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Abstract

Oligodendrocyte lineage cells (oligodendroglia) and neurons engage in bidirectional 

communication throughout life to support healthy brain function. Recent work shows that changes 

in neuronal activity can modulate proliferation, differentiation, and myelination to support the 

formation and function of neural circuits. While oligodendroglia express a diverse collection of 

receptors for growth factors, signaling molecules, neurotransmitters and neuromodulators, our 

knowledge of the intracellular signaling pathways that are regulated by neuronal activity remains 

largely incomplete. Many of the pathways that modulate oligodendroglia behavior are driven by 

changes in intracellular calcium signaling, which may differentially affect cytoskeletal dynamics, 

gene expression, maturation, integration, and axonal support. Additionally, activity-dependent 

neuron-oligodendroglia communication plays an integral role in the recovery from demyelinating 

injuries. In this review, we summarize the modalities of communication between neurons and 

oligodendroglia and explore possible roles of activity-dependent calcium signaling in mediating 

cellular behavior and myelination.

Highlights

• Neuron-oligodendroglia signaling is essential for myelination and circuit function

• Neuronal activity modulates intracellular calcium in oligodendroglia

• Intracellular calcium affects cytoskeleton, gene expression, and metabolic support

• Neuronal activity-dependent signaling drives remyelination and disease recovery

Introduction

Myelination by oligodendrocytes increases conduction velocity, metabolic efficiency, 

energetic support, and information processing capacity of the central nervous system (CNS, 
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[1]). Oligodendrocytes are generated through the differentiation of oligodendrocyte 

precursor cells (OPCs, Fig. 1). During development, these proliferative precursors migrate 

from germinal zones to distribute throughout the CNS. OPCs persist in the adult nervous 

system in an evenly-spaced, tiled distribution throughout life, where they retain the potential 

to differentiate into new oligodendrocytes. Dynamic, bidirectional communication between 

neurons and oligodendrocyte lineage cells regulates multiple stages of cellular maturation, 

including OPC differentiation and mature oligodendrocyte integration into neuronal circuits 

(Fig. 1). Since Barres and Raff [2] and Demerens et al. [3] demonstrated that electrical 

activity modulates oligodendrocyte precursor proliferation and myelination in the optic 

nerve, considerable progress has been made in understanding the complex relationship 

between active axons and oligodendrocyte lineage cells throughout life.

Reciprocal signaling between active neurons and oligodendroglia has proven essential to 

shape patterns of myelination and tune circuit function. During development, seminal 

studies in the zebrafish showed that activity-dependent neuronal vesicular release is a 

primary driver of axon selection and myelin ensheathment during development [4,5]. In the 

adult brain, additional evidence for activity-dependent regulation of oligodendrogenesis and 

mature oligodendrocyte integration into circuits has been revealed using electrical [6], 

optogenetic [7], pharmacogenetic [8], and sensory stimulation techniques [9] in the mouse. 

Furthermore, eliminating the generation of new oligodendrocytes in the adult nervous 

system decreased the ability of mice to learn and retrieve new memories, suggesting an 

exciting role for myelination in the formation and consolidation of novel neural circuits [10–

13]. These and other studies have provided a foundation for the field moving forward, as we 

continue to dissect the dynamic interplay between neuronal activity, oligodendroglial cell 

signaling, and brain plasticity.

These findings are mirrored in humans, where new oligodendrocytes are generated 

continuously in the cerebral cortex and life experience may modulate the myelination of 

axons [14]. Juggling and practicing the piano increased white matter microstructure in 

related brain regions [15,16], while social isolation in children leads to decreased 

development of white matter tracts connected to the prefrontal cortex [17,18]. Taken 

together, these data demonstrate that neuronal activity regulates the dynamics of 

oligodendrocyte lineage cells to facilitate healthy brain function, learning, and behavior. 

However, the precise mechanisms through which neuronal activity-dependent signals are 

transduced into complex intracellular changes within the oligodendrocyte lineage remain 

unclear. In this review, we will focus on recent advances that have increased our 

understanding of the extrinsic and intracellular signaling mechanisms that allow 

oligodendrocyte lineage cells to sense and respond to neuronal activity and support neural 

plasticity.

1. Detection of neuronal activity by the oligodendrocyte lineage

Neuron-OPC synapses

While it is clear that neuronal activity modulates cells of the oligodendrocyte lineage, the 

biological mechanisms underlying this interaction remain ill defined. Pioneering work by 

Bergles et al. [19] demonstrated that neurons make functional excitatory synapses on OPC 

Thornton and Hughes Page 2

Neurosci Lett. Author manuscript; available in PMC 2021 May 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



processes using whole cell patch clamp recording in hippocampal slices. In these 

experiments, Schaffer collateral stimulation elicited fast, quantal, excitatory postsynaptic 

potentials in CA1 OPCs that were mediated by α-amino-3-hydroxy-5-methyl 

isoxazolepropionic acid (AMPA) receptors and exhibited paired-pulse facilitation similar to 

that of pyramidal neurons. Electron microscopy revealed direct synaptic junctions on OPC 

processes with clustered presynaptic vesicles and postsynaptic membrane densities. 

Subsequent research has defined the electrophysiological properties of OPCs and continues 

to work toward an understanding of the functional relevance of this unique cellular 

interaction.

OPCs are specialized to detect neuronal activity through the expression of numerous 

neurotransmitter receptors and ion channels (Fig. 2, [20]; reviewed in Larson et al., [21]). 

While OPCs have been shown to receive synaptic input in all brain regions explored [19,22–

24], there is region- and age-specific heterogeneity in receptor and ion channel expression 

[24–26] suggesting that the microenvironment may regulate their cellular behavior. Recently, 

monosynaptic viral tracing of OPC afferents indicated that OPCs of the cortex and corpus 

callosum are connected to widely distributed neuronal networks throughout the brain [27]. 

How OPCs integrate and respond to synaptic information from diverse brain regions and cell 

types remains an open question and an active area of investigation in the field.

The expression of both calcium-permeable and impermeable AMPA receptors in OPCs [28] 

allows these cells to rapidly respond to synaptic input through membrane depolarization and 

local calcium influx. Recent studies manipulating AMPA receptor expression within the 

oligodendrocyte lineage defined roles for AMPA receptor activation and subunit 

composition in the balance of proliferation of OPCs and survival of mature 

oligodendrocytes. Modifying the amino acid composition of the GluA2 subunit to increase 

the calcium-permeability of AMPA receptors enhanced OPC proliferation and decreased the 

number of mature oligodendrocytes [29]. Loss of AMPA receptor signaling via germ-line 

double and triple knockouts of the GluA2–4 subunits did not alter OPC proliferation, but 

also decreased the survival of mature oligodendrocytes [30]. OPCs also express NMDA 

receptors and their activation is thought to play distinct roles in the oligodendrocyte lineage 

following CNS injury [31–33], however, the necessity for NMDA-mediated currents in 

normal OPC development and maturation remains unclear due to compensation by calcium-

permeable AMPA receptors, whose expression is enhanced following NMDA receptor 

ablation (Fig. 2, [34,35]). These studies highlight an important role for glutamate signaling 

via AMPA and NMDA receptor signaling in the proliferation of OPCs and generation of 

new oligodendrocytes and myelin in the adult brain.

