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Abstract

The central aim in this paper is to address variable selection questions in nonlinear and 

nonparametric regression. Motivated by statistical genetics, where nonlinear interactions are of 

particular interest, we introduce a novel and interpretable way to summarize the relative 

importance of predictor variables. Methodologically, we develop the “RelATive cEntrality” 

(RATE) measure to prioritize candidate genetic variants that are not just marginally important, but 

whose associations also stem from significant covarying relationships with other variants in the 

data. We illustrate RATE through Bayesian Gaussian process regression, but the methodological 

innovations apply to other “black box” methods. It is known that nonlinear models often exhibit 

greater predictive accuracy than linear models, particularly for phenotypes generated by complex 

genetic architectures. With detailed simulations and two real data association mapping studies, we 

show that applying RATE enables an explanation for this improved performance.
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1. Introduction.

Classical statistical models and modern machine learning methodology have recently been 

dichotomized into two separate groups. The former are often characterized as interpretable 

modeling approaches and include conventional methods such as linear and logistic 

regressions. The latter, however, have sparked a greater debate as they have been frequently 

criticized as “black box” techniques with opaque implementations and uncertain internal 

workings. Whenever support vector machines or neural networks give meaningful 

performance gains over more conventional regression models, a challenge of interpretability 

arises. In these situations it is often questioned what characteristics of the input data are 

being most used by the black box. One of the key features leading to these performance 

gains is the automatic inclusion of higher order interactions between variables [Cotter, 

Keshet and Srebro (2011)]. Popular machine learning kernel functions and fully connected 

neural network layers implicitly enumerate all possible nonlinear effects [Wahba (1990)]. 

While this fact is in itself a partial explanation for improvement gains, we often wish to 

know precisely which variables are the most important—with the ultimate goals of 

furthering scientific understanding and performing model/feature selection [Barbieri and 

Berger (2004)].

As our main contribution we propose a “RelATive cEntrality” (RATE) measure for 

investigating variable importance in Bayesian nonlinear models, particularly those 

considered to be black box. Here, RATE identifies variables which are not just marginally 

important, but also those whose data associations stem from a significant covarying 

relationship with other variables. Our method is entirely general with respect to the 

modeling approach taken; the only requirement being that a method can produce uncertainty 

intervals for predictions. As an illustration we focus on Gaussian process modeling with 

Markov chain Monte Carlo (MCMC) inference. In addition we note that this variable 

selection approach immediately applies to other methodologies such as Bayesian neural 

networks [Richard and Lippmann (1991)], Bayesian additive regression trees [Chipman, 

George and McCulloch (2010)] and approximate inference methods like variational Bayes 

[Rasmussen and Williams (2006)].

While variable selection is the main utility for our method, we are motivated by the approach 

of continuous model expansion [Gelman, Hwang and Vehtari (2014)]. The goal is to build 

the best fitting or optimally predictive model while searching over many variables and the 

interactions between them but without explicitly worrying about sparsity. Indeed, this has 

become a recent focus of statistical methods research, especially in terms of understanding 

the relative importance of subsets of candidate predictors with respect to specific predictive 

goals [Lin, Chan and West (2016)]. While we believe strongly in regularization as a key 

ingredient in developing good statistical models, our choice of Gaussian process priors 

achieves robust inference without explicitly imposing a sparsity penalty. The reason to avoid 

sparsity constraints like the lasso is not just philosophical—as typically applied L1-

regularization suffers from a lack of stability [Lim and Yu (2016), Piironen and Vehtari 

(2017)], and the use of Laplacian priors too has been criticized [Carvalho, Polson and Scott 

(2010)]. Simultaneously, we are also motivated by the rise of deep neural networks, which 
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are typically wildly overparameterized, and yet, when combined with large datasets, can 

give quite impressive improvements to model performance.

