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Abstract

Type VI CRISPR enzymes are RNA-targeting proteins with nuclease activity that enable specific 

and robust target gene knock-down without altering the genome. To define rules for the design of 

Cas13d guide RNAs, we conducted massively-parallel screens targeting mRNAs of a green 

fluorescent protein (GFP) transgene and CD46, CD55 and CD71 cell surface proteins in human 

cells. In total, we measured the activity of 24,460 guide RNAs with and without mismatches 

relative to the target sequences. Knock-down efficacy is driven by guide RNA-specific features 

and target site context. Single mismatches generally reduce knock-down to a modest degree, but 

spacer nucleotides 15 – 21 are largely intolerant to target site mismatches. We developed a 

computational model to identify optimal guide RNAs and confirm its generalizability testing 3,979 

guides targeting mRNAs of 48 endogenous genes. We show that Cas13 can be used in forward 

transcriptomic pooled screens and, using our model, predict optimized Cas13 guide RNAs for all 

protein-coding transcripts in the human genome.
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Design of optimal guide RNAs for Cas13d-mediated RNA knock-down is enabled by 

computational modeling of large-scale screening data

Type VI CRISPR enzymes have recently been identified as programmable RNA-guided, 

RNA-targeting Cas proteins with nuclease activity that allow for target gene knock-down 

without altering the genome. In addition to target RNA knock-down 1–10, Cas13 proteins 

have been used for viral RNA detection 7,9,11,12, site-directed RNA editing 13, demethylation 

of m6A-modified transcripts 14, RNA live-imaging 15,16, and modulation of splice site 

choice as well as cleavage and polyadenylation site usage 5,17,18. Cas13 proteins are guided 

to their target RNAs by a single CRISPR RNA (crRNA) composed of a direct repeat (DR) 

stem loop and a spacer sequence (guide RNA or gRNA) that mediates target recognition by 

RNA-RNA hybridization. Although Cas13 enzymes exert some non-specific collateral 

nuclease activity upon activation 4–6,11,19, they have greatly reduced off-target activity in 

cultured cells compared to RNA interference 2,5,13. Previous studies have shown that Cas13 

gRNAs have minimal Protospacer Flanking Sequence (PFS) constraints 1,4,13,20 and that 

RNA target sites should be accessible for Cas13 binding 1,2,4. Beyond these basic 

parameters, we currently lack information about optimal Cas13 crRNA designs for effective 

target RNA knock-down.

To date, three Cas13 effector proteins (PguCas13b, PspCas13b, RfxCas13d) have been 

reported to show high RNA knock-down efficacy with minimal off-target activity 5,13. We 

compared the ability of these Cas13 enzymes to knock-down GFP mRNA when directed to 

either the cytosol or the nucleus. RfxCas13d (CasRx) consistently showed the strongest 

target knock-down, especially when fused to a nuclear localization sequence (NLS) 

(Supplementary Fig. 1a – c). Using Cas13d-NLS, we varied the gRNA length while 

maintaining a constant gRNA 5’ end or 3’ end relative to a 30 nt reference gRNA, and found 

that 23 – 30 nt gRNAs confer the most pronounced target knock-down (Supplementary Fig. 

1d).

To systematically assess the RfxCas13d target knock-down efficacy of thousands of gRNAs, 

we established a monoclonal HEK293 cell line expressing destabilized GFP and 

doxycycline-inducible Cas13d-NLS nuclease. We lentivirally delivered a library of 7,500 

crRNAs that target the GFP coding sequence, containing perfect match and mismatch 

gRNAs (Fig. 1a). We performed fluorescence activated cell sorting (FACS) to gate cells in 

four bins based on their GFP intensity (Supplementary Fig. 2a). Guide RNA counts showed 

high concordance between bins across three independent transductions with clear separation 

of bin 1, which contained cells with the lowest GFP expression (Supplementary Fig. 2b–d).

We calculated the log2 fold-change (log2FC) gRNA enrichment between all bins and the 

unsorted input gRNA distribution (Supplementary Data 1). Perfect match gRNAs were 

enriched in bin 1, while increasing numbers of mismatches led to a gradual decrease in 

gRNA enrichment (Fig. 1b, Supplementary Fig. 3a–c). This was true for the whole gRNA 

population as well as for individual gRNAs and their corresponding gRNAs with 1 – 3 

mismatches (Fig. 1b–c, Supplementary Fig. 3d). As a control, the library also contained 537 

non-targeting crRNAs and they were effectively depleted from bin 1 (Fig. 1b, 

Supplementary Fig. 3a–c). As expected, gRNA abundances in bin 1 were negatively 
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correlated to those in bins 2 to 4, which contained cells with higher GFP intensities 

(Supplementary Fig. 3e, f). Taken together, this suggests that the enrichments of gRNAs in 

bin 1 accurately reflect target mRNA knock-down.

We noticed considerable heterogeneity of gRNA enrichment within each gRNA class (Fig. 

1b–c). For perfect match gRNAs targeting different regions of the target mRNA, we 

observed position-dependent effects, suggesting an influence of the target sequence context 

on the gRNA efficacy (Fig. 1d). We selected 6 gRNAs along the GFP target transcript with 

either high or low enrichment and validated their relative target knock-down efficacies by 

transfection of individual gRNAs followed by flow cytometry (Fig. 1e).

To examine if Cas13 can tolerate mismatches between the gRNA and the target RNA, we 

calculated the relative log2 fold change (Δ log2FC) for each mismatch gRNA by subtracting 

the log2FC from the reference (perfect match) gRNA (Fig. 1f). We found a critical (“seed”) 

region for Cas13d knock-down efficacy between gRNA nucleotides 15 to 21 with its center 

at nucleotide 18 relative to the gRNA 5’ end. Although seed regions have been shown for 

Cas13a 1,21,22, one group reported no clear seed region for Cas13d 23 while another group 

showed position-dependent mismatch sensitivity for Cas13d in a cell-free assay 24. Within 

the seed region, single mismatches led to diminished gRNA enrichment, while mismatches 

outside the seed region were better tolerated (Fig. 1f). The critical region was present 

irrespective of the mismatch identity (Fig. 1g). Similarly, consecutive double and triple 

mismatches indicated the presence of the critical region (Fig. 1g, Supplementary Fig. 4a). 

For randomly distributed double mismatches, the largest change in enrichment was observed 

in cases where both mismatches are in the seed region (Supplementary Fig. 4b). Increasing 

the number of mismatches to three largely abrogated target knock-down (Supplementary 

Fig. 4a). For this reason, the critical region may have been masked in previous studies on 

EsCas13d which tested four consecutive mismatches 23.

Given the heterogeneity in enrichment for gRNAs with mismatches in the seed region, we 

sought to assess the effect of surrounding nucleotide context (Supplementary Fig. 5a). 

Controlling for the reference gRNA efficacy, mismatches in a ‘U’-context at the target site 

negatively impacted Cas13d activity, whereas mismatches in a ‘GC’-context were better 

tolerated (Supplementary Fig. 5b). We confirmed the presence of the seed region in 

transfection experiments using gRNAs with single or double nucleotide mismatches to the 

GFP mRNA (Fig. 1h). While a perfect match gRNA decreased the percentage of GFP-

positive cells to ~29%, a single mismatch at gRNA position 18 resulted in 75% GFP-positive 

cells and a double mismatch at positions 17 and 18 resulted in ~79% GFP positive cells (Fig. 

1h).

Next, we sought to assess the features that may affect knock-down efficacy for perfect match 

gRNAs (see Supplementary Note 1 for details). One of the features impacting the observed 

gRNA enrichments in the GFP tiling screen was crRNA folding: Predicted secondary 

structures and corresponding minimum free energy (MFE) of perfect match crRNAs showed 

a positive correlation between the MFE and gRNA efficacy (Supplementary Fig. 6a). In 

particular, ‘G’-dependent structures, such as predicted G-quadruplexes, showed diminished 

target knock-down. Given that the crRNA folding is critical for effective target knock-down, 
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we sought to further stabilize and improve the DR by repairing a predicted bulge in the DR, 

by varying the length of the stem loop or by disrupting bases in the proximal DR stem 

(Supplementary Fig. 6b). Analysis of the crystal structure of EsCas13d and UrCas13d 

together with its crRNA suggested that the terminal loop in the DR may not be embedded 

within the protein and thus may allow extension (and further stabilization) of the stem loop 
23,24 similar to those previously found to enhance Cas9 activity 25,26. We observed that any 

change in stem length abrogated target knock-down completely (Supplementary Fig. 6c). 

