci-
sion-making and reward-learning components of the task. The two ban-
dits that could be chosen in choice trials were always the two possible
bandits from no-choice trials in the current block. Intertrial intervals were
jittered with a uniform distribution between 1 and 3 s regardless of block
and trial type. To further motivate subjects, a leaderboard was shown in
the end of the task, displaying the amount of points won by the subject, in
comparison to amounts won by previous participants.

Statistical analyses

Computational modeling

We focused on the form of OL referred to as vicarious learning, which
takes place when individuals observe others taking actions and experi-
encing outcomes, rather than doing so themselves (Charpentier and
O’Doherty, 2018). At the computational level, we hypothesized that vi-
carious learning involves similar mechanisms to those used for experien-
tial learning. To test this hypothesis, we adapted a simple model-free
learning algorithm from the experiential to the observational domain
(Cooper et al., 2012). For both observational and experiential learning,
this model learns expected values (EVs) for each stimulus via a reward
prediction error (RPE) that quantifies discrepancies between predicted
values and experienced reward outcomes. This prediction error signal is
then used to iteratively update the value predictions.

We used the behavior in the choice trials to fit four different types
of computational models. We used a hierarchical Bayesian inference
(HBI) framework to achieve both hierarchical model fitting and model
comparison (Piray et al., 2019). This framework allowed us to infer a
protected exceedance probability for each model, as well as individual-
ized model parameters for each subject. The model with the largest
protected exceedance probability was chosen for the model-based
encoding and decoding analyses. The exceedance probability value
expresses the probability that each model is the most frequent in the com-
parison set (Rigoux et al., 2014). Protected exceedance probability is a typ-
ically more conservative metric which takes into account the possibility

that none of the compared models is supported by the data (Piray et al.,
2019).

We first provide a brief summary of each of the computational
models before describing each in detail. The first model was a simple
RL model (Sutton and Barto, 2018) with a single learning rate param-
eter for both experiential and observational trials [RL (no split)]; the
second model was the same, except that learning rates were split
between observational and experiential trials [RL (split)]; the third
model was a counterfactual RL model with a single learning rate in
which EVs for played bandits were updated as usual, but EVs for the
bandits that were not seen in a trial were also updated, in the oppo-
site direction of the bandits that were actually played [RL (counterfac-
tual)]. The last model was a hidden Markov model (HMM) with
built-in reversals, with two states. The first state assumed one of the
bandits in the block had a positive mean payout, while the other ban-
dit had a negative mean payout with the same magnitude. The sec-
ond state mirrored the first one, switching which bandits had the
positive and negative payouts. This model allowed us to include
inferred reversals between those two states, and to model the inferred
reversal rate that patients assumed to be true. Expected values in all
models were initialized to zero for all bandits.

The RL (no split) model keeps a cached value V for the EV of each
bandit i, in every trial t, updated according to the following rule:

ViU = Vit as, 1)

6t:Rt_VF~ (2)

In this case, o represents the learning rate for both the experiential
and observational cases, & represents RPE, and R represents reward
feedback value. The RL (split) model is identical, except that a learning
rate .y, is applied in experiential trials and another learning rate ap, is
applied in observational trials.

The RL (counterfactual) model is identical to RL (no split), except
that both bandits are updated on every trial, in opposite directions. For
the chosen and unchosen bandits in every trial, the EV updates are as
follows:
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The HMM has been formalized similarly to previous work (Prévost
et al, 2013). An inferred state variable S, represented the association
between bandits and rewards at trial . Assuming the two bandits in a
block are arbitrarily indexed as A and B, that the magnitude of the
inferred mean payout was a free parameter u fixed throughout the task,
and that mu, and mup denote the mean payouts for bandits A and B,
respectively,

0, if py=+upy=—u
S, = ’ ) A ) ) (5)
' {1, if oy = —p =+

This model allows for inferring reversals between states, which
means the inferred mean payouts of the two bandits are swapped. The
reversal structure is dictated by the following reversal matrix, assuming
reversal rates were a free parameter r fixed throughout the task:

P(S,[S. 1) = (1 PR ) (6)

1—r/

Given this transition structure, the prior Prior(S;) would be updated
in every trial as follows:

Prior($,) = Y P(Si[S-1)P(Si-1). )

Sy states

Initial state probabilities were set to 0.5. Then, using Bayes’ rule, the
posterior would be updated using evidence from the outcome R;:
P(R,|S;)Prior(S
PosteriorP(S,) = (R(|S;)Prior(S,) . (8)
> P(R|S,)Prior(S,)

Ststates

Outcome variables were assumed to have a Gaussian distribution,
with a fixed standard deviation free parameter o

_m I N(+pu,0), forbanditA

R/|(S: = 0) {N(*M:"')v for bandit B ©
o N(—um, o), forbandit A

R|(S:=1) {N(Jm,g), forbandit B - 1o

This framework allowed for computing EVs in each trial ¢ for each
bandit j, taking into account the probability of being in each state:

EV;(t) = E[R|banditj, trialt]=
P(S, = 0) RP(R|S; = 0, banditj)dR +

Outcomes

P(S, =1) RP(R|S, = 1, banditj)dR

Outcomes

amn

Since outcomes were assumed to be normally distributed, for each
bandit this reduced to

EVa(t) = P(S, = 0) . — P(S, = 1) o = u(P(S, = 0) — (S, = 1))
(12)

EVy(t) = =P(S, = 0)u+ P(S, = 1) = p(P(S; = 1) — P(S; = 0)).
(13)
This means that EVs for a certain bandit were larger if patients

inferred they were more likely in the state in which that bandit was bet-
ter. For example, if P(S, = 0) =0.9 and P(S, = 1) =0.1, then:
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EV, =p(0.9—-0.1)=0.8u (14)

EVy = (0.1 —0.9) = —0.8u. (15)

We used the cached value estimates of EV as parameters in a softmax
function controlled by an inverse-temperature parameter 3 for each ses-
sion, to generate decision probabilities in free-choice trials. For the RL
models, we constrained a, Qexps and «,y, in the (0,1) interval, and B in
the (0,10) interval. In the HMM, we constrained r in the (0,1) interval,
and both p and o in the (0,20) interval.

Model comparison was performed by computing the protected
exceedance probability of each model and selecting the one with the
largest value, which was RL (counterfactual; Fig. 3). For all subsequent
model-based analyses, we display results using the EVs and RPEs pro-
duced by the RL (counterfactual) model. An example of how the EVs
assigned to each bandit typically behave in a modeled session is dis-
played in Figure 2B.

Population decoding analysis

Population decoding was performed with the Neural Decoding Toolbox
(Meyers, 2013) as described previously (Rutishauser et al., 2015b). We
pooled neurons from all sessions into a single pseudopopulation with
202 amygdala neurons. To achieve this alignment on a trial by trial basis
across sessions, we created discrete trial bins using quantiles of the
decoded variable, with the same number of trials, for each session. For
example, for outcome decoding, we found which trials for each session
fit into each one of four quantiles of received outcomes and aligned trials
that fell in the same bin across sessions, assuming all neurons belonged
to the same session. This session-based trial binning meant the exact
quantile boundaries were not necessarily the same across sessions. For
example, a trial in which the outcome was 10 points might have been
placed on bin 2 for one session and on bin three for another session,
depending on the distribution of outcomes in each session. Finally, all
learning trials across sessions had the same event timing, so no addi-
tional temporal alignment was needed.

We used this strategy to create a neural activity tensor of dimensions
(Mpeuronssirials)> Where . is the number of trials in a single session.
Decoding consisted of training and testing a classifier tasked with cor-
rectly predicting which bin of the variable of interest each trial belonged
to, only from information contained in the neural activity tensor.

We used a maximum Pearson correlation classifier with access to
spike counts binned in a time window of interest. This classifier learns
by obtaining a mean representation x, of each class ¢ in the multidimen-
sional neural population space, and assigns new data points y to a class
¢* corresponding to ¢* = argmax.(corr(xc, y)).

We used 10-fold cross-validation and 20 cross-validation fold resam-
ple runs, which were averaged to generate a testing decoding accuracy
score. Significance was determined via permutation test with 500 re-
runs, shuffling regressor labels. Expected value decoding was only tested
in the preoutcome period (300-1500 ms from trial onset), whereas out-
come and prediction error decoding was only tested in the postoutcome
period (300-2000 ms from outcome onset).

Single-neuron encoding analysis

For every tested neuron n, we used a Kruskal-Wallis test (Kruskal and
Wallis, 1952) to fit binned spike counts y,(f) (1200-ms bins for preout-
come, 1700-ms bins for postoutcome, 3500-ms bins for the whole trial),
implemented with the MATLAB function kruskalwallis. Outcome and
prediction errors were regressed only on the postoutcome period, and
expected values were regressed only on the preoutcome period. Trial
type regression was performed in the entire trial. Significance was deter-
mined through permutation tests by shuffling variable labels. For
expected value and prediction error time series, in which trials might not
be independent from each other, we performed variable shuffling using
surrogate time series as described previously (Schreiber and Schmitz,
2000). For the other variables, we used standard random permutations.
We then used y” yielded by the Kruskal-Wallis test as a statistic for each
regressor.
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Figure 2.  Behavior and RL model. A, Accuracy rate of all sessions as defined by the fraction of free trials in which a subject chose the bandit with highest mean payout, discarding the first

25% of trials in each block. Each color represents a different session, for experiential and observational trials, with average and standard error indicated on the left and right. Accuracy in experi-
ential and observational trials was not significantly different (p << 0.66, two-sample ¢ test), n.s., not significant. The dashed red line indicates the chance level estimated by the theoretical
95th percentile of correct proportions, obtained from an agent making random decisions with p = 0.5. B, Typical time course of modeled EVs throughout the task, using the RL (counterfactual)
model. Bandit 1 (exp) and Bandit 2 (exp) indicate EVs for each of the two bandits shown in experiential blocks, respectively, whereas Bandit 1 (obs) and Bandit 2 (obs) indicate EVs for each of
the two bandits shown in observational blocks, respectively. €, Parameter fits for each valid session, for the chosen RL model. The model contained a single learning rate (cx) for experiential
and observational trials and an inverse temperature 3. Dark blue horizontal lines indicate parameter means, and cyan horizontal lines indicate SE.