At interneuron-OPC synapses, gamma-aminobutyric acid (GABA) release induces brief 

GABAA receptor-mediated membrane postsynaptic events [36,37]. These miniature 

postsynaptic events elicit depolarizing changes in membrane potential due to an increased 

reversal potential for chloride in OPCs (~−43mV). In the adult hippocampus, GABAergic 

synaptic transmission promotes the differentiation of neuronal progenitors by increasing 

intracellular calcium and expression of NeuroD [38]. Similarly, GABAergic signaling onto 

OPCs has physiological consequences, increasing OPC proliferation and suppressing 

oligodendrogenesis [39]. Whether synaptic or extrasynaptic GABA receptors drive these 
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changes in OPC proliferation and differentiation may depend on brain region and 

developmental age [40,41].

The close association in the distribution of GABAergic neurons and OPCs in the cortex [42], 

suggests a unique connection between interneurons and OPCs. During development, the 

secretion of the cytokine fractalkine from newborn interneurons, enhances the generation of 

oligodendrocytes [43]. This intimate interaction between interneurons and oligodendroglia 

continues in the adult CNS as a large fraction of myelinated fibers in the cortex are axons of 

fast-spiking PV neurons in mice and humans [44–46]. Furthermore, enhancing the activity 

of PV neurons increases their axonal arborization as well as their myelination [47] 

suggesting a role of interneuron-oligodendroglia interactions in plasticity in the adult brain. 

These findings and others have led to a recent hypothesis that the myelination of fast-spiking 

parvalbumin interneurons could play an important role in the pathophysiology of 

schizophrenia [46]. Future work examining how GABAergic signaling acts in concert with 

glutamatergic signaling to balance levels of oligodendrocyte proliferation, differentiation, 

and myelination in the normal and diseased CNS will provide additional insights into the 

functions of interneuron-oligodendroglia interactions.

Neurotransmitters and other signaling molecules

Do oligodendrocyte lineage cells sense and respond to other signaling molecules in addition 

to those at synapses? Oligodendrocyte precursors express a wide array of neurotransmitter 

and neuroactive ligand receptors. In addition to neurotransmitter receptors to amino acids 

(glutamate and GABA), OPCs express receptors for other neuromodulators (ATP, 

acetylcholine, histamine, norepinephrine, serotonin, dopamine) and neuropeptides 

(substance P, angiotensin II, bradykinin). Activation of these receptors in OPCs elicits 

intracellular calcium signaling, suggesting that oligodendroglia can sense and respond to 

numerous neuronal activity-dependent signals [48]. Since this topic has been extensively 

reviewed previously [21], we will only briefly describe how these signaling molecules affect 

oligodendroglia.

Metabotropic glutamate receptors (mGluRs) represent an extrasynaptic mechanism to detect 

axonal glutamate release and modulate intracellular signaling [49,50]. They are expressed in 

the oligodendrocyte lineage and their receptor subtype expression varies with cell cycle 

stage [51]. Group I mGluR activation increased the expression of calcium-permeable AMPA 

receptors in OPCs while purinergic stimulation decreased their expression, implying that 

mGluR activation can modulate the sensitivity of OPCs to synaptic activation (Fig. 2, [52]). 

However, additional experiments are needed to further define the role of mGluRs in shaping 

oligodendrocyte precursor behavior.

Adenosine triphosphate (ATP) and its derivatives are released from active axons and bind to 

purinergic receptors on OPCs. In vitro studies showed that adenosine application to in vitro 
cultures increased OPC differentiation [53], and stimulated calcium transients and myelin 

protein translation in oligodendrocyte processes [54]. While the role of ATP and purinergic 

receptors in oligodendroglia is less understood in the intact nervous system, signaling via 

another nucleotide receptor, G protein-coupled receptor 17 (GPR17, [55]), has been shown 

to regulate oligodendroglia in the intact CNS. GPR17 is predominantly expressed within the 
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oligodendrocyte lineage in the nervous system, specifically within premyelinating 

oligodendrocytes [56,57]. Data from overexpression and knockout studies in mice indicate 

that GPR17 signaling regulates the transition between premyelinating and mature 

oligodendrocytes by modulating the nuclear translocation of helix-loop-helix proteins ID2/4 

[56], which have been previously shown to be potent inhibitors of oligodendrocyte 

differentiation [58,59].

Oligodendrocyte lineage cells also express both nicotinic and muscarinic acetylcholine 

receptors, which allow them to sense and respond to cholinergic neuromodulation [60]. Cell-

specific ablation of the M1 muscarinic receptor within the oligodendrocyte lineage lead to 

accelerated remyelination in experimental models of multiple sclerosis (MS, [61]). This 

finding has additional clinical relevance as veterans affected by Gulf War Illness show 

changes in white matter volume due to exposure to the acetylcholinesterase inhibitor sarin 

gas [60,62]. Recent clinical trials showed efficacy of the remyelinating drug candidate 

clemastine fumarate, an antagonist of muscarinic acetylcholine receptors, in patients with 

multiple sclerosis [63–65].

Cultured OPCs respond to other neuromodulators, such as serotonin, with increases in 

intracellular calcium and changes in differentiation and myelination [48,66]. While gene 

expression databases indicate that the only serotonin receptor subunit with significant 

expression in oligodendroglia is the 5HT5a receptor [20,67], mice deficient in tryptophan 

hydroxylase 2, the rate-limiting enzyme in the synthesis of serotonin, have increases in OPC 

proliferation in the hypothalamus [68]. However, the effects of serotonergic 

neuromodulation on the oligodendrocyte lineage remains incompletely understood.

Less is known about the roles of other neuromodulator receptors expressed on OPCs. 

Fluorescent reporter lines indicate that adrenergic receptors localize to OPCs [69] and 

application of norepinephrine in vitro leads to increases in IP3 production and calcium 

concentration [70,71]. Additional work indicates that adrenergic receptor activation inhibits 

OPC proliferation, while increasing differentiation in vitro [72]. Although the data on 

dopaminergic modulation of oligodendroglia is limited, one study found that the D3 receptor 

is expressed in OPCs during peak myelination and application of the dopamine receptor 

agonist quinpirole decreased differentiation in vitro [73]. Additionally, dopamine D2 and D3 

receptor agonists protected oligodendrocytes from oxidative stress following glutamate 

excitotoxicity and oxygen/glucose injury, suggesting a potential role for these receptors in 

regulating oligodendrocyte metabolic pathways [74].