Also, repairing the bulged nucleotide within the stem decreased target knock-down. 

However, disrupting the first base pair within the proximal stem further increased Cas13d 

targeting efficacy, leading to a novel RfxCas13d DR with improved knock-down. We tested 

the modified DR on 6 additional gRNAs targeting GFP and found that the modified DR 

improved target knock-down especially for gRNAs with low knock-down efficacy 

(Supplementary Fig. 6d).

We defined 15 crRNA and target-RNA features based on their correlation with observed 

gRNA enrichment (Supplementary Table 1, Supplementary Note 1). With these features, we 

sought to derive a generalizable ‘on-target’ model to predict Cas13d target knock-down. We 

compared the ability of machine learning approaches to predict gRNA efficacy (see 

Methods) and found that a Random Forest (RF) model had the best prediction accuracy 

(Supplementary Fig. 7a), weighting the crRNA folding energy, the local target ‘C’-context, 

and the upstream target ‘U’-context as the most important features (Supplementary Fig. 7b). 

Other learning approaches frequently chose similar features, suggesting that these features 

are the main drivers of Cas13d GFP knock-down (Supplementary Fig. 7c). To identify key 

predictor of gRNA efficacy, we iteratively reduced the number of features, monitoring the 

model performance and derived a minimal model that explained about 37% of the variance 

(r2) with a Spearman correlation (rs) of ~0.58 to the held-out data (Fig. 2a, Supplementary 

Fig. 7d–f). In comparison, a support vector machine (SVM) regression model with a similar 

structure to a Cas9 gRNA prediction algorithm 27 performed worse when applied to this data 

(r2 = 0.21, rs = 0.44) (Fig. 2a).

To show that our model is generalizable, we predicted gRNAs to target the endogenous 

transcripts of CD46 and CD71, which encode cell surface proteins, and measured the gRNA 

knock-down efficacy by flow cytometry. For each gene, we chose 3 gRNAs predicted to 

have high knock-down efficacy (top 2 quartiles) and 3 gRNAs predicted to have low knock-

down efficacy (lower 2 quartiles). On an individual gRNA level, we found that the majority 

of gRNAs with higher predicted guide scores suppressed CD46 and CD71 protein 

expression more robustly than gRNAs with lower guide scores (Fig. 2b). Comparing the 

observed knock-down across all three high-scoring to all three low-scoring gRNAs, we 

found a significant improvement for CD71, while for CD46 we observed considerable 

variance. To increase throughput and test gRNA efficacy predictions for more genes, we first 

generated a small crRNA library targeting 10 essential and 10 control genes with both 3 

high-scoring and 3 low-scoring gRNAs and monitored their depletion in a gene essentiality 

screen over time. Essential genes were chosen from genes that were strongly depleted in 

previous RNAi screens 28 (Supplementary Fig. 8a). Most high-scoring gRNAs targeting 

essential genes were progressively depleted over time, while low-scoring gRNAs showed 

largely no depletion (Fig. 2c, Supplementary Fig. 8b).
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In addition, we performed a second targeted essentiality screen in A375 cells targeting 35 

essential and 65 control genes with both 20 high-scoring and 20 low-scoring gRNAs. 

Similar to the HEK293 screen above, we found that high-scoring gRNAs that target essential 

genes were progressively depleted over time (Fig. 2d, Supplementary Fig. 8c). Although 

high-scoring gRNAs were generally more depleted than low-scoring gRNAs on a per gene 

level, we noticed that not all predicted essential genes showed depletion upon Cas13d 

targeting (Supplementary Fig. 8c–d), suggesting that RNAi-screen derived essentiality 

scores may not be directly comparable to Cas13-derived essentiality.

We calculated a significance score of gene depletion based on the gRNA rank consistency 

for the 20 high-scoring gRNAs and found strong enrichment of defined essential genes at the 

top of the list (Fig. 2e). The gRNA depletion scores correlated better with the DEMETER2 

RNAi 28 scores used to define the set of essential genes to be tested (up to rs = 0.71 using the 

best gRNA) than with the Cas9 STARS scores 29 (up to rs = 0.61) (Fig. 2f). Taken together, 

this suggests that the crRNA and target RNA features derived from the GFP tiling screen can 

generalize to predict Cas13d gRNA efficacy for novel targets, and that these gRNA 

predictions can be used in pooled CRISPR-Cas13 screens.

Our predictive on-target model based on the GFP tiling screen was largely able to separate 

gRNAs with low knock-down efficacy from those with high efficacy. However, given that 

we observed remaining heterogeneity among the predicted high-scoring gRNAs, we sought 

to improve our on-target model by expanding our training dataset. Therefore, we performed 

three additional Cas13d tiling screens targeting the main transcript isoforms of the cell 

surface proteins CD46, CD55 and CD71 in HEK293 cells coupled with FACS to select cells 

with decreased surface protein expression (Fig. 3a–c; Supplementary Fig. 9a–c). In addition 

to perfect match gRNAs, we added several additional gRNA classes (Supplementary Fig. 

9a). For each screen, perfect match gRNAs showed the strongest gRNA enrichment relative 

to the unsorted input samples, while reverse complement negative control gRNAs and non-

targeting gRNAs were depleted (Supplementary Fig. 9d). In the new screens we reduced the 

overall gRNA length to 23 bases and included a set of gRNA length variants ranging in 

length from 15 to 36 nucleotides. Starting from 23 nucleotide length, gRNAs exerted full 

knock-down efficacy, while longer gRNA 3’ends did not have any deleterious effects 

(Supplementary Fig. 9e).

Perfect match gRNAs targeting coding regions (CDS) were more enriched compared to 

gRNAs targeting untranslated regions (UTRs) or introns (Supplementary Fig. 9f). UTR-

targeting gRNAs may show lower enrichments as each target gene may be represented by 

multiple transcript isoforms with alternative UTR usage. Hence, gRNAs targeting coding 

regions have a higher likelihood to find the cognate target site while, for example, 3’UTR-

targeting gRNAs find their target site only in a fraction of the expressed transcripts isoforms. 

Accordingly, the low enrichment for intron-targeting gRNAs may be explained by the short-

lived nature of introns. For these gRNAs, the intronic target site is present only for a short 

period of time, which likely enables the transcript to evade Cas13 targeting. For this reason, 

gRNA knock-down efficacy may not be directly comparable between CDS-targeting gRNAs 

and UTR-or intron-targeting gRNAs. Across all 39 introns present, we found that intron-

targeting gRNAs were only mildly enriched. In these introns, we observed a slight decrease 
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in gRNA efficacy immediately downstream of the 5’-splice-site and within −50 to 0 

nucleotides upstream of the 3’-splice-site (Supplementary Fig. 9g). These sites are typically 

bound by the spliceosome 30, suggesting that gRNAs targeting these regions may compete 

with the splicing machinery and other splice factors for target sequences. As transcript 

maturation in the nucleus seemingly influences the gRNA targeting efficacy, we wondered if 

the exon-junction-complex (EJC) would affect knock-down of the matured transcript in the 

same way. The EJC typically binds ~20–24 nucleotides 5’ upstream to the exon-exon-

junction upon splicing 31,32. Indeed, we observed a depletion of high-scoring gRNAs within 

a window of −20 to 0 nucleotides 5’ of the exon junction (Supplementary Fig. 9h).

To improve our on-target model, we focused on perfect match gRNAs that target CDS-

regions and increased the number of high-confidence model input observations from ~400 to 

nearly 3000. Similar to the initial GFP-screen, gRNAs efficacies were distributed along the 

coding region in a non-random manner (Fig. 3a–c). We repeated the assessment of features 

that may affect knock-down efficacy (see Supplementary Note 2 for details). Notably, the 

increased number of observations uncovered positional nucleotide preferences 

(Supplementary Fig. 10a–b). Guide RNA enrichments correlated positively with G-and C-

base probabilities in the seed region around gRNA position 18. Surrounding this region, U-

and A-base probabilities correlated positively with the target knock-down. We derived an 

updated on-target model using 2,918 CDS-targeting gRNAs across all four tiling screens and 

selected 35 out of 644 evaluated features in a similar fashion as before (see methods) 

(Supplementary Table 2, Supplementary Note 2, Supplementary Data 2).