Simulation for comparing encoding and decoding

In order to better understand possible discrepancies between the encod-
ing and decoding analyses, we set out to simulate a population of artifi-
cial neurons responding to a categorical variable, and to compare
encoding and decoding analyses within this population for varying levels
of noise. Each simulation contained a population of 200 Poisson point
processes as artificial neurons in 96 trials. We created an artificial cate-
gorical variable X to be encoded and decoded, whose value would be
sampled randomly with a uniform distribution in each trial from
[1,2,3,4]. The latent firing rate A ,, of each neuron n was then given by:

A, = exp(u,X+e). (16)

The factor u,, scales the influence of the categorical variable X over
latent firing rates. For every neuron #, and for every simulation, we
sampled w, from a normal distribution N(0,0.4). The factor € controls
the amount of random noise added to latent firing rates. For every trial,
€ was sampled from a normal distribution N(0,04 o), where o is the
noise factor variable. We ran 100 simulations with each one of the fol-
lowing noise factors o [1,5,20]. We included 0.4 as a factor in the distri-
butions of w, and o only with the intent of generating plausible spike
counts.

Following the construction of latent firing rates, we simulated how
many spikes occurred in a time window of 1 s and used these spike
counts as the input for encoding and decoding analyses. We performed
encoding by applying the previously described Kruskal-Wallis test, using
the artificial spike counts and categories. We obtained chance levels for
the encoding analysis theoretically, from an inverse binomial distribu-
tion, assuming a chance level of 0.05 and a total neuron population of
200. Additionally, we performed decoding of the variable X from spike
counts with the previously described maximum Pearson correlation clas-
sifier, with a 75-25% split between training and testing trials, re-sam-
pling cross-validation folds 10 times. Chance levels in decoding single
test trials were obtained theoretically from an inverse binomial distribu-
tion, assuming a chance level of 0.25 (since X had four categories).

Finally, we compared how well decoding and encoding analyses per-
formed for varying levels of the noise factor ¢, in terms of decoding ac-
curacy in single test trials, as well as significant neuron count.

Results

Behavioral performance

We obtained a behavioral metric of subject performance on
choice trials (Fig. 2A): we defined “correct” trials as those in
which the subject selected the bandit with the highest mean pay-
out, disregarding the first 25% of trials in each block. The reason
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Figure 3.  Model comparison. A, Protected exceedance probability. This is the probability
that each one of the four models fit using HBI (RL split, RL no split, counterfactual, and
HMM) was more likely than any other, taking into account the possibility that there is no dif-
ference between models. B, Model frequency. This is the proportion of individual patients
whose behavior is better explained by each model. The counterfactual learming model outper-
forms the others both in terms of protected exceedance probability and model frequency.

we excluded the first 25% of trials from accuracy analysis only
was to get a coarse metric of overall accuracy discarding the tran-
sient initial period of learning. Note this transient period is still
of interest in terms of measuring expected values and RPEs, so it
is still included in the computational modeling and the neural
analysis. We found that in 12 out of 15 recording sessions, per-
formance was above the 95th percentile of a random agent, theo-
retically determined by a binomial distribution with success
probability 0.5, thereby indicating that behavior in these sessions
was significantly better than chance.

Overall, subjects performed well in both the experiential and
observational condition (Fig. 2A): the proportion correct in all
trials was 0.776 £ 0.038. Taking only experiential trials, the pro-
portion correct was 0.763 % 0.044; in observational trials, it was
0.789 = 0.039. Experiential and observational correct propor-
tions were not significantly different from each other across all
sessions (two-sample t test, p=0.6641 > 0.05). We estimated the
chance level using the theoretical 95th percentile of correct pro-
portions, obtained from an agent making random decisions with
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We fit four computational models to
each subjects’ behavior during choice
trials (see Materials and Methods): a
model-free RL model with one learn-
ing rate for experiential and observa- 0 "o
tional trials [(RL (no split)]; a model-
free RL model with separate learning
rates split between experiential and
observational trials [RL (split)]; a
counterfactual RL model in which out-
comes from the played bandit also
were used to update EVs for the
unseen bandit in each trial; and a
HMM with an estimate of reversal
rates on a trial-by-trial basis. In all
models, we applied a softmax rule to generate probabilistic deci-
sions. Model fitting and comparison were performed simultane-
ously with HBI (Piray et al., 2019), described in more detail in
Materials and Methods.