The diverse array of signaling molecule receptors expressed on oligodendrocyte lineage cells 

clearly allows for highly sensitive detection of extrasynaptic signals released during 

neuronal firing. Future experiments examining the selectivity and integration of these varied 

signals and how they translate into changes in cellular behavior will provide clearer insights 

on how oligodendroglia respond to and interact with the complexity of neuronal networks in 

the intact CNS.
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2. Effects of activity-dependent calcium signaling in oligodendroglia

Multiple sources of calcium

Calcium signaling is a dynamic second messenger system that may link extrinsic signals to 

complex intracellular changes within the oligodendrocyte lineage. Calcium events in 

oligodendrocyte lineage cells are varied in their spatiotemporal dynamics and can be derived 

from both intra- and extracellular sources. Haberlandt et al. [75] showed that calcium-

permeable AMPA receptors, voltage-gated calcium channels (VGCCs), group I 

metabotropic glutamate-receptors, and calcium-induced calcium release from the 

endoplasmic reticulum (ER) contribute to stimulation-induced calcium transients in OPC 

processes in acute hippocampal slices (Fig. 2). In addition to group I mGluRs, activation of 

other Gq-coupled protein receptors, such as muscarinic acetylcholine receptors [76] and P2Y 

purinergic receptors [77], leads to increases in intracellular calcium via phospholipase C-

mediated release of inositol 1,4,5-triphosphate (IP3) and binding to ER IP3 receptors (Fig. 

2). A recent study also demonstrated that calcium release from intracellular ER stores via 

RyR3 receptors is important for OPC differentiation in vitro [78]. The role of intracellular 

calcium release in regulating OPC behavior in vivo has yet to be explored.

Extracellular and synaptic signals induce extracellular calcium entry into OPCs via VGCCs, 

ligand-gated neurotransmitter receptors, and other transmembrane proteins. VGCCs have 

been studied in the oligodendrocyte lineage as possible mediators of activity-dependent 

changes in cellular behavior. For example, conditional deletion of the L-type calcium 

channel Cav1.2 in OPCs reduced oligodendrocyte maturation and myelination in the 

postnatal brain, and, following cuprizone demyelination, impaired remyelination of the 

corpus callosum and cortex [79,80]. Calcium-permeable AMPA receptors are a major source 

of calcium entry in OPCs [81], and they express high levels of mRNA transcript for Gria2 

[20,67,82], which encodes the calcium permeability-determining AMPA receptor subunit. 

OPCs also express NMDA receptors [20,67,82], and although it has been suggested that 

their expression is not required for normal OPC development [34] they may still contribute 

to activity-dependent calcium flux in these precursors, especially in the context of injury 

[31]. GABAA receptor activity on OPCs increases intracellular calcium independent of 

VGCCs through the generation of a persistent non-inactivating sodium current (NI-VGNa+) 

that leads to reversal activity of sodium/calcium exchangers (NCX, Fig. 2, [83]). Changes in 

OPC intracellular calcium concentration arise from a plethora of sources and can be driven 

by a variety of signaling molecules. The pathway-specific effects of these spatiotemporally 

diverse calcium signals represent an intriguing area for future research.

The cellular sources and signaling consequences for calcium are less understood in the 

mature oligodendrocyte. In myelinating oligodendrocytes, NMDA receptors are thought to 

mediate calcium accumulation in response to ischemia [31–33] and a recent study showed 

that electrical stimulation in ex vivo optic nerve preparations induced NMDA-mediated 

calcium increases in myelin sheaths ([84]). However, Hamilton et al. [85] challenged the 

notion that NMDA receptors mediate calcium currents in mature oligodendrocytes, and 

instead proposed a mechanism dependent on proton-gated, calcium permeable TRPA1 

channels. Recently, Battefeld et al. [86] combined visually-guided patch clamp 
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electrophysiology with high-speed calcium imaging in somatosensory cortical slices to show 

that calcium changes in mature myelin sheaths of cortical oligodendrocytes were due to 

mitochondrial release in response to increased metabolic demand. Determining the sources 

and mechanisms driving calcium events in mature oligodendrocytes has proven to be 

difficult, however recent work has shed light on the specific roles of calcium in the 

formation and maintenance of myelin sheaths in response to changes in neuronal activity.

Modulation of intracellular calcium by neuronal activity

Does the manipulation of neuronal activity directly modulate oligodendroglial calcium 

events? Sun et al. [87] used hippocampal slices to show that electrical stimulation of OPCs 

induces calcium elevations in processes that are dependent on dendritic VGCCs. 

Physiologically relevant stimulation levels rarely elicited major calcium events in these ex 
vivo experiments, while the application of 4-AP increased the OPC responses, implying a 

role for A-type potassium channels in gating the calcium response to glutamatergic 

signaling. In contrast, in vivo two-photon imaging in mice expressing GCaM6f in OPCs 

revealed robust calcium responses to odor stimulation in olfactory bulb glomeruli OPCs 

[88]. Glomerular OPC activation was odor-specific and the onset of calcium responses in 

OPC processes was temporally indistinguishable from the activation of the olfactory 

receptor neuron axon terminals. Future studies using longitudinal in vivo multi-color 

calcium imaging techniques to visualize neuronal and OPC calcium signaling 

simultaneously will help to elucidate the mechanistic links between neuronal activity, OPC 

calcium influx, and oligodendrocyte lineage cell behavior.

Recent studies have also applied in vivo calcium imaging in zebrafish to assess the role of 

calcium transients during oligodendrocyte maturation and myelin wrapping [89,90]. 

Krasnow and colleagues found calcium transients in the processes and the cell soma of 

premyelinating oligodendrocytes decreased during maturation into myelinating 

oligodendrocytes. Additional experiments used tetrodotoxin (TTX) to block action potential 

generation and showed that a significant proportion of oligodendrocyte calcium events are 

dependent on neuronal activity. However, it is important to note that since oligodendroglia 

express tetrodotoxin-sensitive voltage-gated sodium channels [20,67,82], utilization of 

pharmacological methods to block neuronal activity (i.e. TTX) may also have effects on 

oligodendroglial ion balance and cell maturation. An emerging hypothesis is that high-

frequency, short duration microdomain calcium events facilitate internode growth, while 

long-lasting calcium bursts induce sheath retraction during myelin development. To explore 

possible mechanisms of calcium-dependent sheath dynamics, Baraban et al. [89] showed 

that inhibiting calpain proteases increased the number of internodes produced by each 

oligodendrocyte, implicating calcium-induced proteolysis in the retraction of developing 

sheaths. Whether this calcium-dependent sheath remodeling is due to changes in neuronal 

activity or other metabolic processes [86] remains unknown. Future studies using fluorescent 

indicators for metabolic molecules may explore whether calcium signaling in myelin sheaths 

increases in response to metabolic demand.
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Active regulation of cytoskeletal dynamics in oligodendrocyte lineage cells

What are the downstream intracellular targets of activity-dependent changes in calcium 

concentration? Calcium modulates multiple pathways including those that regulate 

cytoskeletal dynamics providing a potential link between extrinsic signals and different 

stages of cellular remodeling. Live imaging studies showed that OPCs in zebrafish spinal 

cord and adult mouse cortex extend ramified processes with dynamic filopodia-like 

structures that undergo extensive process reorganization [91,92]. Pharmacological disruption 

of microfilaments and microtubules in oligodendrocytes in vitro decreased process 

outgrowth and branching [93]. Pre-oligodendrocyte growth cones were shown to sense and 

retract from non-permissive substrates in vitro [94]. Determining the mechanisms governing 

activity- and calcium-dependent regulation of the reorganization of the cytoskeleton will 

greatly improve our understanding of the effects of neuron-oligodendroglia interactions on 

cellular dynamics.