The combined Random Forest model (RFcombined) displayed improved prediction accuracy 

compared to the initial RFminimal model (from here on referred to as RFGFP) explaining 

~47% of the variance (r2) with a Spearman correlation (rs) of ~0.67 to the held-out data (Fig. 

3d, Supplementary Fig. 10c). Using 10-fold cross-validation, the model effectively separated 

low-scoring gRNAs from high-scoring gRNAs, assigning 63% of the gRNAs correctly to the 

highest efficacy-quartile (Fig. 3e). Similarly, the predicted guide scores of the top-or bottom-

ranked gRNAs (ranked by the observed knock-down efficacy) separate gRNAs that 

performed well from those that performed poorly more than expected by chance 

(Supplementary Fig. 10d). Further, we performed leave-one-out cross-validation training on 

three data sets while predicting guide scores for the held-out fourth screen. The RFcombined 

model generalized well for endogenous genes (mean ± sd: rs = 0.63 ± 0.01) but was less 

predictive for the GFP transgene (rs = 0.33) (Supplementary Fig. 10e).

Finally, we compared the ability of both models, RFGFP and RFcombined, to correctly predict 

the knockdown efficacies for the two essentiality screens. Both screens were designed based 

on gRNA predictions made by the RFGFP model. In both cases, the RFcombined was in better 

agreement with the observed knock-down efficacies across all genes (Fig. 3f). Likewise, we 

found that the RFcombined showed improved agreement with the observed gRNA depletion 

also on a gene level for the 10 most depleted genes in the A375 fitness screen (RFGFP: rs = 

0.46 ± 0.16, RFcombined: 0.58 ± 0.14). Taken together, we show that our updated RFcombined 

on-target model is able to predict Cas13d gRNA target knock-down efficacies, separating 

poorly performing gRNAs from gRNAs with high efficacy and generalizing across 

numerous targets.
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We applied our model and predicted gRNAs for all protein-coding transcripts in the human 

genome (GENCODE v19). We made these predictions available through a user-friendly, 

web-based application (https://cas13design.nygenome.org). In addition, we report the 10 

highest-scoring crRNAs for the 5’ UTR, CDS and 3’ UTR of each transcript (Supplementary 

Fig. 11a, Supplementary Data 3). We partitioned the predicted gRNAs according to the 

efficacy quartiles in our four screens. Only 15.2% of all possible gRNAs fall into the highest 

scoring (best knock-down) quartile (Q4) (Supplementary Fig. 11b). A large fraction of 

gRNAs are predicted to have lower efficacy (36.8% of all gRNAs are in Q1 or Q2), which 

emphasizes the value of optimal gRNA selection for high knock-down efficacy. However, 

almost all transcripts contain top-scoring gRNAs (Supplementary Fig. 11c).

Taken together, we performed a set of pooled screens for CRISPR-Cas13d and defined 

targeting rules for optimal gRNA design. We show that crRNA features and target RNA-

context constrain target knock-down efficacy and, using this data, we developed a model to 

predict gRNAs with high efficacy. We validated this model using pooled Cas13d screens and 

compared the ability of Cas13 perturbations to identify a set of essential genes with prior 

RNAi and Cas9 screens. While all three perturbations methods broadly agree, it is important 

to note that a comprehensive genome-wide comparison is pending. An important distinction 

between RNA-targeting approaches is that, while RNAi is restricted to the cytosol, Cas13 

allows for compartmentalized targeting (nucleus, cytosol, and other sub-cellular 

compartments) and sophisticated transcriptome engineering with catalytically dead (dCas13) 

effector fusions. Overall, our study provides a detailed characterization of Cas13 targeting 

and a predictive model for high activity gRNAs, yielding a valuable platform for the design 

of massively-parallel RNA-targeting screens.

Online Methods

Cloning of Cas13 nuclease, guide RNAs and destabilized EGFP plasmids

Using Gibson cloning, we modified the EF1a-short (EFS) promoter-driven lentiCRISPRv2 

(Addgene 52961) or lentiCas9-Blast (Addgene 52962) plasmids with several different 

transgenes33. For the destabilized EGFP construct, we introduced a PEST sequence and 

nuclear localization tag on EGFP to create EFS-EGFPd2PEST-2A-Hygro 

(pLentiEGFPdestabilized) from lentiCas9-Blast. To test the upstream U-content, we 

introduced a multiple cloning site (MCS) into pLentiEGFPdestabilized right after the stop 

codon, and used the MCS to introduce oligonucleotide sequences with variable U-content.

For the CRISPR Type-VI orthologs, we cloned effector proteins (PguCas13b: Addgene 

103861, PspCas13b: Addgene 103862, RfxCas13d: Addgene 109049) and their direct repeat 

(DR) sequences (PguCas13b: Addgene 103853, PspCas13b: Addgene 103854, RfxCas13d: 

Addgene 109053) into lentiCRISPRv2. In this manner, we created pLentiRNACRISPR 

constructs: hU6-[Cas13 DR]-EFS-[Cas13 ortholog]-[NLS/NES]-2A-Puro-WPRE, where 

[Cas13 ortholog] was one of PguCas13b, PspCas13b, or RfxCas13d and [NLS/NES] was 

either a nuclear localization signal or nuclear export signal. To generate doxycycline-

inducible Cas13d cell lines, we cloned NLS-RfxCas13d-NLS (Addgene 109049) into TetO-

[Cas13]-WPRE-EFS-rtTA3–2A-Blast. For the screens, we changed the DR in the 

lentiGuide-Puro vector (Addgene 52963) to contain the RfxCas13d DR using Gibson 

Wessels et al. Page 7

Nat Biotechnol. Author manuscript; available in PMC 2020 September 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://cas13design.nygenome.org/


cloning to create lentiRfxGuide-Puro (pLentiRNAGuide) 33. All plasmids will be made 

available on Addgene.

Guide cloning was done as described previously 33. All constructs were confirmed by 

Sanger sequencing. All primers used for molecular cloning and guide sequences are shown 

in Supplementary Data 4. The main plasmids used in this work and described above have 

been submit to Addgene.

Cell culture and monoclonal cell line generation

HEK293FT cells were acquired from Thermo Fisher Scientific (R70007) and A375 cells 

were acquired from ATCC (CRL-1619). HEK293FT and A375 cells were maintained at 

37°C with 5% CO2 in D10 media: DMEM with high glucose and stabilized L-glutamine 

(Caisson DML23) supplemented with 10% fetal bovine serum (Serum Plus II Sigma-Aldrich 

14009C) and no antibiotics.

To generate doxycycline-inducible RfxCas13d-NLS HEK293FT and A375 cells, we 

transduced cells with a RfxCas13d-expressing lentivirus at low MOI (<0.1) and selected 

with 5μg/mL Blasticidin S (ThermoFisher A1113903). Single cell colonies were picked after 

by sparse plating. Clones were screened for Cas13d expression by western blot using mouse 

anti-FLAG M2 antibody (Sigma F1804).

For the GFP tiling screen RfxCas13d-expressing cells were transduced with 

pLentiEGFPdestabilized lentivirus at low MOI (<0.1) and selected with 100μg/ml 

Hygromycin B (ThermoFisher 10687010) for 2 days. Single-cell colonies were grown by 

sparse plating. Resistant and GFP-positive clonal cells were expanded and screened for 

homogenous GFP expression by flow cytometry.

Transfection and flow cytometry

For all transfection experiments, we seeded 2×105 HEK293FT cells per well of a 24-well 

plate prior to transfection (12 – 18 hours) and used 500 or 750 ng plasmid together with a 5-

to-1 ratio of Lipofectamine 2000 (ThermoFisher 11668019) or 1 mg/mL polyethylenimine 

(Polysciences 23966) to DNA (e.g. 2.5μl Lipofectamine2000 or PEI mixed with 0.5μg 

plasmid DNA). Flow cytometry or fluorescence-assisted cell sorting (FACS) was performed 

at 48 hrs post-transfection. All transfection experiments were performed in biological 

triplicates.