Overall, the counterfactual RL model, with a single learning
rate for experiential and observational trials, outperformed the
others in both protected exceedance probability (Fig. 3A) and
inferred model frequency among the patient population (Fig.
3B). The mean learning rate in the winning model was
0.31 = 0.06, and the mean softmax inverse temperature 8 was
0.17 = 0.35 (Fig. 2C). Using HBI, we also compared the single
learning rate counterfactual model with a counterfactual model
which had split learning rates between experiential and observa-
tional trials, finding a 99.9% protected exceedance probability for
the single learning rate counterfactual model. Taken together,
these behavioral findings suggest subjects employed a similar
learning strategy for the valuation of each bandit regardless of
trial type and were still engaged with the task when another per-
son received rewards. Given that the counterfactual model was
the best fitting model for explaining participants’ behavior on
the task, we used the variables generated by this model in the
subsequent computational model-based analysis of the neuronal
data.

Frequency

Amygdala population decoding

We tested whether the activity of amygdala neurons was related
to the following task and computational variables: trial type, EV,
outcome, and RPE, during learning trials. Trial type decoding
was performed in the whole trial; EV decoding was performed in
a 1200-ms time bin starting 300 ms from stimulus onset, until
outcome presentation; outcome and RPE decoding was per-
formed in a 1700-ms time bin starting 300 ms after outcome
presentation.

For each variable, we trained a maximum Pearson correlation
classifier on a pseudopopulation of amygdala neurons (see
Materials and Methods; Fig. 4). Cross-validated single-trial decod-
ing accuracy was obtained for each tested variable, tested for

L 0 i - L
0 0.2 04 0 0.2 04 O 0.2 0.4
Decoding accuracy

Figure 4. Amygdala population decoding analysis. 4, Entire trial decoding. The tested variable was trial type (experiential vs
observational). The vertical red line indicates average decoding accuracy in held-out trials after training with a maximum Pearson
correlation classifier. The histogram indicates decoding accuracy in each instance of a permutation test, shuffling variable labels; p
values were obtained by computing the proportion of permutation iterations in which the decoding accuracy exceeded the true
decoding accuracy. B, Same, decoding within the preoutcome period. Decoded variables, from left to right, were EV (experiential)
and EV (observational). €, Same, decoding within the postoutcome period. Decoded variables, from left to right, were outcome
(experiential), outcome (observational), RPE (experiential), and RPE (observational).

significance through a permutation test with 500 shuffled label
runs. The same procedure was repeated in 50 cross-validation ran-
domly re-sampled folds. To perform decoding of continuous vari-
ables across sessions, we binned variables (EV, outcome, and RPE)
into four bins (quantiles); p values were obtained by computing
the proportion of shuffled instances in which decoding accuracy
exceeded the real decoding accuracy. With this method, the small-
est p value attainable was 1/7permutations = 0.002.

Trial type decoding

Trial type (experiential vs observational) could be decoded from
amygdala neurons with above chance accuracy (p < 0.002 <
0.05, permutation test; Fig. 4A). Average decoding accuracy in
held-out trials was 86.1%. This indicates that amygdala neurons
prominently tracked whether the current block was experiential
or observational.

Expected value decoding

We next tested whether EV was decodable in the preoutcome pe-
riod (300-1500 ms from bandit onset), separately for observatio-
nal and experiential learning trials. We found better than chance
decoding in experiential trials (p <0.002 < 0.05, permutation
test; Fig. 4B). Average experiential EV decoding accuracy in the
preoutcome period was 36.4%. In contrast, observational EV
decoding was within the chance boundaries of the permutation
test (p < 0.08; Fig. 4B). This indicates that amygdala neuron pop-
ulations contained more easily decodable information for keep-
ing track of rewards received by oneself than by the other player.

Outcome decoding

Following outcome onset (300-2000 ms from outcome onset),
outcome was decodable above chance in experiential trials
(p <0.002 <0.05, permutation test; Fig. 4C), with an average
decoding accuracy of 39.3%. Additionally, outcome was also
decodable above chance in observational trials (p < 0.026 < 0.05,
permutation test; Fig. 4C), with an average decoding accuracy of
33.1%. This indicates that amygdala populations represented
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Figure 5.