OPC process extension and initial ensheathment is driven by F-actin polymerization, while 

later stages of myelin wrapping are dependent on actin depolymerization and retraction 

[95,96]. Oligodendrocyte lineage cells express the major proteins involved in F-actin-

polymerization-driven protrusion (Arp2/3, N-WASP, WAVE, rhoGTPases) and they localize 

to the leading edges of extending OPC and oligodendrocyte processes [97]. Disruption of 

actin polymerization within oligodendroglia has provided important insights into OPC 

behavior and myelination. Pharmacological inhibition of N-WASP with wiskostatin induced 

filopodia and process retraction in OPCs and lead to a decreased number of axons selected 

for nascent ensheathment in the intact optic nerve [97]. Expression of a dominant negative 

form of CNS WAVE1 impaired process and lamellipodia outgrowth in vitro, and WAVE1 

mutant mice have a hypomyelination phenotype in the corpus callosum and optic nerve [98]. 

In order to explore cytoskeletal dynamics during OPC differentiation in an unbiased manner, 

a recent study by Azevedo et al. [99] used whole-transcriptome analysis of soma-detached 

OPC membrane protrusions and live F-actin imaging across different stages of 

oligodendrocyte differentiation in vitro. Polymerization and crosslinking/anchoring proteins 

were highly expressed during early stages of oligodendrocyte maturation, while 

depolymerization and capping proteins were upregulated at later stages of OPC 

differentiation. In addition, they found RNAi-mediated knockdown of the actin-regulating 

protein Jmy disrupted the transition from protrusion remodeling to formation of the myelin 

membrane. Overall, these findings provided extensive insights into the roles of cytoskeletal 

remodeling in the oligodendrocyte lineage, yet it remains unclear whether extrinsic neuronal 

signals drive these intracellular processes.

Neuronal activity-dependent changes in intracellular calcium may modulate cytoskeletal 

dynamics in oligodendroglia in a similar manner to neuronal dendritic spines. Calcium 

influx through calcium-permeable AMPA receptors, which are expressed on neuronal 

dendrites and at neuron-OPC synapses [19,34,52,100], mediates the enlargement of dendritic 

spines during long-term potentiation (LTP) through rapid reorganization/stabilization of 

actin via cofilin and cortactin [101,102]. Furthermore, NMDA receptor-mediated calcium 

transients consolidate dendritic spine structure during LTP by driving the rapid association 

of the calcium-binding protein caldendrin with cortactin, protecting F-actin from cofilin-
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induced severing [103]. Modulating calcium influx in OPCs affects proliferation and 

differentiation (see above, [79,80]), however, whether these phenotypes are due to 

downstream effects of calcium-binding proteins on the cytoskeleton remains unknown. 

Calcium also mediates the phosphorylation of substrates by extracellular related kinases 1/2 

(ERK1/2) that are recruited to the actin cytoskeleton and increase OPC filopodia growth 

during migration [104]. Since cortactin is a phosphorylation target of ERK1/2 [105] that 

activates Arp2/3 [106], and Zuchero et al. [96] showed the necessity for Arp2/3 complex-

dependent actin assembly during process extension and axon ensheathment, future studies 

might address the role of activity-dependent, cortactin-mediated actin polymerization during 

OPC differentiation and process extension (Fig. 2).

Calcium-dependent regulation of gene expression in oligodendrocyte lineage cells

Calcium signaling mediates changes in gene expression in multiple brain cell types. In 

neurons, activity-dependent regulation of gene expression mediates functional changes 

underlying synaptic plasticity and other dynamic processes [107]. For example, 

glutamatergic transmission onto dendritic spines induces changes in intracellular calcium 

that are transmitted to the nucleus to regulate dendritic growth and complexity [108]. Might 

neuronal activity-dependent calcium events in oligodendrocyte lineage cells also signal to 

the nucleus to regulate gene expression? Calcium binding protein gene expression levels are 

enriched in OPCs and premyelinating oligodendrocytes [20,67,82] and glutamatergic 

synapses on OPCs are a prime structure through which neuronal activity might be coupled 

with transcriptional changes. In line with this hypothesis, glutamate stimulation of AMPA 

receptors on OPCs in vitro regulates immediate early gene expression by increasing 

intracellular calcium [109]. Single-cell analysis of transcriptional states in the visual cortex 

indicated that oligodendrocyte lineage cells have transcriptional responses to light exposure, 

with 33 genes differentially expressed in response to visual activity [67]. Whether these gene 

expression changes regulate the increased OPC differentiation and maturation following 

sensory enrichment [9] remains to be explored.

One pathway that may couple neuronal activity-induced calcium changes with 

oligodendrocyte gene expression is the nuclear factor of activated T-cells (NFAT)/calcineurin 

nuclear signaling pathway. Mice lacking calcineurin in neural crest cells have deficits in 

Schwann cell differentiation and peripheral myelination that are mediated by a disruption of 

calcium-induced activation of NFATc3/4 [110]. A recent study by Weider et al. (Fig. 2, 

[111]) presented NFAT/calcineurin signaling as a novel pathway through which changes in 

intracellular calcium might modulate the expression of genes related to oligodendrocyte 

differentiation and myelination. The authors used in vitro and in vivo methods to 

demonstrate that NFAT proteins are targeted by Sox10 to regulate cross-repression of Olig2 

and Nkx2.2 and facilitate oligodendrocyte differentiation. Conditional deletion of 

calcineurin using either Sox10-Cre or CNP1-Cre mice had similar effects on 

oligodendrocyte number, which implies that calcineurin expression is not required for the 

initial stages of OPC proliferation, development, or cell death.

NFATs play important roles in the activation of T-lymphocytes [112], and may be potential 

drug targets for the treatment of MS. Dietz et al. [113] explored the role of NFATc1 and 2 in 
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the experimental autoimmune encephalomyelitis mouse model of MS where demyelination 

is initiated by T cell infiltration of the CNS. Genetic ablation of NFATc1 and 2 blocked 

immune cell infiltration into the CNS and decreased EAE clinical scores, suggesting that 

NFAT antagonism may be an immunosuppressive option to prevent inflammatory attacks in 

MS. Together, these studies indicate that NFAT activation and/or overexpression may 

actually increase remyelination via transcriptional regulation of OPC differentiation, and 

therefore a combinatorial, cell- and isoform-specific approach to NFAT modulation may 1) 

decrease T cell activation and infiltration, and 2) increase remyelination through OPC 

differentiation.

Another potential pathway that could link neuronal activity-induced calcium changes with 

oligodendrocyte gene expression is the calcium/calmodulin-dependent protein kinase 

pathway. Oligodendroglia express calcium/calmodulin-dependent protein kinase type II 

subunit β (CAMKIIβ), an important molecular mediator of long-term potentiation and 

neuronal plasticity [114]. A recent study used in vitro methods combined with genetic 

knockout strategies to demonstrate that CAMKIIβ is important for cytoskeletal remodeling 

during differentiation and myelin thickness in the intact CNS (Fig. 2, [115]). Further 

research into the roles of calcium binding proteins in the oligodendrocyte lineage may 

provide a link between activity-dependent signaling and nuclear gene expression regulating 

oligodendrocyte maturation.