For the CRISPR Type-VI ortholog comparison (Supplementary Fig. 1a–c), we cloned the 

effector proteins (PguCas13b: Addgene 103861, PspCas13b: Addgene 103862, RfxCas13d: 

Addgene 109049) and their direct repeat sequences (PguCas13b: Addgene 103853, 

PspCas13b: Addgene 103854, RfxCas13d: Addgene 109053) as described above. We co-

transfected the pLentiRNACRISPR constructs together with a GFP expression plasmid 

(pLentiEGFPdestabilized) in a 2:1 molar ratio. The guide RNA length comparison 

(Supplementary Fig. 1d) was done using previously published RfxCas13d constructs 

(Addgene 109049 and 109053), except that we removed the GFP cassette from the 

RfxCas13d plasmid. The modified RfxCas13d construct and guide plasmids were co-

transfected together with pLentiEGFPdestabilized in a 2:2:1 molar ratio. For the DR 
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modification experiment (Supplementary Fig. 6c) we transfected RfxCas13d expressing 

cells, starting doxycycline-induction (1μg/ml) at the time of cell plating. The guide plasmid 

and GFP expression plasmid were co-transfected at a 1:1 molar ratio.

For the model validation flow cytometry (Fig. 2b) and CD46 screen validation 

(Supplementary Fig. 9c) we transfected RfxCas13d-expressing cells with a guide RNA 

expressing plasmid. 48 hours post transfection, the cells were stained for the respective cell 

surface protein for 30 min at 4°C and measured by FACS. (BioLegend: CD46 #352405 

clone TRA-2–10, CD71 (TFRC) #334105 clone CYIG4).

For the screen result validation (Fig. 1e) and seed validation experiments (Fig. 1h) we co-

transfected RfxCas13d-expressing cells with a guide RNA expressing plasmid and 

pLentiEGFPdestabilized at a 1:1 molar ratio. At 48 hours post-transfection, the cells were 

analyzed by flow cytometry.

To assess the upstream U-context (Supplementary Note 1), we transfected upstream-U 

context modified pLentiEGFPdestabilized-MCS plasmid together with either a crRNA 

plasmid into RfxCas13d-expressing in a 2:1 molar ratio. Each GFP-upstreamU-context 

plasmid was co-transfected with both a targeting or a non-targeting guide RNA used for 

calculating the knock-down, as a change in 3’UTR uridine content could attract RNA-

binding proteins that may affect RNA stability independent of Cas13. We selected the zero-

uridine oligonucleotide from a set of 10000 in silico randomized 52mers with 

{A24,C14,G14} with minimal predicted RNA-secondary structure as determined by RNAfold 
34 with default setting.

For flow cytometry analysis, cells were gated by forward and side scatter and signal 

intensity to remove potential multiplets. If present, cells were additionally gated with a live-

dead staining (LIVE/DEAD Fixable Violet Dead Cell Stain Kit, Thermo Fisher L34963). 

For each sample we analyzed at least 5000 cells. If cell numbers varied, we randomly 

sampled all samples to the same number of cells before calculating the mean fluorescence 

intensity (MFI). For GFP co-transfection experiments, we only considered the percentage of 

transfected cells with the highest GFP expression determined by comparing the non-

targeting control to wild-type control cells. For the upstream U-context co-transfection 

experiments, we considered the whole cell populations.

For knock-down experiments of endogenous genes (Fig. 2b and Supplementary Fig. 9c), we 

determined the percentage of transfected cells with lower target gene signal than the non-

targeting control in the condition with the highest observed knock-down. For all conditions, 

we analyzed the same bottom percentage of cells. For the selected cells, we compared the 

MFI of targeting guides relative to non-targeting guides to determine the percent knock-

down. To directly compare relative rank of individual guides as done in Fig. 2b, we 

normalized the effect size by setting the most effective guide to 100%. For the seed 

validation (Fig. 1f), we determined the percentage of transfected (GFP-positive) cells with 

GFP signal higher than Lipofectamine vehicle treated control cells. The percentage of 

transfected cells was normalized to percentage of GFP-positive cells in the non-targeting 

guide control.
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Screen library design and pooled oligo cloning

To design the RfxCas13d guide RNA library for GFP, we selected the 714 bp coding 

sequence (without start codon) to be targeted. In silico, we generated all perfectly matching 

27mer guide RNAs with minimal constraints (T-homopolymer < 4, V-homopolymer < 5, 0.1 

< GC-content < 0.9) and selected 400 by random sampling. From these, we sampled 100 

guide RNAs and introduced one random nucleotide conversion at each position (SM set n = 

2,700). From these 100, we randomly sampled 17 guide RNAs and introduced 26 or 25 

consecutive double (CD set n = 442) and triple (CT set n = 425) mismatches, respectively. 

We sampled an additional 13 guide RNAs from the SM set (in total, 30 guide RNAs) and 

introduced 100 random double mismatches at any position for each guide RNA if not 

present already in the set of 17 consecutive double mismatches (RD set n = 3,000). In total, 

we designed 6,967 GFP targeting guides and added 533 non-targeting guides (NT set) of the 

same length from randomly generated sequences that did not align to the human genome 

(hg19) with less than 3 mismatches.

For CD46, CD55 and CD71 library design, we selected the transcript isoform with highest 

isoform expression in HEK-TE samples (determined by Cancer Cell Line Encyclopedia 

CCLE; GENCODE v19) and longest 3’UTR isoform (CD46: ENST00000367042.1, CD55: 

ENST00000367064.3, CD71: ENST00000360110.4). As described above, we generated all 

perfectly matching 23mers, and selected ~2000 evenly spaced guide RNAs per target. In 

addition to PM, SM, RD and NT sets as described above, we included for each target a set of 

guide length variants (LV set n = 450), guide RNAs targeting intronic sequences near splice-

donor and splice-acceptor sites across all 39 annotated introns (I set n = 2,122) and an 

additional negative control set of reverse complementary perfect match sequences (RC set n 
= 300). Further details are in Supplementary Data 5.

For both targeted essentiality screens, we used the DEMETER2 v5 28 data set from the 

Cancer Dependency Map portal (DepMap) to determined essential and control genes. 

Specifically, we selected essential genes with low log2 fold-change (FC) enrichments across 

all cell lines and in the respective assay cell line (Supplementary Fig. 8a,c). For our 

HEK293FT cells, we considered data for HEK-TE cells. Furthermore, we selected genes 

with one transcript isoform constituting more than 75% of the gene expression with 

expression level less than ~150 transcripts per million (TPM). We predicted guide RNA 

efficiencies using the minimal RFGFP model and removed all guides with matches or partial 

matches elsewhere in the transcriptome. We allowed up to 3 mismatches when looking for 

potential off-targets. From the set of remaining perfect match guide RNA predictions, we 

manually selected three high-scoring and three low-scoring guides for the HEK293FT cell 

line screen to ensure that each guide fell into non-overlapping regions of the target 

transcripts. For the A375 cell line targets, we selected the top 20 high-scoring guide RNAs. 

For the set of 20 low-scoring guides, we chose among the bottom 60 to reduce the overlap of 

guide RNAs that fall into the same region. In this way, we assayed 20 genes in HEK293FT 

cells targeting 10 essential and 10 control genes with three low-scoring and three high-

scoring guides, as well as three non-targeting guides (n = 123). For the A375 screen, we 

targeted 100 genes (35 essential and 65 control genes) with 40 guides each (20 high-and 20 

low-scoring) and included 680 non-targeting sequences (n = 4,680).
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All large-scaled pooled crRNA libraries were synthesized as single-stranded 

oligonucleotides (Twist Biosciences), PCR amplified using NEBNext High-Fidelity 2X PCR 

Master Mix (M0541S) and Gibson cloned into pLentiRfxGuide-Puro. The guides for the 

HEK293FT essentiality screen were ordered from IDT, array cloned, confirmed by Sanger 

sequencing, and subsequently pooled using equal amounts. Complete library representation 

with minimal bias (90th percentile/10th percentile crRNA read ratio: 1.68 – 2.17) were 

verified by Illumina sequencing (MiSeq).

Pooled lentiviral production and screening

Lentivirus was produced via transfection of library plasmid with appropriate packaging 

plasmids (psPAX2: Addgene 12260; pMD2.G: Addgene 12259) using polyethylenimine 

(PEI) reagent in HEK293FT. At 3 days post-transfection, viral supernatant was collected and 

passed through a 0.45 um filter and stored at −80C until use.