Simulated ratio of significant units (%)

Amygdala single-neuron encoding analysis. A, Preoutcome encoding of EV in experiential trials. Solid red lines indicate how many units were found to be sensitive to the tested

variable within the preoutcome period. Histograms indicate how many units were sensitive to the tested variable in each iteration of the permutation test, shuffling variable labels; p values
were obtained by computing the proportion of permutation iterations in which unit counts exceeded the true unit count. Similarly, we tested encoding for (B) experiential outcome in the post-
outcome period, (C) experiential RPE in the postoutcome period, (D) observational EV in the preoutcome period, (E) observational outcome in the postoutcome period, (F) observational RPE in
the postoutcome period, and (G) trial type in whole trials. H, Comparing encoding and decoding in a simulated four-category problem with varying noise levels. We simulated 96 trials with
200 artificial Poisson type neurons whose latent firing rate varied linearly as a function of an artificial categorical variable, chosen randomly between 1 and 4 for each trial. Noise was added to
the latent firing rate of each neuron scaled by a noise factor of 1 (crosses), 5 (circles), or 20 (triangles), and simulations were repeated 100 times for each noise level. Each data point in the
plot represents one individual simulation. Dashed red lines indicate theoretical chance levels for encoding (vertical) and decoding (horizontal).

both experienced and observed outcomes, but more strongly in
the experienced case.

RPE decoding

We tested for decodability of RPEs during the outcome period
(300-2000 ms from outcome onset), but did not find better
decoding accuracy than expected by chance in the permutation
test (Fig. 4C), both in the experiential (p < 0.37, permutation
test) and the observational cases (p < 0.31, permutation test).

Single-neuron encoding analysis

In order to understand the relationship between the population
decoding result and the activity of single neurons, we next tested
the sensitivity of each amygdala neuron (n=202 neurons) to
each one of the decoded variables (Fig. 5). We used a Kruskal-
Wallis analysis to compare every individual neuron’s activity to
the same variables used in decoding. We chose this method as
opposed to a GLM analysis to encompass units whose activities
might be non-linearly modulated by a variable of interest (e.g.,

being less active for intermediate levels of a variable of interest),
such as the one displayed in Figure 6D.

Trial type neurons

We found 100 amygdala neurons whose activity is significantly
different across experiential and observational trials (49.5%,
p <0.002 < 0.05, permutation test). Note this could partially be
explained as an effect of the blocked design we chose, grouping
all experiential trials and observational trials in distinct trial
blocks. This result is also consistent with the high trial type
decoding accuracy we found in left-out trials.

Expected value neurons

We tested amygdala neurons for experiential EV sensitivity and
found 19 sensitive units (9.4%, p << 0.006 < 0.05, permutation
test) during the preoutcome period (Fig. 5B, left). One experien-
tial EV example unit is shown in Figure 5D. Conversely, observa-
tional EV sensitivity was found in 18 units (8.9%, p < 0.002 <
0.05, permutation test). An observational EV example unit is
shown in Figure 5C. Taken together, these findings suggest that
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Amygdala neuron raster plot examples. Example amygdala units, significantly modulated by the indicated regressors, in the indicated conditions. A, Unit modulated by outcome in

observational trials during postoutcome period. B, Unit modulated by outcome in experiential trials during postoutcome period. €, Unit modulated by EV in observational trials during preout-
come period. D, Unit modulated by EV in experiential trials during preoutcome period. Top, Raster plots. For plotting purposes only, we reordered trials by regressor levels by obtaining three
quantiles from the variable of interest (magenta: high; black: medium; blue: low). Bottom, PSTH (bin size = 0.2 s, step size = 0.0625 s). The annex panels to the right of each raster display
spike waveforms (top) and ISI histograms (bottom) from the plotted neuron. Background gray rectangles postoutcome periods (4, B) or preoutcome periods (C, D). Rectangles filled with a let-

ter indicate which stimulus was present on the screen at that time (B: bandit; 0: outcome).

the expectation of outcomes is represented in a significant pro-
portion of amygdala neurons, both for experienced and observed
outcomes.

Outcome neurons

We also tested amygdala neurons for outcome sensitivity, in the
postoutcome period. For experiential outcomes, we found a sig-
nificant proportion (10.8%, p < 0.002 < 0.05, permutation test)
of sensitive amygdala neurons (Fig. 5C, first panel). For observa-
tional outcomes (Fig. 5C, second panel), however, only 10 units
were selected as sensitive (4.9%, p < 0.56, permutation test), de-
spite better-than-chance observational outcome decoding.
Example outcome neurons are displayed in Figure 6A (observa-
tional) and Figure 6B (experiential).

RPE neurons

Also, in the post outcome period, we found 13 (6.4%, p < 0.22,
permutation test) experiential RPE units (Fig. 5C, third panel) as
well as eight (3.9%, p <0.76, permutation test) observational

RPE units (Fig. 5C, fourth panel). Neither of these unit counts
exceeded what is expected by chance in the permutation test.
This finding is consistent with the low decoding accuracy we
obtained for RPEs in the population decoding analyses.