Activity-dependent growth factor signaling pathways that modulate oligodendrocyte 
maturation

Multiple growth factors regulate essential cellular processes that underlie proliferation, 

differentiation, and myelination in the oligodendrocyte lineage. Overexpression of insulin-

like growth factor-1 (IGF-1) induces a hypermyelination phenotype [116] through the 

activation and multiplexed signaling of the PI3K/AKT/mTOR pathway. This atypical serine/

threonine kinase, mechanistic target of rapamycin (mTOR), acts through binding two 

downstream proteins (Raptor and Rictor) to modulate differentiation and myelination [117–

120]. BDNF-TrkB signaling in oligodendrocyte precursors activates the ERK/MAPK 

signaling cascade and increases differentiation and myelination through the action of 

ERK1/2 [121]. Sustained phosphorylation of ERK1/2 within mature oligodendrocytes 

resulted in a global hypermyelination phenotype that showed faster conduction speeds in the 

auditory brainstem [122,123] implying that mature oligodendrocytes can modulate the 

extent of their myelination.

Certain types of growth factors are released from neurons in an activity-dependent manner, 

suggesting that their effects on oligodendroglia are additional mechanisms through which 

neuronal activity modulates oligodendroglial behavior (Fig. 3, [124,125]). In vitro data in 

cultured cortical neurons suggested that NMDA receptor-mediated calcium events increase 

phosphorylation of AKT, and slice physiology of ventral tegmental area neurons showed that 

mGluR1-dependent long-term depression was blocked by rapamycin application, implying a 

role for the mTOR pathway in activity-dependent receptor expression and plasticity 

[126,127]. However, the effects of activity-dependent calcium signaling on the PI3K/AKT/

mTOR and other growth factor pathways in the oligodendrocyte lineage remain to be tested.
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Bidirectional interactions between growth factor and neurotransmitter signaling cascades in 

oligodendroglia may further regulate the detection of and response to neuronal activity. 

Lundgaard et al. [128] showed that the application of neuregulin or BDNF in vitro induces a 

switch in oligodendrocytes to an NMDA receptor-dependent myelination state. These data, 

combined with the finding that social isolation leads to decreased oligodendrocyte 

neuregulin-1/ErbB3 signaling and hypomyelination of the prefrontal cortex [129], point to a 

mechanism in which neuronal activity-dependent release of growth factors gates the 

responses of oligodendroglia to neurotransmitter release. A related line of research has 

emerged on the effects of methotrexate chemotherapy on glial function, activity-dependent 

myelination, and cognition [130]. In this model of chemotherapy-related cognitive 

impairment, activated microglia reduce BDNF expression, which leads to impairments in 

activity-dependent oligodendrocyte lineage cell proliferation, differentiation, and 

myelination [131]. Mice that conditionally lack expression of the TrkB receptor in OPCs 

(Pdgfrα-creERT2; TrkBfl/fl) or activity-dependent transcription of BDNF (BDNFTMKI) had 

impaired activity-dependent myelination in the premotor circuit and behavioral deficits in a 

modified novel object recognition test [131]. These studies, combined with previous work 

that linked BDNF signaling through TrkB receptors to later stages of myelin wrapping (Fig. 

3, [132,133]), suggest that neuron-oligodendroglia BDNF signaling regulates multiple stages 

of oligodendrogenesis and myelination. Identification of the neuron-derived signals and 

subsequent activation of intracellular signaling cascades in oligodendroglia is an exciting 

focus of ongoing research in the field and will likely yield key insights into the molecular 

mechanisms underlying activity-dependent myelination.

3. Effects of neuronal activity on oligodendrocyte lineage cellular 

behavior

OPC motility and proliferation

The migration and cell division of OPCs can be modulated by extrinsic factors throughout 

life. During development, multiple waves of OPCs migrate from the ventricular zones to 

populate the telencephalon [134]. Wnt pathway activation enables this migration by driving 

physical interactions between OPCs and the endothelial cells lining the blood vessels [135]. 

Migrating OPCs extend growth-cone like structures to sense and respond to a multitude of 

chemotactic signals including growth factors, cell adhesion molecules, and extracellular 

matrix proteins [136,137]. Adult OPCs continue to migrate throughout life in response to 

local cues that include homotypic interactions, CNS injury, and neuronal activity 

[91,92,138]. Longitudinal in vivo two-photon imaging revealed that adult OPCs primarily 

undergo direct differentiation followed by proliferation of neighboring OPCs, indicating that 

population density is homeostatically maintained via balanced cell loss and renewal [92]. 

Although early studies showed a direct relationship between neuronal activity and OPC 

proliferation [2], the mechanisms underlying OPC migration have remained elusive. In vitro 
studies demonstrated that OPC migration speed and calcium transient frequency is 

modulated by the formation of an αv integrin/PLP protein complex elicited when glutamate 

binds to AMPA receptors on OPCs [139]. Additional studies using cell culture and slice 

preparation techniques have linked increased calcium signaling mediated by L- and T-type 

voltage gated calcium channels on OPCs with increased rates of migration [79,140].
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OPCs express functionally active GABAB receptors that inhibit the production of cyclic 

adenosine monophosphate (cAMP) and in vitro experiments using a transwell microchamber 

assay showed that application of the specific agonist baclofen increased migration and 

proliferation [141]. OPC migration was also enhanced by NMDA-receptor activation and 

interaction with the Rac1-GEF and ERK signaling pathway induced cytoskeletal remodeling 

and actin dynamics [142]. Sensory deprivation of whisker input reduced thalamocortical 

inputs to OPCs, increased proliferation, and altered cell distribution during development of 

the barrel cortex, arguing for an inhibitory effect of excitatory input to OPCs on proliferation 

and migration in this brain region [143]. However, optogenetic stimulation of cortical layer 

V projection neurons in the premotor cortex induced a large OPC proliferation response 

within three hours of stimulation that was followed by an increased number of CC1/Edu-

positive mature oligodendrocytes four weeks following stimulation [7]. These contrasting 

results highlight the significant region-, age- and cell developmental heterogeneity in 

receptor and ion channel expression on OPCs [26] which may underlie these different 

findings. In addition, the effects of neuronal stimulation on proliferation are dependent on 

the frequency and duration of firing indicating that neurons may tune myelination with 

different patterns of activity [6]. Thus, the effects of neuronal activity on OPC migration and 

proliferation likely depend on the cellular state, receptor and channel expression, and 

pattern/frequency of neuronal firing.

Integration of differentiating OPCs as mature oligodendrocytes

During development, the generation of new myelinating oligodendrocytes is an inefficient 

process. A large portion of OPCs that undergo differentiation fail to myelinate axons and 

subsequently degenerate (Fig. 3, [144,145]). The survival and integration of these 

differentiating OPCs is thought to be regulated by the availability of appropriate axons, 

competition for trophic factors, and neuronal activity (Fig. 3). Recent in vivo longitudinal 

two-photon imaging of the oligodendrocyte lineage in the somatosensory cortex of middle-

aged mice showed that this phenomenon persists in the adult brain. Only 22% of OPCs that 

differentiated into premyelinating cells successfully integrated, and those that died persisted 

in the premyelinating state for ~2 days (Fig. 3, [9]). Cell death of newly differentiating 

oligodendrocytes is thought to be carried out by Bax/Bak-dependent apoptotic pathways 

(Fig. 3, [146]) and competition between promoting and inhibitory signals may establish a 

threshold for successful integration or degeneration. Thus, the short lifetime of 

premyelinating cells may be a sensitive period in which extrinsic cues, such as neuronal 

activity, are integrated to mediate the cellular transition to form a mature, myelinating 

oligodendrocyte. Indeed, whisker deprivation decreased the survival of recently divided 

OPCs in early postnatal pups [147] highlighting a role for neuronal activity in 

oligodendrocyte integration.