Doxycycline-inducible RfxCas13d-NLS human HEK293FT, double-transgenic HEK293FT-

GFP or A375 cells were transduced with the respective library pooled lentiviruses in 

separate infection replicates ensuring at least 1000x guide representation in the selected cell 

pool per infection replicate using a standard spinfection protocol. We generated either 2 or 3 

independent replicate experiments. After 24 hours, RfxCas13d expression was induced by 

addition of 1μg/ml doxycycline (Sigma D9891) and cells were selected with 1 ug/mL 

puromycin (ThermoFisher A1113803), resulting in ~30% cell survival. Puromycin-selection 

was complete ~48 post puromycin-addition. Assuming independent infection events 

(Poisson), we determined that ~83% of surviving cells received a single sgRNA construct. 

Cells were passaged every two days maintaining at least the initial cell representation and 

supplemented with fresh doxycycline.

The tiling screens were terminated after 5 to 10 days. For all targets we noted maximal 

knock-down after 2–4 days (data not shown). For cell surface proteins, cells were stained in 

batches of 1×107 cells for 30 min at 4°C (BioLegend: CD46 clone TRA-2–10 #352405 – 3μl 

per 1×106 cells; CD55 clone JS11 #311311 – 1.5μg per 1×106 cells; CD71 clone CYIG4 

#334105 – 4μl per 1×106 cells). We collected unsorted samples for input guide RNA 

representation of approximately 1000x coverage for each sample and sorted at least another 

1000x representation into the assigned bins based on their signal intensities (GFP: lowest 

20%, 20%, 20% and remaining highest 40%, Supplementary Fig. 2a; CD proteins lowest 

20% and highest 20%, Supplementary Fig. 9b; Supplementary Data 5). Cells were PBS-

washed and frozen at −80°C until sequencing library preparation. In each case, the bin 

containing the lowest 20% represented the strongest target knock-down.

The essentiality screens were started (Day 0) upon complete puromycin selection, which 

was at 5 days after transduction. Cells were passaged every two to three days maintaining at 

least the initial cell representation and supplemented with fresh doxycycline. At Day 0 

(=Input) and every 7 days, we collected a >1000x representation from each sample. The 

HEK293FT cell screen was conducted in triplicate and cultured for 4 weeks. The A375 cell 

screen was conducted in duplicate and cultured for 2 weeks.
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Screen readout and read analysis

For each sample, genomic DNA was isolated from sorted cell pellets using the GeneJET 

Genomic DNA Purification Kit (ThermoFisher K0722) using 2×106 cells or less per column. 

The crRNA readout was performed using two rounds of PCR 35. For the first PCR step, a 

region containing the crRNA cassette in the lentiviral genomic integrant was amplified from 

extracted genomic DNA using the PCR1 primers in Supplementary Data 4.

For each sample, we performed PCR1 reactions as follows: 20 μl volume with 2 ug of 

gDNA in each reaction limited by the amount of extracted gDNA (total gDNA ranged from 

8μg to 50 ug per sample with an estimated representation of 106 diploid cells per ~6.6 ug 

gDNA. PCR1: 4μl 5x Q5 buffer, 0.02U/μl Q5 enzyme (M0491L), 0.5uM forward and 

reverse primers and 100ng gDNA/μl. PCR conditions: 98°C/30s, 24x[98°C/10s, 55°C/30s, 

72°C/45s], 72°C/5min).

We pooled the unpurified PCR1 products and used the mixture for a single second PCR 

reaction per sample. This second PCR adds on Illumina sequencing adaptors, barcodes and 

stagger sequences to prevent monotemplate sequencing issues. Complete sequences of the 5 

forward and 3 reverse Illumina PCR2 readout primers used are shown in Supplementary 

Data 4. (PCR2: 50μl 2x Q5 master mix (NEB #M0492S), 10μl PCR1-product, 0.5uM 

forward and reverse PCR2-primers in 100μl. PCR conditions: 98°C/30s, 17x[98°C/10s, 

63°C/30s, 72°C/45s], 72°C/5min).

Amplicons from the second PCR were pooled by screen experiment (e.g. all GFP-screen 

samples) in equimolar ratios (by gel-based band densitometry quantification) and then 

purified using a QiaQuick PCR Purification kit (Qiagen 28104). Purified products were 

loaded onto a 2% E-gel and gel extracted using a QiaQuick Gel Extraction kit (Qiagen 

28704). The molarity of the gel-extracted PCR product was quantified using KAPA library 

quant (KK4824) and sequenced on an Illumina NextSeq 500 -II MidOutput 1×150 v2.5.

Reads were demultiplexed based on Illumina i7 barcodes present in PCR2 reverse primers 

using bcl2fastq and by their custom in-read i5 barcode using a custom python script. Reads 

were trimmed to the expected guide RNA length by searching for known anchor sequences 

relative to the guide sequence using a custom python script. For the tiling screens, pre-

processed reads were either aligned to the designed crRNA reference using bowtie 36 

(v.1.1.2) with parameters -v 0 -m 1 or collapsed (FASTX-Toolkit) to count perfect duplicates 

followed by string-match intersection with the reference to retain only perfectly matching 

and unique alignments. Pre-processed guide RNA sequences from the essentiality screens 

were aligned allowing for up to 1 mismatch (-v 1 -m 1).Alignment statistics are available in 

Supplementary Data 6. The raw guide RNA counts (Supplementary Data 7) were normalized 

separated by screen dataset using a median of ratios method like in DESeq2 37 and 

underwent batch-correction using combat implemented in the SVA R package 38. Non-

reproducible technical outliers were removed by applying pair-wise linear regression for 

each sample after normalization and batch-correction, collecting the residuals and taking the 

median value for each guide RNA across all sample-centric comparisons. We removed all 

crRNA counts within the top X% residuals across all samples (GFP: 2%, CD proteins: 0.5%, 

Essentiality screen: no outlier removal). For the GFP screen, we only remove outliers on a 
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per-sample basis as needed (but not the entire guide RNA). For CD46, CD55 and CD71 

screens, since the number of outliers was small, we decided to remove the entire guide RNA 

from the analysis. The table below indicates all filtering applied:

Screen not detected*
<N reads in input 

samples*
0 reads in any 

sample*
masked 
outlier filtered total remaining

GFP 0 not applied not applied 4** 4 7500 7496

CD46 19 427 (<50) 22 77 545 5605 5060

CD55 23 88 (<50) 0 79 190 5356 5166

CD71 3 48 (<50) 0 75 123 5999 5876

HEK293 0 0 (<50) 0 0 0 123 123

A375 2 10 (<100) 0 0 12 4680 4668

*
Removed before normalization

**
filtered for Bin1 guide RNAs

Processed crRNA counts are available in Supplementary Data 8. Guide RNA enrichments 

were calculated building the count ratios between a bin or timepoint and the corresponding 

input sample and log2-transformation (log2FC). Consistency between replicates was 

estimated using robust rank aggregation (RRA) 39. Delta log2FC for mismatching guides 

was calculated by subtracting the log2FC of the perfectly matching reference guide. For the 

tiling screens, all plots and analyses were performed using the mean guide RNA enrichments 

of bin 1 ( = bottom 20%) across replicates, unless indicated otherwise. Similarly, we used 

the mean guide RNA enrichments relative to Day 0 across replicates for the essentiality 

screen. Guide RNA enrichment scores (log2FC) are available in Supplementary Data 1. In 

all combined analyses across all four tiling screens, we scaled the observed log2FC 

separately to improve comparability. For the generation of a the combined on-target model, 

we normalized the n = 2,918 selected CDS-targeting guides RNA across the four tiling 

screens to the same scale prior to training and testing the model. To do so, for each dataset 

D, we computed the upper and lower quartiles of the guide log2FC (UQD and LQD, 

respectively) as well as the corresponding quartiles for the log2FC among all datasets pooled 

together (UQP and LQP). We then updated each fold change x as follows: xˆ=[ (x -LQD) / 

(UQD -LQD) * (UQP – LQP) + LQP]. By centering on quartiles, this procedure normalized 

the fold-change distributions in a way that was less susceptible to the influence of outliers of 

a single screen.