Anatomical location

We used a y? test of independence (1 degree of freedom) to
determine whether units located in the RA or LA were more
likely to be sensitive to each variable tested (Table 1). We found
no evidence of lateralization for any of the tested variables.
Similarly, we used a y? test of independence (2 degrees of free-
dom) to test whether units were more likely to be sensitive to
each variable in some amygdalar subnuclei group, the null hy-
pothesis being that all groups were equally likely to contain units
sensitive to each tested variable (Table 2). We found no evidence
of any group being more likely than the others to contain sensi-
tive units for any variable. Taken together, these findings provide
no evidence for spatial specialization of value-related variables in
amygdala, either by lateralization or by specialization within
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Table 1. Sensitive units by side

Right (n =135) Left (n=67) p value
Trial type 64 36 0.397
EV (exp) 1 8 0.384
EV (obs) 13 5 0.611
Outcome (exp) 14 8 0.736
Outcome (obs) 7 3 0.827
RPE (exp) 8 5 0.675
RPE (obs) 3 5 0.072

Testing the spatial specialization of value coding in amygdala. Number of sensitive units for each of the
tested variables by side. We tested for independence between side and proportion of significant units by
side using a x? independence test (1 degree of freedom, p values indicated for each variable), and found
no evidence of lateralization for any of the tested variables.

Table 2. Sensitive units by major subnuclei group

BL (n=117) M (n=39) R (n=46) p value
Trial type 54 20 26 0.476
EV (exp) 12 2 5 0.590
EV (obs) 15 1 2 0.070
Outcome (exp) 12 2 8 0.184
Outcome (obs) 8 0 2 0.228
RPE (exp) 7 1 5 0.284
RPE (obs) 4 0 4 0.110

Testing the spatial specialization of value coding in amygdala. Number of sensitive units for each of the
tested variables by major amygdalar subnuclei group (BL: deep and basolateral; CM: superficial or corticome-
dial; R: remaining nuclei). We tested for independence between major amygdalar subnuclei groups and pro-
portion of significant units with a y? test (2 degrees of freedom, p values indicated for each variable) and
found no evidence for any subnuclei group being more likely to contain sensitive units for any tested
variable.

subnuclei. These findings must be interpreted cautiously, how-
ever, given our relatively low unit counts in each tested subset of
amygdala neurons.

Decoding generalization analysis

To test whether the same or different neurons encode experi-
enced and observational variables, we performed a decoding gen-
eralization analysis (Wang et al,, 2019). We trained decoders
with neural activity in experiential trials and tested in observatio-
nal trials (Fig. 7A) and vice versa (Fig. 7B). The method is other-
wise identical to the previous decoding analysis. We tested
generalization of EVs (Fig. 7A,B, left panels) in the preoutcome
period and outcomes in the postoutcome period (Fig. 7A,B, right
panels), since these variables were represented in the amygdala
neuron population to some extent: outcome decoding was suc-
cessful in both trial types, and despite weaker observational EV
decoding, we did find a significant observational EV unit count
through the encoding analysis.

None of the generalization decoding tests yielded better than
chance decoding accuracy in the permutation test, regardless of
which set of trials (experiential or observational) was used to
train or test the decoder.

Additionally, we plotted the sensitivity of each individual
amygdala neuron to EVs (preoutcome; Fig. 7C) and outcomes
(postoutcome; Fig. 7D), contrasting experiential and observatio-
nal trials. The sensitivity of each neuron is defined as the x*
value obtained from the previously described encoding Kruskal-
Wallis test for differing levels of EV or outcome. The Pearson
correlation between EV sensitivities was p = 0.10 (p < 0.14), and
only 2 units were found to be sensitive in both trial types.
Additionally, the Pearson correlation between outcome sensitiv-
ities was p = 0.02 (p < 0.77), and no units were found to be sen-
sitive in both trial types.
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These results indicate that despite evidence for successful out-
come decoding in each condition separately, and significant unit
counts for EV in both conditions, there is no evidence support-
ing a shared representation between experiential and observatio-
nal trial conditions in amygdala.

Simulation for comparing encoding and decoding

We note that for some of the variables we investigated, the results
of the encoding and decoding analysis differ such that one was
above chance where the other was not (for an interpretation of
this finding, see Discussion). To better understand how encoding
and decoding analyses might differ in our data, we simulated the
performance of these methods in characterizing the activity of an
artificial neuron population whose activity correlates with an ar-
tificial four-category variable, with varying levels of noise. We
used classification accuracy in test trials as the decoding metric,
as well as the ratio of significant units as the encoding metric.
For each noise factor level in [1,5,20], we ran 100 independent
simulations and plotted decoding versus encoding performance
for each simulation (Fig. 5H), as well as the theoretically esti-
mated chance levels of 0.295 for decoding accuracy and 0.075 for
significant unit ratios.