We assess our proposed approach in the context of association mapping (i.e., inference of 

significant variants or loci) in statistical genetics as a way to highlight data science 

applications that are driven by many covarying and interacting predictors. For example, 

understanding how statistical epistasis between genes (i.e., the polynomial terms of the 

variables in the genotype matrix) influence the architecture of traits and variation in 

phenotypes is of great interest in genetics applications [Crawford and Zhou (2018), 

Crawford et al. (2017), Mackay (2014), Phillips (2008), Prabhu and Pe’er (2012), Wan et al. 

(2010), Zhang and Liu (2007), Zhang et al. (2010)]. However, despite studies that have 

detected “pervasive epistasis” in many model organisms [Horn et al. (2011)] and improved 

genomic selection (i.e., phenotypic prediction) using nonlinear regression models [Howard, 

Carriquiry and Beavis (2014)], substantial controversies remain [Hill, Goddard and Visscher 

(2008)]. For example, in some settings, association mapping studies have identified many 

candidates of statistical epistasis or interactions that contribute to quantitative traits [Hemani 

et al. (2014)], but some of these results can be explained by additive effects of other 

unsequenced variants [Wood et al. (2014)]. To date, we have a limited understanding of this 

important biological question because it is often difficult to pinpoint how nonlinearities 

influence complex prioritization of associated genetic markers. Indeed, it has been suggested 

that if one aims to infer biological interactions, statistically modeled interactions and main 

effect terms should not be interpreted separately [Wang, Elston and Zhu (2011a, 2011b)]. 

Our contribution in this paper is therefore of direct scientific relevance in that RATE will 

enable scientists to consider embracing machine learning-type approaches by allowing them 

to open up the black box.

The remainder of this paper is organized as follows. In Section 2 we briefly detail the 

Gaussian process regression model and motivate the need for an effect size (regression 

coefficient) analog that serves to characterize the importance of the original input variables 

in nonparametric methods. In Section 3 we specify how to conduct association mapping 

using distributional centrality measures. Here, we also define the concept of relative 

centrality (RATE) which provides evidence for the relative importance of each variable. In 

Section 4 we show the utility of our methodology on real and simulated data. Finally, we 

close with a discussion in Section 5.

2. Motivating Bayesian nonparametric framework.

In this paper we propose a relative centrality measure as an interpretable way to summarize 

the importance of input variables for nonparametric methodologies. We will do this within 

the context of association mapping in statistical genetics. This effort will require the 

utilization of three components: (i) a motivating probabilistic model, (ii) a notion of an effect 

size (or regression coefficient) for each genetic variant and (iii) a statistical metric that 

determines marker significance. Each of these components are naturally given in linear 

regression. Our goal is to provide a computationally tractable way to derive the same 

necessary components for nonlinear methods.
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In this section we focus on formulating components (i) and (ii), while component (iii) is 

developed later in Section 3. First, we begin by detailing Bayesian Gaussian process 

regression as our motivating probabilistic model. Next, we generalize a previous result 

which defines an effect size (regression coefficient) analog for the input data in 

nonparametric methods [Crawford et al. (2018)]. Extensions to other methodologies (e.g., 

Bayesian kernel ridge regression, neural networks) can be found in Supplementary Material 

[Crawford et al. (2019)]. For simplicity we make the assumption that the phenotypic 

response is continuous; although the frameworks discussed can be altered for dichotomous 

traits (e.g., case-control studies). This expansion would include steps similar to those 

outlined in previous works [Zhang, Dai and Jordan (2011)]. We leave these specific details 

to the reader.

2.1. Gaussian process regression.

We now state a Bayesian modeling framework, which we use to construct a generalized 

projection operator between an infinite dimensional function space, called a reproducing 

kernel Hilbert space (RKHS), and the original genotype space. This projection will allow us 

to define an effect size analog for Bayesian nonparametric analyses. We begin by 

considering standard linear regression

y = Xβ + ε, ε~N(0, τ2I), (1)

where y is an n-dimensional vector of phenotypes from n individuals, X is an n × p matrix of 

genotypes for p genetic variants encoded as {0, 1, 2} copies of a reference allele at each 

marker, β is the corresponding additive effect size, ε is assumed to follow a multivariate 

normal distribution with mean zero and variance τ2 and I is an identity matrix. For 

convenience we will also assume that the genotype vector has been centered and 

standardized to have mean 0 and standard deviation 1.