Predicting RNA secondary structures and RNA-RNA hybridization energies

crRNA secondary structure and minimum free energies (MFEs) was derived using RNAfold 

[ --gquad ] on the full-length crRNA (DR + guide) sequence 34. For building the combined 

on-target model and for testing the RFGFP model on the combined data set, we assumed 

23mer guide RNAs for all guides in the GFP tiling screen to prevent length dependent 

differences in the crRNA MFE. Target RNA unpaired probability (accessibility) was 

calculated using RNAplfold [ -L 40 -W 80 -u 50 ] as described before 40. We performed a 

grid-search calculating the RNA accessibility for each target nucleotide in a window of 

minus 20 bases downstream of the target site to plus 20 bases upstream of the target site 
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assessing the unpaired probability of each nucleotide over 1 to 50 bases for all perfectly 

matching guides. Then, we calculated the Pearson correlation coefficient between the log10-

transformed unpaired probabilities and the observed guide RNA log2FC for each point and 

window relative to the guide RNA.RNA-RNA-hybridization between the guide RNA and its 

target site was calculated using RNAhybrid [ -s -c ] 41. For the hybridization calculation, we 

did not include the direct repeat of the crRNA. We calculated the RNA-hybridization 

minimum free energy for each guide RNA nucleotide position p over the distance d to the 

position p + d with its cognate target sequence. All measures were either directly correlated 

with the observed crRNA log2FC or using partial correlation to account for the crRNA 

folding MFE. In each case, we computed the Pearson correlation.

Assessing guide RNA nucleotide composition

Guide RNA composition was derived by calculating the nucleotide probability within the 

respective guide RNA sequence length. To assess the presence of sequence constraints 

similar to a previously described anti-tag 20 or 5’ and 3’ Protospacer Flanking Sequences 

(PFS), we ranked all perfectly matching guide RNAs by their log2FC enrichment within 

each screen separately. We selected the top and bottom 20% enriched/depleted guide RNAs 

and calculated the positional nucleotide probability for the four nucleotides upstream and 

downstream relative to the guide RNA match. To assess nucleotide preferences at any guide 

RNA match position in addition to upstream and downstream nucleotides, we selected the 

top 20% of the log2FC-ranked perfectly matching guides as described above and calculated 

nucleotide preferences as described before 27. In brief, we calculated the probability of each 

nucleotide at each position for the top guide RNAs and all guide RNAs. The effect size is the 

difference of nucleotide probability by subtracting the values from all guides from the top 

guides (delta log2FC). p-values were calculated from the binomial distribution with a 

baseline probability estimated from the full-length GFP mRNA target sequence for all 

perfectly matching crRNAs. p-values were adjusted using a Bonferroni multiple hypothesis 

testing correction.

Assessing target RNA context

To assess the target RNA context, we calculated the nucleotide probability at each position 

(p) over a window (w) of 1 to 50 nucleotides centered around the position of interest (e.g. p 
= −18 with w = 11 summarizes the nucleotide content in a window from −23 to −13 with +1 

being the first base of the crRNA). We evaluated p for all positions within 75 nucleotides 

upstream and downstream of the guide RNA. The nucleotide context of each point was then 

correlated with the observed log2FC crRNA enrichments for all perfect match crRNAs, 

either directly or using partial correlation accounting for crRNA folding MFE. In each case 

we used Pearson correlation.

The RNA context around single nucleotide mismatches was assessed accordingly with a 

slight modification. Here, the nucleotide context was assessed relative to mismatch position 

summarizing the nucleotide probability in a window of 1 to 15 nucleotides to either side 

(e.g. p = 18 with w = 5 summarizes the nucleotide content in a window of 11 nucleotides 

from 23 to 13). For more details on p and w, please see the diagram in Supplementary 

Figure 5b. We used all 2,700 single nucleotide mismatch guides in the GFP tiling screen 
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(100 guide RNAs x 27 mismatched positions per guide). The nucleotide context of each 

position and each window size was then correlated with the observed delta log2FC relative to 

the perfectly matching reference guide RNA, either directly or using partial correlation 

accounting for crRNA folding MFE. In each case, we used Pearson correlation.

On-target model selection

An explanation for all selected features for the RFGFP and RFcombined model can be found in 

Supplementary Table 1 and Supplementary Table 2, respectively. The RFcombined model 

feature input values can be found in Supplementary Data 2. All continuous feature scores 

were scaled to the [0, 1] interval limited to the 5th and 95th percentile, with a mean set to the 

5th percentile. Scaled values exceeding the [0, 1] interval were set to 0 or 1, respectively.

Scaling parameters used to normalize data to the [0, 1] interval for the Random Forest 

Models

Model Feature 5th percentile 95th percentile

RFGFP crRNA MFE −23.4000 −14.5000

Local A probability 0.0000 0.4286

Local C 0.2273 0.5000

Local G probability 0.1429 0.4286

Local U probability 0.0556 0.2778

upstream U probability 0.0667 0.2000

RFcombined crRNA MFE −20.3000 −12.8000

Log10 Unpaired probability −7.5546 −1.6244

hybridization MFE nt 3–15 −29.4000 −17.9000

hybridization MFE nt 15–23 −21.8000 −12.3000

Local Amax probability 0.0000 0.5000

Local Cmax probability 0.0000 0.5000

Local Gmax probability 0.0000 0.6667

Local Umax probability 0.0833 0.5000

Local AUmax probability 0.2727 0.7272

Local GCmax probability 0.2222 0.7778

Local Amin probability 0.0000 0.5714

Local Cmin probability 0.0000 0.5556

Local Gmin probability 0.0000 0.4444

Local Umin probability 0.0000 0.5000

Local AUmin probability 0.2222 0.7778

Guide A nt probability 0.0870 0.4348

Guide C nt probability 0.0870 0.3913

Guide G nt probability 0.0870 0.4348

Guide AA di-nt probability 0.0000 0.1818

Guide AC di-nt probability 0.0000 0.1364

Guide AG di-nt probability 0.0000 0.1818
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Model Feature 5th percentile 95th percentile

Guide AU di-nt probability 0.0000 0.1364

Guide CA di-nt probability 0.0000 0.1818

Guide CC di-nt probability 0.0000 0.1364

Guide CG di-nt probability 0.0000 0.1364

Guide CU di-nt probability 0.0000 0.1364

Guide GA di-nt probability 0.0000 0.1364

Guide GC di-nt probability 0.0000 0.1818

Guide GG di-nt probability 0.0000 0.1818

Guide GU di-nt probability 0.0000 0.1364

Guide UA di-nt probability 0.0000 0.1364

Guide UC di-nt probability 0.0000 0.1818

Guide UG di-nt probability 0.0000 0.1818

To evaluate and compare model performances, we randomly sampled 1,000 bootstrap 

datasets from the data of perfect match guide RNA log2FC response values and selected 

features. We used 399 data points for the initial RFGFP model and 2918 data points for all 

CDS-annotating perfect match guides across the four tiling screens. For the RFcombined 

model we normalized the observed log2FC values data prior to training and testing as 

described earlier. Normalized response values showed better generalizability compared to 

unnormalized or scaled log2FC. For each bootstrap sample, 70% of the data was used for 

training and the remaining 30% of the data was held out for testing, ensuring a 70/30 split 

for each screen dataset when testing the RFcombined model. Linear dependencies between 

features were identified using the function findLinearCombos from the R package caret and 

removed. The model performance was evaluated by calculating the Spearman correlation 

coefficient rs and Pearson r2 to the held-out data. We compared a variety of different 

methods 40 (see Table below).

# Name Function Parameter R package

1 all subsets regression, 
maximizing the Bayesian 
information criterion (BIC)

regsubsets nvmax=15, nbest=1, method=“forward”, 
really.big=T

leaps

2 stepwise regression, maximizing 
the BIC

stepAIC − MASS

3 stepwise regression, maximizing 
the Akaike information criterion 
(AIC)

stepAIC − MASS

4 Lasso regression cv.glmnet family=“gaussian”, nfolds=10, alpha = 1 glmnet

5 multivariate adaptive regression 
splines (MARS)

earth degree = 1, trace = 0, nk = 500 earth

6 Random Forest randomForest − randomForest

7 principal component regression 
(PCR)

pcr ncomp = 5 (during prediction) pls

8 Partial Least Squares (PLSR) plsr ncomp = 5 (during prediction) pls
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# Name Function Parameter R package

9 Support Vector Machine w/ L1 
loss function (SMV+L1)

tune method=svm, ranges = 
list(epsilon=seq(0,1,0.025), cost=2^(2:8)), 
kernel=“radial”

e1071

For both models, we tested a variety of feature combinations including crRNA folding 

energies, RNA-RNA hybridization energies, target site accessibility, overall and positional 

(di-)nucleotide probabilities, and one-hot encoding for single and di-nucleotide of the guide 

target-sites and their upstream and downstream flanking four nucleotides. Together, these 

represented 644 features for the combined on-target model. A full set of features for the 

combined on-target model can be found in Supplementary Data 2. For the initial on target 

model based on the GFP screen data, we evaluate a set of 15 defined features 

(Supplementary Table 1) along-side with one-hot encoded positional nucleotide information 

and GC content. These 15 features were defined based on their positive or negative 

correlation to the observed response value during the data exploration (see also 

Supplementary Note 1). We iteratively reduced the numbers of features from 15 to 6 for the 

RFGFP model and monitored the model performance as described above. At each iteration, 

the Random Forest model performed slightly better than any other learning approach. 