The ubiquitous distribution of OPCs throughout the entire CNS raises the question of 

whether regulation of OPC integration could shape the pattern of mature oligodendrocytes 

across the CNS. Studies using genetic strategies to increase axon size in the unmyelinated 

cerebellar molecular layer [148] or mislocalize myelinated axonal subtypes to unmyelinated 

superficial dorsal spinal cord [149] resulted in successful integration and ectopic 

myelination in these regions. Large-diameter axons can upregulate their expression of 
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secreted signaling molecules like BDNF [148], suggesting that axon-specific cues could 

modulate the final steps of oligodendrocyte differentiation and integration to guide 

myelination (Fig. 3).

One potential negative regulator of late-stage differentiation and ensheathment is the G 

protein-coupled receptor 37 (GPR37), which is predominantly expressed in the nervous 

system, binds to the neuropeptides prosaptide and prosaposin, and is enriched in newly 

differentiated oligodendrocytes [82,150,151]. A recent report used genetic deletion to show 

that GPR37-signaling acts as a brake on integration that, when relieved, facilitates 

myelination through a cAMP-dependent mechanism that drives ERK1/2 translocation to the 

nucleus [151]. Interestingly, in striatal neurons, GPR37 negatively regulates the surface 

expression of the adenosine A2A receptor [152], suggesting that GPR37 regulation of 

adenosine receptor activity is an additional potential mechanism of neuronal activity-

dependent regulation of oligodendrocyte integration.

Determining the intracellular pathways driving programmed cell death of premyelinating 

cells may reveal important insights into the extrinsic and intrinsic regulation of mature 

oligodendrocyte integration. Sun et al. [153] recently identified transcription factor EB 

(TFEB), a master regulator of lysosome biosynthesis, as an additional regulator of 

oligodendrocyte integration. Cell-specific deletion of TFEB increased the survival of 

premyelinating cells by preventing apoptosis and induced ectopic myelination in the 

cerebellar molecular layer, without affecting axon caliber (Fig. 3, [153]). Whole 

transcriptome analysis of premyelinating cells from TFEB conditional knockout mice 

showed that TFEB expression may also interact with the AKT/mTOR and Wnt pathways, 

both of which modulate mature oligodendrocyte differentiation and integration 

[120,153,154]. Additionally, lysosomal calcium signaling promotes the nuclear translocation 

of TFEB via calcineurin dephosphorylation to regulate autophagic cell death in vitro (Fig. 4, 

[155]). Thus, defining the interplay between activity-dependent intracellular calcium events 

and programmed cell death pathways may provide insights into the mechanisms driving 

integration of newly differentiated oligodendrocytes.

Effects of neuronal activity on myelin wrapping

Oligodendrocyte differentiation and myelination are incredible biological processes 

involving extensive cytoskeletal rearrangement and production of specialized membrane. As 

OPCs differentiate they transition from a state of actin polymerization-driven process 

protrusion to actin depolymerization/redistribution at the leading edge of the nascent myelin 

sheath [95,99]. In vitro live imaging studies showed that after axonal contact, the leading 

edge of the oligodendrocyte process wraps the axon and new layers extend laterally as they 

are added to the sheath [156,157]. In vivo live imaging studies in zebrafish have provided 

insights into how axons are selected for myelin ensheathment. Hines et al. [4] demonstrated 

that, while the targeting of axons for ensheathment is unchanged in the absence of vesicular 

release, silencing VAMP2-dependent exocytosis strongly decreased the growth and 

stabilization of initiated myelin sheaths (Fig. 3). A complementary study showed that 

blocking axonal vesicular release reduced the number of myelinated axons in the ventral 

spinal cord, while increasing neuronal activity with the GABAA-receptor antagonist PTZ 
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increased the number of myelin sheaths created by individual oligodendrocytes (Fig. 3, [5]). 

Furthermore, the role of activity in regulating myelination is dependent on neuronal cell 

type. Kouldelka et al. [158] showed cell-specific blockade of vesicular release significantly 

decreases the myelination of reticulospinal axons, yet has little effect on myelination of 

commissural primary ascending axons in the developing zebrafish spinal cord. Elucidating 

the axon-specific cues that regulate selective myelination will be of great importance in 

understanding the regulation of myelination in neural circuits.

The identity of neuron-derived signals that regulate axon-specific myelination likely include 

both stimulating factors released from axons as well as inhibitory signals that reduce 

myelination. For example, next-generation sequencing of cultured spinal cord and dorsal 

root ganglion neurons resulted in the identification of neuronal junction adhesion molecule 2 

(JAM2) as a somatodendritically-expressed inhibitory molecule that prevents myelination of 

non-axonal neuronal structures [159]. Might neuronal activity regulate the expression of 

axonally-expressed inhibitory molecules to facilitate axon-specific, temporally-controlled 

myelination? The proteolytic cleavage of synaptic cell adhesion molecules (CAMs) is 

regulated throughout life to modulate synapse formation and plasticity [160], while 

overexpression of a membrane-bound extracellular domain of cell adhesion molecule 4 

(Cadm4) in oligodendrocytes increases the number of myelin initiation sites on axons [161]. 

A recent report showed that axons cluster synaptic release machinery at sites of myelination 

during zebrafish development, and the oligodendrocyte-specific expression of dominant 

negative synaptogenic adhesion proteins modulated sheath number and individual sheath 

length [162]. Future studies exploring the extent to which neuronal activity drives the local 

translation and modification of cell adhesion molecules in both axons and oligodendrocytes 

to facilitate oligodendrocyte process targeting and selective myelination will provide 

valuable insights.

Cytoplasmic channels transiently open during myelin sheath formation allow for membrane 

trafficking to the leading edge of the myelin sheath, which may be regulated by axonal 

signals that drive reorganization of the actin cytoskeleton [156]. Interestingly, the expression 

of myelin basic protein (MBP) facilitates axon wrapping as MBP binds to PI(4,5)P2 and 

induces the release of gelsolin and cofilin from the membrane (Fig. 4, [96]). Gelsolin and 

cofilin are calcium-dependent actin severing proteins that induce actin depolymerization 

[163,164] arguing that activity-dependent myelin wrapping may be driven by local calcium 

elevations in oligodendrocyte processes (Fig. 4). In cultured dorsal root ganglion neurons, 

extrasynaptic release of glutamate increases local synthesis of MBP through Fyn-kinase 

dependent signaling (Fig. 4, [54]) and recent data suggests that neuronal activity may drive 

localized mRNA trafficking and expression within nascent myelin sheaths [165]. Whether 

these mechanisms contribute to the maintenance or the modulation of myelin thickness 

[7,129,131,166] of mature myelin sheaths remains unclear.