In genetic applications the assumption that phenotypic variation can be fully explained by 

additive effects is often too restrictive [Mackay (2014), Phillips (2008)]. One natural way to 

overcome this problem is to conduct model inference within a high dimensional function 

space. Indeed, an RKHS may be defined based on a nonlinear transformation of the data 

using a positive definite covariance function (or kernel) that is assumed to have a finite 

integral operator with eigenfunctions {ϕℓ}ℓ = 1
∞  and eigenvalues {δℓ}ℓ = 1

∞ . Namely,

∫ k(x, x′) d(x, x′) < ∞, δℓϕℓ(x) = ∫χk(x, x′)ϕℓ(x′)dx′ .

For these classes of covariance functions, the following infinite expansion holds 

k(x, x′) = ∑ℓ = 1
∞ δℓϕℓ(x)ϕℓ(x′) [Mercer (1909)], and an RKHS function space may be 

formally defined via the closure of a linear combination of basis functions [Pillai et al. 

(2007)]. As a direct result we rewrite equation (1) as the following RKHS regression model 

[Zhang, Dai and Jordan (2011)]:
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y = Ψ⊺c + ε, ε~N(0, τ2I), (2)

where Ψ(x) = { δℓϕℓ(x)}ℓ = 1
∞  is a vector space spanned by the bases, Ψ = [ψ(x1), …, 

ψ(xn)]⊺ is a corresponding matrix of concatenated basis functions and c = {cℓ}ℓ = 1
∞  are the 

corresponding basis coefficients. The above specification in equation (2) closely resembles 

the linear model in equation (1)—except now the bases are the feature vectors ψ(x) (rather 

than the unit basis), and the transformed space can be infinite dimensional. Theoretically, 

this is an important property because the inclusion of nonlinear interactions and covarying 

relationships are implicitly captured in the RKHS.

Unfortunately, properly representing any given basis function in an empirically amenable 

form is a difficult task [Schölkopf, Herbrich and Smola (2001)]. To circumvent this 

analytical issue, one may alternatively conduct inference in an RKHS by specifying a 

Gaussian process (GP) as the prior distribution over the function space directly

f(x)~GP(m(x), k(x, x′)),

where f(•) is completely specified by its mean function and positive definite covariance 

(kernel) function, m(•) and k(•, •) respectively. In practice, if we condition on a finite set of 

locations (i.e., the set of observed samples n), the Gaussian process prior then becomes a 

multivariate normal [Kolmogorov and Rozanov (1960)]. By specifying a joint version of the 

nonparametric regression model above, we consider taking a “weight-space” view on 

Gaussian processes [Rasmussen and Williams (2006)],

y = f + ε, f~N(0, K), ε~N(0, τ2I), (3)

where, in addition to previous notation, f = [f(x1), …, f(xn)]⊺ is assumed to come from a 

multivariate normal with mean 0 and covariance matrix K = Ψ⊺Ψ with each element kij = 

k(xi, xj). Altogether, we refer to the family of models taking on this form as GP regression. 

The formulation of the weight space GP is similar to the linear mixed model (LMM) 

[Lippert et al. (2011), Zhou and Stephens (2012)] that is frequently used in genetics but with 

one key difference; the GP model utilizes a nonlinear covariance matrix K instead of the 

usual gram matrix XX⊺/p. From this perspective an RKHS model can be viewed as an 

extension of the LMM for modeling nonlinear effects such as statistical interactions. Indeed, 

the GP model still presents the same modeling benefits as an LMM, such as controlling for 

structured random effects. For example, notice that the Gaussian covariance function can be 

written as a product of three terms [Cotter, Keshet and Srebro (2011)

exp − 1
2θ2 ∥ x − x′ ∥ 2 = exp − 1

2θ2( ∥ x ∥ 2 + ∥ x′ ∥ 2) exp − 1
2θ2x⊺x′ .