Reducing the features to fewer than the selected 6 features (RFminimal = RFGFP) reduced the 

model performance. For the combined on-target model, we did not iteratively reduce the set 

of 35 selected features. We compared the RFGFP model to an SVM+L1 model similar to one 

of the first CRISPR-Cas9 on-target model. Specifically, we used one-hot encoding for all 35 

(31) nucleotide positions considered (27 guide RNA positions in case of the GFP screen and 

23 for the combined model and 8 additional positions with 4 upstream and 4 downstream 

nucleotides). Considering all positions, the feature space contained 140 single nucleotide 

features, 544 di-nucleotide features and the GC-content (685 non-all-zero features). Here, 

we used tuning (see table below for parameters) to increase model performance for SVM

+L1 specifically. Here, but also for the combined model, one-hot encoded features did not 

lead to high Spearman correlation coefficient rs to the held-out data.

For further evaluation of the random forest models we used 10-fold cross-validation by 

randomly partitioning the data into 10 equally sized partitions ensuring even contribution 

from each screen to each partition. We trained the model 10 times on 90% of the data and 

predicted the held-out 10%. For each data point, we assigned the known guide RNA efficacy 

quartile based on the log2FC enrichment and compared it the predicted efficacy quartiles in 

the held-out data. For the RFGFP model we found that the model could readily separate poor 

performing from effective guide RNAs. Accordingly, 46% of the guides present in the 

highest efficacy-quartile are predicted to reside in the best performing quartile. Conversely, 

64% of guides present in the lowest efficacy-quartile are predicted to reside in the poorest 

performing quartile (Supplementary Fig. 7e). We also assessed the predicted guide score by 

calculating the median predicted guide score for the top and bottom ranked crRNAs in the 

10% held-out data based on the known log2FC-rank for all 10 cross-validation folds (top/

bottom n = 2, 4, 8, 16, 32, 64, 128 or 256 guide RNAs). To compute the null distribution, we 

calculated the median predicted guides scores of randomly selected guide RNAs across 

1,000 samplings for each n. For the leave-one-out cross-validation we trained on all data 
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from three tiling screens and performed Spearman rank correlation of the predicted the guide 

efficiency of the held-out fourth screen to the observed log2FC enrichments.

To make the guide score more interpretable, we standardized the guide score to a [0, 1] 

interval preserving the distribution between 5th and 95th percentile. Normalized values 

exceeding the [0, 1] interval were set to 0 or 1, respectively. The final RFGFP model was 

trained on all data points for perfect match guides using the six selected features with 1500 

regression trees. The model explains 36.9% of the observed variance with a mean of squared 

residuals of 0.139. The table below shows the feature contribution for the RFGFP model.

Feature %IncMSE IncNodePurify

crRNA MFE 57.989 22.617

Local A probability 30.542 7.529

Local C probability 46.255 13.683

Local G probability 38.557 9.256

Local U probability 29.953 6.555

upstream U probability 31.559 8.629

Similarly, final RFcombined was trained on 2,918 data points using 35 selected features. 

Tuning the number of trees (ntree) and number of splitting variables per node (mtry) led to 

insignificant performance improvements compared to default settings. The model (mtry = 

12, ntree = 2000) explains 47.16% of the observed variance, a mean of squared residuals of 

0.168, and the feature contribution as indicated below ranked by importance:

Feature %IncMSE IncNodePurity

Local Gmax probability 86.6814 47.9987

crRNA MFE 72.5480 69.6068

Unpaired probability 72.1078 57.5635

Local Cmin probability 56.9153 37.2137

hybridization MFE nt 15–23 54.5793 94.9857

Guide G nt probability 47.7324 29.2452

Guide CA di-nt probability 47.6241 21.4664

hybridization MFE nt 3–15 47.3083 46.7462

Guide CG di-nt probability 44.0711 11.7069

Guide AU di-nt probability 42.1128 15.6205

Guide CU di-nt probability 40.6967 16.9172

Guide A nt probability 39.7297 25.0736

Local GCmax probability 39.7236 59.0805

Local AUmin probability 38.8318 56.3599

Local Umax probability 38.7535 24.4657

Guide GG di-nt probability 38.5896 22.2621

Local Gmin probability 36.5244 19.6159

Wessels et al. Page 18

Nat Biotechnol. Author manuscript; available in PMC 2020 September 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Feature %IncMSE IncNodePurity

Guide UC di-nt probability 36.3043 15.2075

Guide AC di-nt probability 36.2901 14.2361

Guide C nt probability 36.0901 16.8637

Local Umin probability 35.6886 16.2571

Guide AG di-nt probability 34.9534 14.6260

Local Amin probability 34.6632 17.4928

Local Amax probability 33.6557 16.1888

Guide AA di-nt probability 33.2106 13.3830

Guide GC di-nt probability 33.0670 13.3209

Guide CC di-nt probability 32.2834 12.9797

Guide UG di-nt probability 31.9188 13.1659

Guide GU di-nt probability 31.8413 12.8934

Guide GA di-nt probability 31.3837 13.1399

Guide UA di-nt probability 30.6930 12.5052

Local Cmax probability 29.8186 14.2189

Local AUmax probability 22.4842 14.2585

Predicted correctly folded DR 8.2669 4.0679

Predicted G-quadruplex −3.0274 0.0219

RfxCas13d guide scoring

We created a user-friendly R script that readily predicts RfxCas13d on-target guide scores. 

The only user-provided argument is a single-entry FASTA file input of minimally 30nt that 

represents the target sequence, such as a transcript isoform sequence. The software first 

generates all possible 23mer guide RNAs and collects all required features and predicts 

guide RNA efficacies. The only filter applied removes guide RNAs with homopolymers of 5 

or more Ts and 6 or more Vs (V = A, C, G). Such guide RNAs may trigger early transcript 

termination for PolIII transcription or cause difficulties during oligo synthesis. The software 

returns a FASTA file with guide RNA sequences ranked by the predicted standardized guide 

score. In addition, a csv file is created following providing additional information. 

Optionally, the script can be used to plot the guide score distribution along the provided 

target sequence for visualization. The software is available here: https://gitlab.com/

sanjanalab/cas13.

We used this software to predict guide scores for all transcripts (including all biotypes: 

protein_coding, nonsense_mediated_decay, non_stop_decay, IG_*_gene, TR_*_gene, 

polymorphic_ pseudogene) of protein coding genes annotated in GENCODE v19 (GRCh37) 

(n = 94,873 transcripts) and provide the top 10 ranked 5’UTR, coding sequence and 3’UTR 

annotating guide RNA sequences (Supplementary Data 3). We have made all guide score 

predictions available online (https://cas13design.nygenome.org).
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RfxCas13d guide scoring validation

To validate our that our initial RFGFP model can readily separate between poorly and well-

performing crRNAs, we performed several experiments.

First, we chose two genes that encode for cell surface proteins that allow for quantitative 

assessment of their expression levels by FACS. For each gene we predicted crRNAs for the 

highest expressed transcript isoform in HEK293FT cells (CD46: ENST00000367042.1, 

CD71 [TFRC]: ENST00000360110.4). For each gene, we selected 3 guides present in the 

low scoring quartiles (Q1 and Q2) and 3 guides in the high scoring quartiles (Q3 and Q4). 

We selected the guides to be non-overlapping and to reside in 3 different regions of the 

target transcript.