For the lowest noise factor, 1, decoding and encoding per-
formances were highest, and always above the estimated chance
levels for both analyses. The mean decoding accuracy was
0.52*+0.006, and the mean ratio of significant units was
0.50 = 0.004. For a noise factor of 5, however, only 52% of the
simulations performed better than the chance level for decoding,
although all simulations performed better than chance in the
encoding analysis. The mean decoding accuracy was 029 =
0.005, and the mean ratio of significant units was 0.24 = 0.003.
Finally, for the highest noise factor, 20, in 3% of simulations both
decoding and encoding performed better than chance; in 19% of
simulations, decoding performed better than chance and encod-
ing performed below chance levels; in 12% of simulations, decod-
ing was below chance level and encoding performed better than
chance; and in 66% of simulations, both analyses performed
below chance. The mean decoding accuracy was 0.25 % 0.004,
and the mean ratio of significant units was 0.061 = 0.001. This
result, particularly in the high-noise condition, suggests that
there is a diversity of neural population configurations in which
decoding analyses might detect the presence of information for a
variable of interest to an acceptable degree, but single unit counts
might be below chance thresholds. Conversely, it is also possible
that an above-threshold count of significant units might not
translate into successful population decoding with the chosen
method. Overall, this indicates that these analyses are comple-
mentary when trying to understand the information contained
in single-neuron data, particularly in noisier conditions.

Discussion

In OL, an individual learns about the value of stimuli in the
world not through direct experience, but instead through observ-
ing the experiences of others. Here, we investigated whether the
human amygdala contains neuronal representations of key com-
putational variables relevant for learning about the value of stim-
uli through observation. We found evidence for the encoding of
the EV of a stimulus in amygdala neurons, at the time when par-
ticipants are observing another agent choose that stimulus before
this agent received an outcome, although on those specific trials
no tangible reward outcome is obtained by the participant them-
selves. In addition, we found evidence that the amygdala
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Comparing decoding and encoding across experiential and observational trials. A, Decoding generalization, training a decoder in experiential trials and testing in observational tri-

als. Decoded variables were EV (left) and outcome (right). Vertical red lines indicate decoding accuracy, and histograms indicate decoding accuracy in each instance of the permutation test
with shuffled variable labels; p values were obtained by computing the proportion of permutation iterations in which the decoding accuracy exceeded the true decoding accuracy. B, Same, but
training in observational trials and testing in experiential trials. €, Sensitivity to EV in each unit, as obtained in the encoding analysis, plotted for experiential trials (x-axis) and observational tri-
als (y-axis). Sensitivity was defined as the y* value obtained from the Kruskal-Wallis test used in the encoding analysis. Unfilled data points indicate not sensitive units, blue data points indi-
cate units only sensitive to experiential EV, red data points indicate units only sensitive to observational EV, and cyan data points indicate units sensitive to both experiential and observational

EV. D, Same, but for outcome sensitivity.

contains decodable representations of outcomes during OL and
experiential learning. Together, these results suggest that the
human amygdala tracks several key RL variables that can be
deployed for observational reward learning.

In addition, human amygdala neurons also strongly discrimi-
nated between whether or not a particular trial involved observa-
tional or experiential learning at the trial onset. This was the
most robust signal found in the amygdala neurons, although this
could at least in part be an effect of the distinct visual properties
of experiential and observational trials (i.e., the presence of the
face of the observed person, which can modulate amygdala cells;
Minxha et al., 2017), or of the blocked task design. Still, taken to-
gether with the RL computations found in the amygdala that
were related to OL, these findings support a contribution of the
human amygdala to OL.

Consistent with a large literature describing the role of amyg-
dala in anticipating rewards (Belova et al., 2008; Prévost et al.,
2013; O'Doherty et al., 2017), we found evidence for experiential
EV in both the single unit encoding analysis and the population
decoding analysis, as well as for observational EV, in the single
unit encoding analysis, further supporting the computational
model as a meaningful description of behavior. Our findings in
the experiential condition are compatible with results reported in
monkey amygdala for expected values in the context of anticipat-
ing rewards for exploratory decision making (Costa et al., 2019).

An issue that requires further investigation is whether neu-
rons encode experiential and observational expected value sig-
nals independently of the identity of the presented stimulus.
Previous studies have reported stimulus identity encoding at the

single-neuron level in amygdala, such as the identity of faces
(Gothard et al, 2007), visual categories (Fried et al, 1997;
Kreiman et al., 2000; Rutishauser et al., 2015b), but also identity-
independent stimulus feature encoding, such as in familiarity/
novelty tuning during memory retrieval (Rutishauser et al,
2015b) and ambiguity tuning during decision making (Wang et
al., 2017).