The last term includes (nonlinear transformed) elements of the LMM relatedness matrix that 

has been well known to effectively control for population stratification in genetic studies 

[Kang et al. (2010), Wu et al. (2011), Yang et al. (2014), Zhou and Stephens (2014)]. 
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Because of these properties, RKHS-based models have become powerful tools for predictive 

problems in many research areas and have been widely used for genomic selection in animal 

breeding programs [de los Campos et al. (2009, 2010)]. We replicate some of these 

sentiments via a small simulation study (see the Supplementary Material and Table S1).

Lastly, we want to point out that (although not explicitly considered here) the formulation of 

the GP regression model in equation (3) can also be easily extended to accommodate other 

fixed effects (e.g., age, sex or genotype principal components) [de los Campos et al. (2009), 

Shi et al. (2012)] as well as be adapted to account for interactions between variants and 

nongenetic risk factors [Cuevas et al. (2017), Weissbrod, Geiger and Rosset (2016)].

Note on bandwidth parameters.—In many cases the covariance function is indexed by 

a bandwidth parameter θ (also known as a smoothing parameter or lengthscale), which we 

expansively write as kθ(•, •). For example, the previously mentioned Gaussian kernel can be 

specified as kθ(x,x′) = exp{−‖x − x′‖2/2θ2}. Within a fully Bayesian model this bandwidth 

parameter can be assigned a prior distribution, and its posterior distribution may be inferred 

[Zhang, Dai and Jordan (2011)]. However, for simplicity we follow recent studies using the 

“median heuristic” and work with a fixed bandwidth that we choose as θ = medianij ‖xi − 

xj‖2 [Chaudhuri et al. (2017)].

Posterior inference and sampling.—We now briefly detail a simple MCMC sampling 

procedure for estimating the parameters in GP regression. Assume now that we have a 

completely specified hierarchical model

y = f + ε, f~N(0, K), ε~N(0, τ2I), τ2~Scale‐Inv − χ2(a, b),

where, in addition to previous notation, we further assume that the residual variance 

parameter τ2 follows a scaled-inverse chi-square distribution with degrees of freedom a and 

scale b as hyper parameters. Given the conjugacy of this model specification, we may use a 

Gibbs sampler to estimate the joint posterior distribution P(f, τ2 ∣ y). This consists of 

iterating between the following two conditional densities:

1. f|τ2, y~N(m∗, V∗) where m* = K(K + τ2I)−1y and V* = K − K(K + τ2I)−1K;

2. τ2|f, y ~ Scale-Inv-χ2(a*, b*) where a* = a + n and b* = a*−1[ab + (y − f)⊺(y − f)].

Iterating the above procedure T times results in a set of sampled draws from the target joint 

posterior distribution. Taking the mean over these draws yields posterior estimates for the 

model parameters (see the Supplementary Material for a detailed algorithmic overview).

2.2. Effect size analog for nonparametric methods.

A noteworthy downside to the GP regression model is the inability to find an effect size for 

causal variants. From a prediction and genomic selection perspective this loss is fine, but 

from the perspective of finding genetic markers that give rise to this improved predictive 

performance (i.e., association mapping) the interpretability of the model is lost. We now 

define the effect size analog for general nonparametric methods as a solution to this 
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limitation [Crawford et al. (2018)]. We first briefly outline the conventional wisdom for 

coefficients in linear regression. In linear models a natural interpretation of a regression 

coefficient is the projection of the genotypes X onto the phenotypic vector y,

β = Proj(X, y), (4)

with the choice of loss function, noise model as well as prior distributions or regularization 

penalties specifying the exact form of the projection. One standard projection operation is 

Proj(X, y) = X†y, where X† is the Moore–Penrose generalized inverse. For Bayesian 

procedures priors over the parameters β induce a distribution on the resulting projection 

procedure Proj (X, y) [Carvalho, Polson and Scott (2010), Liang et al. (2008)].