Then, we performed two essentiality screens with a dropout growth phenotype readout in 

HEK293FT and A375 cells, respectively. We designed two crRNA libraries targeting 

essential and control genes with a number of predicted low-scoring and high-scoring guide 

RNAs as described above (see Screen library design and pooled oligo cloning). For the 

HEK293FT cell screen, we compared the guide depletion of four groups of 30 guides 

(Essential gene targeted by high-scoring guide or by low-scoring guide, and control genes 

targeted by high-scoring guide or by low-scoring guide). We expected the greatest depletion 

for the 30 high-scoring guide RNAs targeting essential genes. Similarly, we compared the 

relative guide depletion of the same four groups of guide RNAs in the A375 screen, with the 

expectation that the 20 high-scoring guides per essential gene would be the most depleted.

For gene ranking based on guide depletion, we used robust rank aggregation (RRA) 39 to 

assign a p-value based on the consistency of log2FC-based rank-consistency of the most 

depleted N guide RNAs per gene (with n in {1, 5, 20}) across the two A375 screen 

replicates. The -log10 transformed p-values were then compared to other growth screens 

(RNAi and Cas9) using Spearman rank correlation. Specifically, we compared the RRA-

derived log10 p-value to the log2FC from an RNAi-based DEMETER2 v5 repository 28 and 

the merged STARS scores from a Cas9-based approach29. For the correlation we only used 

genes with value present in all scores (All essential genes: n = 35; Control genes: n = 15).

Furthermore, we used the log2FC guide depletion values to compare the predictive value of 

the RFGFP and RFcombined models. Specifically, for both essentiality screens we used 10 

essential genes (all in HEK293FT and the 10 most depleted in A375 cells) and correlated the 

predicted guide scores from both models to the observed log2FC guide depletion scores 

(normalized to 0–100% per gene) of all detected guide RNAs (HEK293FT: n = 60 with 6 

guides per gene; A375: n = 398 with up to 40 guides per gene). We made the same 

comparison on a per-gene level using all 40 guide RNAs per gene in the A375 screen.

Data representation

In all boxplots, boxes indicate the median and interquartile ranges, with whiskers indicating 

either 1.5 times the interquartile range, or the most extreme data point outside the 1.5-fold 

interquartile. All transfection experiments show the mean of three replicate experiments with 

individual replicates plotted as points.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. CRISPR Type VI-D RfxCas13d GFP knock-down pooled tiling screen.
(a) The GFP-targeting guide RNA (gRNA) library (n = 7,500) was lentivirally transduced 

into TetO-RfxCas13d and GFPd2PEST HEK293 cells in n = 3 transduction replicates. After 

selection, cells are sorted by GFP intensities into 4 bins. (b, c) Log2 fold-change (log2FC) 

enrichment scores of gRNAs comparing gRNA counts of the lowest fluorescence (Bin 1) to 

the input (unsorted) cell population. Scores are demarcated by gRNA type as given by the 

list in a. (b) All gRNAs. (c) A single perfect match (PM) gRNA and corresponding 

derivative gRNAs with mismatches. Guide RNA log2FC enrichments are calculated relative 

to the perfect match reference gRNA (Δlog2FC). Black lines denote medians. (d) 

Distribution of perfect match gRNAs along the GFP mRNA and their log2FC enrichment (n 

= 399). Guide RNAs are separated into targeting efficacy quartiles Q1-Q4 with Q4 

containing guides with the best knock-down efficacy. Line indicates LOESS fit with 95% 

confidence interval shading. (e) GFP knock-down validation for 6 guides (3 with high 

efficacy and 3 with low efficacy) highlighted in d. (Veh = vehicle transfection, NT = non-

targeting gRNAs; lines indicate mean of n = 3 biological replicates). (f) Relative targeting 

efficacy (Δlog2FC) of gRNAs with single nucleotide mismatches (SM) at the indicated 

position relative to their cognate perfect match gRNAs (n = 100). Significance: * p < 0.05, 

** p < 0.01, *** p < 0.001 from a two-tailed t-test. (g) (top) Change in targeting efficacy by 
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gRNA nucleotide identity or mismatch type. (bottom) Change in targeting efficacy for SM, 

CD, or consecutive triple mismatch (CT) by position. (h) Validation of RfxCas13d seed 

region. (left) Individual perfect match and mismatch gRNAs relative to GFP target mRNA. 

(right) Percent GFP negative cells after co-transfection of specific GFP-targeting gRNAs 

normalized to the non-targeting control. (Veh = vehicle transfection, NT = non-targeting 

gRNAs, PM = perfect match guide RNA; bars indicate mean of n = 3 biological replicates). 

Boxes in b and f indicate the median and interquartile ranges, with whiskers indicating 1.5 

times the interquartile range, or the most extreme data point outside the 1.5-fold 

interquartile.
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Figure 2. RfxCas13d on-target guide RNA prediction model.
(a) Spearman correlation rs of predictions from a Random Forest (RF) regression model 

(either with all features or a minimal set of the most predictive features) and a support vector 

machine with L1 regression to held-out screen data (n = 1,000 bootstraps). (b) Validation of 

on-target model testing 3 high-scoring and 3 low-scoring guide RNAs (gRNAs) via targeting 

of cell-surface proteins and antibody labeling to measure target knock-down by flow 

cytometry. Relative knock-down indicates the percent reduction (relative to non-targeting 

gRNAs) in the mean fluorescence intensity (lines indicate mean of n = 3 biological 

replicates). (c) Validation of on-target model assaying 3 high-scoring and 3 low-scoring 

gRNAs per gene in a gene essentiality screen in HEK293 cells with growth dropout 

phenotype testing 10 essential genes and 10 control genes. Each point represents one gRNA 

as a mean of three replicate experiments. The y-axis depicts the log2 fold-change (FC) of the 

gRNA at the indicated time point relative to the Day 0 sample. One-sided KS-test comparing 

high-scoring and low-scoring guides, *** p = 2×10−5, **** p = 2×10-6. (d) A375 

essentiality screen with growth dropout phenotype assaying 20 high-scoring and 20 low-

scoring gRNAs per gene (n = 35 essential genes and n = 65 control genes). One-sided KS-

test comparing high-scoring (n = 698) or low-scoring (n = 700) guides to the distribution of 

non-targeting gRNAs (n = 677). * p = 0.043, ** p = 0.0095, **** p < 1×10-44. (e) Gene 

ranking for essentiality based on the robust rank aggregation (RRA) p-value across 

replicates for all 20 high-scoring gRNAs and all n = 100 genes tested. Blue dots denote 

essential genes from a prior RNAi screen 28. (f) Spearman rank correlation of Cas13d gene 

depletion (as in e) with prior CRISPR-Cas9 and RNAi screens in A375 cells. Analysis 

includes genes represented in all libraries (n = 35 essential genes and n = 15 control genes). 

(RNAi screen: A375 DEMETER2 v5 score 28, Cas9 screen: A375 STARS score 29). Boxes 
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in a, c and d indicate the median and interquartile ranges, with whiskers indicating 1.5 times 

the interquartile range, or the most extreme data point outside the 1.5-fold interquartile.
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Figure 3. Improvement of RfxCas13d on-target guide RNA prediction model with tiling screens 
over endogenous transcripts.
(a-c) Distribution of perfect match guide RNAs (gRNAs) along the coding region of CD46 

(n = 704 gRNAs), CD55 (n = 925 gRNAs) and CD71 (n = 890 gRNAs) transcripts and their 

log2 fold-change (FC) enrichments. Positive FC values indicate better transcript knock-

down. Guide RNAs are separated into targeting efficacy quartiles Q1-Q4 per gene with Q4 

containing gRNAs with the best knock-down efficacy. Numbered bars below indicate exons. 

Lines indicate LOESS fit with 95% confidence interval shading. (d) Spearman correlation rs 

of predictions from the RFminimal (RFGFP) model and the updated RFcombined regression 

model to held-out screen data using bootstrapping across all four tiling screens (n = 1000 

bootstraps). (e) Comparison of predicted and measured log2FC quartiles across the 10-fold 

model cross-validation. Quartile definition as in a-c. Bars indicate the mean. Error bars 

denote s.e.m.. (f) Spearman rank correlation between observed gRNA depletion (target 

knock-down) and the predicted guide score for the indicated Cas13d essentiality screens and 

indicated on-target models (10 most essential genes; A375: n = 398 gRNAs, HEK: n = 60 

gRNAs) (see Fig 2c–d and Supplementary Fig. 8). Boxes in d indicate the median and 

interquartile ranges, with whiskers indicating 1.5 times the interquartile range, or the most 

extreme data point outside the 1.5-fold interquartile.
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