A related question is whether the neural substrate represent-
ing value in amygdala neurons is the same or different for obser-
vational and experiential learning. That is, do EVs and outcomes
activate amygdala neurons in a similar manner, whether it occurs
in an OL situation or an experiential learning situation? To test
this, we trained a classifier to decode these variables in OL and
tested this classifier on the same neurons during the experiential
learning condition and vice versa. In both cases, we could not
successfully decode signals when training on one condition and
testing on the other. These findings suggest that neuronal coding
of OL EV and outcomes is distinct and not-overlapping with the
neuronal code for experiential learning prediction errors.
Additionally, we inspected the sensitivity of individual neurons
while encoding EVs and outcomes, and found that, across the
amygdala neuron population, experiential and observational sen-
sitivities to these variables do not correlate. There is also little
overlap between which neurons encode EV and outcomes in
each condition. This does not preclude the existence of a distinct
population of amygdala neurons, not found by this study, which
encodes both experiential and observational values, as reported
elsewhere (Chang et al, 2015). Our findings also support the
argument that the subjects properly understood the task and
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knew that the observed rewards would not be given to them. If
this were not the case, the neural representation for expected val-
ues and outcomes likely would not be separate.

The encoding and decoding analyses gave slightly divergent
results for some of the variables in the OL condition. For
instance, expected value signals during OL were detected at levels
higher than chance in the single-unit encoding analysis but not
in the decoding analysis (with the decoding accuracy bordering
but not reaching statistical significance). Such divergent results
can arise due to differences in the nature of the neural signals
being detected by the two methods. Encoding analysis assesses
information encoded on average by individual neurons, whereas
decoding analysis assesses whether information can be read out
at the population level in individual trials. It is possible to decode
from a population from which individual neurons cannot be
selected at levels above those expected by chance (as we reported
for outcome in observational trials) if the underlying code is
distributed (Rumelhart and McClelland, 1986; Rogers and
McClelland, 2014) and/or exhibits correlated variability between
neurons (Stefanini et al., 2019). This is because from the point of
view of a decoder, neurons that by themselves are not informa-
tive can still be useful in the context of the population. This has
been demonstrated experimentally: a study on the distributed
encoding of space in rodents (Stefanini et al., 2019) showed that
cells which individually do not provide a significant amount of
information were nevertheless highly informative at the popula-
tion level as demonstrated by a high importance index.
Conversely, it is possible that neurons can be selected at propor-
tions higher than expected by chance while not being able to
decode from individual trials. This may happen in a scenario
where several units are considered sensitive but weakly so, not
providing enough information for single-trial decoding. By sim-
ulating encoding and decoding in an artificial population of neu-
rons, we showed situations where either of these discrepancies
between encoding and decoding analyses are possible, depending
on the levels of noise used in the simulation.

In the present study, we did not assess whether the OL signals
we found in the amygdala are specifically recruited when observ-
ing another human agent, or rather are recruited when observing
causal relationships between stimuli, actions, and outcomes
regardless of the nature of the agent performing the actions.
Thus, our design does not control for the social versus non-social
learning component of OL. An important direction for future
studies would be to compare and contrast neuronal effects in the
amygdala during OL when the agent is human or a computer.
There is no strong reason to assume a-priori that the responses
detected in the amygdala should be specific only to observed
human agents. However, it is possible that the presence of a
human might enhance the salience of the observed stimuli com-
pared with the situation where the agent is non-human, which
could potentially increase the magnitude of neuronal responses.
Adding to this argument, a study using a modified dictator game
in monkeys found that amygdala neurons mirrored value repre-
sentations between rewards received by oneself and given to
others, but no such mirroring was observed when a computer
was responsible for delivering rewards to another monkey
(Chang et al., 2015).

One important caveat is that proportions of sensitive amyg-
dala neurons for value related variables have been higher in the
monkey literature (Chang et al., 2015; Costa et al., 2019) than in
the present study. However, there are many differences between
species, recording techniques and task preparation that could
lead to such differences in encoding proportions. Unlike in
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animal studies, our participants performed the task for <1 h
with no training, whereas training in animals is typically weeks
to even months. Additionally, our recording electrodes were
chronically implanted and could not be moved to search for
responsive neurons, thereby providing an unbiased estimate.
Finally, it is plausible that neuronal representations in the human
amygdala are more complex, processing rich forms of informa-
tion such as social networks or deep and elaborate knowledge
about stimuli in the world and their associated values, meaning
that seeing a relatively smaller proportion of neurons dedicated
to value coding would not be entirely surprising.

To conclude, our findings support a role for the human
amygdala in OL, particularly under situations where associations
between stimuli and outcomes are learned about through observ-
ing the experiences of another agent. The amygdala was found to
contain neuronal representations depicting the expected future
reward associated with particular stimuli when observing the
experiences of another agent interacting with and obtaining
rewards from those stimuli. Furthermore, amygdala neuron pop-
ulations contained decodable information for outcomes whether
the subject experienced them or passively observed another agent
receiving them. The specific contributions we have uncovered
for the amygdala in OL adds to a burgeoning literature highlight-
ing a broad role for this structure in social cognition more gener-
ally (Adolphs et al.,, 1998; Gothard et al., 2007; Adolphs, 2010;
Chang et al., 2015; Minxha et al.,, 2017; Taubert et al., 2018).

Code Availability

The analysis code is available on request to the authors.
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