Recent work has implicated myelin regulatory factor (Myrf) in the maintenance of mature 

myelin sheaths as conditional genetic ablation of this transcription factor results in the 

progressive degeneration of mature oligodendrocytes and axonal damage [167]. Whether 

axonal signals regulate the activity of Myrf to maintain myelin integrity and/or facilitate 

myelin remodeling over time remains to be tested (Fig. 4). Taken together with the recent 
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calcium imaging data in developing myelin sheaths [89,90], these data suggest a model in 

which activity-dependent regulation of the expression of MBP and other myelin proteins, in 

concert with increases in intracellular calcium concentration, drives the initiation of actin 

depolymerization, wrapping, and maintenance of myelination of active axons (Fig. 4).

Oligodendrocyte-neuron signaling and metabolic support of active axons

Active axons require abundant metabolic energy to drive transporters and maintain ion 

concentration gradients essential for action potential firing [168]. Do oligodendrocytes 

support axonal metabolism in response to changes in neuronal activity? In myelinated axons, 

the area of axonal membrane through which energy metabolites and other molecules can be 

exchanged with the extracellular milieu is low, positioning oligodendrocytes as potential 

providers of axonal metabolic support through trans-myelin transport of energetic molecules 

[169]. Axons from the optic nerve use lactate as an energy source to sustain excitability 

when they are energy deprived [170], and in vivo voltage-sensitive dye imaging indicated 

that lactate was oxidized as an alternative to glucose during cortical hypoglycemia [171]. 

Although the role of oligodendrocytes in axonal metabolic support is well established, recent 

research has added considerably to our understanding of the molecular mechanisms involved 

in this process.

To determine whether oligodendrocytes play a role in metabolic support of axons, 

Fünfschilling and colleagues [172] generated conditional Cox10 knockout mice that have 

disrupted mitochondrial function in Schwann cells and oligodendrocytes. Increased rates of 

glycolysis in these mutant mice supplied metabolic products, such as lactate, to support 

energy-deprived axons indicating that axon-oligodendrocyte coupling has important 

physiological functions. Furthermore, oligodendrocyte-specific deletion of monocarboxylate 

transporter-1, the primary lactate transporter expressed in glia, resulted in pronounced 

axonal degeneration and neuronal death in the optic nerve and corpus callosum [173]. These 

studies suggest an integral role of glycolytic lactate in oligodendrocyte-neuron metabolic 

support. Recent experiments showed that bath perfusion of lactate was unable to rescue 

compound action potentials (CAPs) in corpus callosal slices during exogenous glucose 

deprivation, yet filling individual oligodendrocytes with glucose prevented CAP loss and 

was dependent on network spread through intact oligodendrocyte gap junctions [174]. These 

data suggest that the production and shuttling of both lactate and glucose by 

oligodendrocytes are essential to maintain axonal integrity and action potential firing, and 

metabolic processes used likely vary by brain region and developmental state [174].

Might mature oligodendrocytes detect and respond to glutamate release in order to deliver 

lactate and other energetic molecules to axons in need? A recent study by Saab et al. [175] 

showed that glutamatergic activation of NMDA receptors increases trafficking of the glucose 

transporter GLUT1 to the myelin membrane, which in turn enhances glucose transport into 

oligodendrocytes to facilitate the transport of lactate/pyruvate to the axon (Fig. 4). Since the 

activity of astrocytic GLUT1 is also strongly increased by glutamate release [176], and 

oligodendrocytes and astrocytes are coupled via gap junctions [177,178], these two cell 

types likely form a ‘panglial’ network that senses and responds to the energetic needs of 

active axons. Monitoring the transport of energetic molecules simultaneously in these two 
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cell types in response to changes in neuronal activity may elucidate combinatorial cellular 

mechanisms of axonal support.

Roles of neuronal activity in the recovery from demyelinating disorders

Specific responses of oligodendrocyte lineage cells to changes in neuronal activity and 

neural plasticity following demyelinating injury or disease may be essential for 

remyelination and functional recovery. Following demyelination, transient synapses are 

formed on newly generated OPCs within the demyelinated lesion, and the proportion of 

OPCs innervated by glutamatergic axons is phasic during the remyelination process 

[179,180]. Gautier et al. [138] oligodendrocyte precursors to the site of injury and directed 

their differentiation into mature oligodendrocytes. In other injury found that glutamate 

released from demyelinated axons onto OPC AMPA receptors recruited models such as 

hypoxia-induced diffuse white matter injury, a loss of GABAA-mediated signaling onto 

OPCs resulted in increased proliferation, delayed maturation, and dysmyelination [39]. 

Blockade of GABA uptake or catabolism following hypoxia promoted the formation of 

myelinating oligodendrocytes suggesting that modulation of neuron-oligodendrocyte 

signaling may have therapeutic benefits [39]. In line with this hypothesis, blocking neuronal 

vesicular release, AMPA/KA, or NMDA receptors following lysolecithin-induced 

demyelination decreases remyelination of damaged white matter [128,138]. While it is clear 

that neuronal input onto oligodendroglia is essential for proper remyelination responses, 

future studies exploring the effects of region- and timing-dependent manipulations of 

neuronal activity on oligodendrocyte lineage cell behavior following injury will provide 

important insights into the ideal neural circuit targeting and stimulation parameters required 

for recovery from demyelinating injury.

Another route through which neuronal activity may control oligodendroglia injury responses 

is the activity-dependent upregulation of intracellular signaling molecules. For example, 

activity modulates the expression and release of Wnts in neurons [181] and may play a role 

in pathophysiological dysregulation of this neuron-oligodendroglia signaling in MS lesions. 

Elegant work showed that OPCs in demyelinated lesions specifically upregulate the Wnt 

pathway mediator transcription factor 4 (Tcf4) [154] and mice that have excessive Wnt 

activation due to conditional knockout of adenomatous polyposis coli (APC) show 

perivascular clustering of OPCs that disrupts the blood brain barrier. Thus, the complex 

interplay between neuronal activity, oligodendroglial intracellular signaling, and Wnt-

mediated interactions with the vasculature may regulate the remyelination response and/or 

pathophysiology in demyelinating diseases.

Recently researchers have harnessed technological advances in specific neuronal stimulation 

techniques to manipulate neuronal activity during remyelination. Ortiz et al. [182] used 

repeated optogenetic stimulation of demyelinated corpus callosal fibers to facilitate OPC 

proliferation and increase remyelination following lysophosphatidylcholine-induced 

demyelinating injury. Li et al. [183] used epidural electrical stimulation of the primary motor 

cortex to increase remyelination and functional recovery after spinal cord injury (SCI). In 

the latter study, biotinylated dextran amine tracing of descending cortical inputs showed an 

increase in the number of axon-OPC synapses in the dorsal spinal cord. Taken together, 
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these studies suggest an integral role for neuronal activity in the regulation of 

oligodendroglia during remyelination. Future research will determine whether behavioral 

interventions can harness the effects of neuronal activity and learning-induced activity-

dependent myelination after injury [10,11] to promote functional recovery.

Conclusions and future directions

Communication between neurons and oligodendrocyte lineage cells is essential for proper 

brain-wiring and healthy neural function. Over the past few decades the mechanisms 

oligodendroglia use to sense and respond to neuronal activity have been characterized, and 

the links between neuronal activity and changes in oligodendroglia intracellular signaling, 

gene expression, and cellular behavior are beginning to emerge. Future studies manipulating 

specific intracellular targets to control the detection and response of oligodendrocyte lineage 

cells to activity will greatly facilitate our understanding of these complex interactions. 

Furthermore, modulation of neuron-oligodendrocyte signaling and in vivo monitoring of 

cellular behavior will provide invaluable insights for understanding learning-induced 

plasticity in the adult brain and the treatment of demyelinating injury and disease.
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Figure 1 |. Oligodendroglia associate with axons throughout maturation.
OPCs (light blue) receive excitatory and inhibitory synaptic input from neurons (grey). 

Neuronal activity-dependent signals drive the differentiation of OPCs into premyelinating 

oligodendrocytes (purple) and the subsequent integration of mature oligodendrocytes (dark 

blue) which myelinate neuronal circuits.
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Figure 2 |. Neuronal activity-dependent calcium signaling pathways that regulate OPC 
differentiation.
OPCs tile the CNS and engage in dynamic bidirectional signaling with neurons throughout 

life (top). Both synaptic (right) and extrasynaptic (left) signals regulate the early stages of 

oligodendroglial maturation. Intracellular signaling pathways mediating calcium-dependent 

events in differentiating OPCs, starting with receptors, from left to right: Glutamate binds to 

group I metabotropic glutamate receptors (blue) and induces Gq translocation and activation 

of phospholipase C (PLC), which releases IP3 (red) to the cytoplasm where it binds to IP3 

receptors on the endoplasmic reticulum to release intracellular calcium stores (orange) [75]. 

OPCs express voltage-gated calcium (orange) and sodium (purple) channels, which increase 

intracellular calcium concentration and contribute to rapid depolarization in response to 
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neuronal activity [26,75]. OPCs express calcium-permeable AMPA receptors (light purple) 

that contribute to synaptically-evoked calcium events and their membrane expression is 

modulated by mGluR5 activation [52,75]. NMDA receptors (dark green) also respond to 

glutamate release and may contribute to changes in expression of CP-AMPA receptors in 

differentiating OPCs [34]. Synaptic GABA release stimulates GABAA receptors (blue), 

which increases intracellular calcium concentration by increasing a persistent sodium 

current through non-inactivating voltage gated sodium channels (red) that facilitate reversal 

activity of sodium/calcium exchangers (NCX, light green, [83]). Calcium-induced calcium 

release from endoplasmic reticulum stores via ryanodine receptor 3 (RyR3) activation 

contributes to changes in intracellular calcium, and application of the antagonist ryanodine 

inhibits OPC differentiation [78]. Calcium-dependent intracellular signaling pathways that 

modulate gene expression and cytoskeletal dynamics, starting from left: Calcium binds to 

calmodulin (purple) and activates the phosphatase calcineurin (red) that dephosphorylates 

NFAT proteins (pink) to stimulate their translocation to the nucleus [111]. NFAT proteins 

associate with the transcription factor Sox10 to relieve reciprocal repression of Nkx2.2 and 

Olig2 (not pictured) to facilitate OPC differentiation [111]. Calcium activates Ca2+/

calmodulin-dependent protein kinase II (CaMKIIβ, green), which stabilizes the actin 

cytoskeleton through non-kinase catalytic binding and may regulate differentiation [115]. 

Whether CaMKIIβ affects oligodendroglial behavior through the phosphorylation of CREB 

or other transcription factors remains to be tested. Calcium modulates the kinase activity of 

extracellular signal-related kinases (ERK1/2, [184]) which phosphorylates cortactin and may 

drive Arp2/3 complex-dependent actin polymerization to facilitate process extension and 

branching during OPC differentiation [96,105,106].

Thornton and Hughes Page 32

Neurosci Lett. Author manuscript; available in PMC 2021 May 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3 |. Axonal activity mediates mature oligodendrocyte integration.
Adult differentiating oligodendrocytes remain in the premyelinating stage for ~2 days [9], 

during which they integrate as mature oligodendrocytes (top) or degenerate (bottom). High 

axonal activity (top) increases vesicular release [4,5], and the release of growth factors 

[132,133] to facilitate the initiation of myelination and integration into neuronal circuits. 

During the later stages of mature oligodendrocyte integration (top right), sustained axonal 

activity may upregulate local myelin protein translation [96,165,185] and drive actin 

depolymerization-driven myelin wrapping [95,96]. Decreasing axonal activity (bottom, left) 

reduces vesicular release [4,5,90] and the release of growth factors [131], which limits 

myelin initiation and integration. If appropriate myelination cues are not received during this 

short period (bottom, right), programmed cell death pathways are activated [153,186] and 

oligodendroglia degenerate and are phagocytocized by microglia (red, [145]).
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Figure 4 |. Calcium signaling in mature oligodendrocytes.
Dynamic bidirectional signaling between axons and mature oligodendrocytes regulates 

metabolic support, local protein translation, and gene expression. Mature oligodendrocytes 

sense and respond to neuronal glutamate release through NMDA receptors (green) expressed 

on the membrane in the periaxonal space [32,33,84]. A proportion of calcium elevations in 

mature myelin are derived from autonomous release through the mitochondrial permeability 

transition pore (MPTP, grey) in response to high mitochondrial respiration and production of 

ATP [86]. NMDA receptor-mediated calcium events increase the expression of the GLUT1 

glucose transporter (light blue) on oligodendrocytes, which increases glucose (grey) entry 

and facilitates the delivery of lactate and pyruvate to active axons through monocarboxylate 

transporters 1 and 2 (grey, pink, [175]). Activity-dependent glutamatergic vesicle release 
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increases the local translation of myelin basic protein (MBP) via a Fyn kinase-dependent 

mechanism [185], yet it is unknown whether changes in intracellular calcium modulate Fyn 

kinase activity to mediate this process. MBP binds to phosphatidylinositol 4,5-bisphosphate 

(PIP2) to release the calcium-dependent cytoskeletal reorganizing proteins gelsolin and 

cofilin from the membrane to induce actin depolymerization during myelin wrapping [96]. 

Neuronal activity-dependent elevations in intra-sheath calcium concentration regulate sheath 

growth and retraction in zebrafish development [89,90]. Oligodendrocyte-specific inhibition 

of calpain proteases increases the number of myelin sheaths produced, implicating calcium-

induced proteolysis in sheath retraction [89]. Lysosomal calcium signaling activates 

calcineurin, which dephosphorylates the transcription factor EB (TFEB) and induces nuclear 

translocation to regulate autophagy [155]. TFEB regulates mature oligodendrocyte 

integration via activation of apoptotic pathways [153], yet it is unknown whether this 

process is regulated by intracellular calcium-calcineurin signaling. Mature oligodendrocyte-

specific genetic deletion of the membrane-associated transcription factor myelin regulatory 

factor (myrf) results in oligodendrocyte degeneration [167], yet whether activity-dependent 

axonal signals regulate gene expression to support myelin maintenance or sheath remodeling 

is unknown.
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