The general definition for the effect size analog is based on the similar idea of projecting a 

nonlinear function onto the design matrix. Specifically, consider a nonlinear function 

evaluated on n-observed samples such that E(y ∣ X) = f. We formally define the effect size 

analog as the result of projecting the genotypic matrix X onto the nonlinearly estimated 

function vector f,

β = Proj(X, f) . (5)

This projection operation and its practical calculation effectively requires two sets of 

coefficients: (i) the theoretical coefficients c on the basis functions; and (ii) the coefficients 

that determine the effect size analog β. Following the formulation in equation (5), we use 

equations (2) and (3) to specify the joint projection of design matrix X onto the vector f = Φ 
⊺c as the linear map,

β = X†Ψ⊺c = X†f . (6)

The argument for why the p-dimensional vector β is an effect size analog for nonparametric 

regression models is that, on the n-observations, f ≈ Xβ. In the Supplementary Material we 

rederive previous results to formally show that the map from f to β is injective modulo the 

null space of the genotypic matrix [Crawford et al. (2018)]. This is similar to the classical 

linear regression case where two different coefficient vectors will result in the same 

estimated value if the difference between the vectors is in the null space of X. Additionally, 

the only requirement for equation (6) is a well-defined feature map ψ(•). This includes 

taking the Cholesky decomposition of the covariance matrix as a feature map, or even 

employing low-rank approximations such as the Nystrom approximation [Drineas and 

Mahoney (2005)], random Fourier features [Rahimi and Recht (2007)] or explicit Mercer 

expansions [Fasshauer and McCourt (2016)]. We should be clear that a variety of projection 

procedures (corresponding to various priors and loss functions) can be specified, and a 

systematic study elucidating which projections are efficient and robust is of interest for 

future research.

A key motivation for the effect size analog is to conduct nonlinear association mapping in 

the original genotype space while also accounting for population structure and significant 

covarying relationships between variants. When a phenotype or trait is solely driven by 
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additive effects, the projections (4) and 5) with the same genotypes X are equivalent, and the 

resulting effect size analog from equation (6) is the same as the OLS estimate derived by a 

standard linear model. Alternatively, it has been shown (via Taylor series expansions) that 

certain covariance functions enumerate nonlinear effects among observed markers [Jiang 

and Reif (2015)]. The Gaussian kernel, in particular, includes all higher-order interaction 

components, where the contribution of the terms decays polynomially with the order of 

nonlinearity [Cotter, Keshet and Srebro (2011)]. Therefore, when a given phenotype is 

driven by an arbitrary combination of additivity and interactions, a properly chosen 

nonlinear map ψ(•) will lead to an inversion in equation (6) that represents each β j as a 

weighted sum of higher order interactions between marker j and all other markers (see text 

in the Supplementary Material).

3. Genetic association mapping using centrality measures.

The effect size analog serves as a nonlinear summary coefficient for each genetic variant in 

the original modeling space. However, since the explicit projection in equation (6) does not 

always guarantee a preserved mapping of sparse solutions [Crawford et al. (2018)], we 

cannot directly use standard Bayesian quantities such as posterior inclusion probabilities 

(PIPs) or Bayes factors (BFs) to rank markers in order of their significance. Indeed, there are 

many approaches to compute marginal association statistics based on corresponding effect 

size estimates [Barbieri and Berger (2004), Stephens and Balding (2009)], but many of these 

techniques rely on arbitrary thresholding. More importantly, they also fail to take advantage 

of significant underlying dependencies and covarying relationships between variants or sets 

of genomic loci.

We now develop our main methodological innovation. We introduce an analogy to 

traditional Bayesian hypothesis testing for nonparametric regression methods, a post-hoc 

approach for association mapping via a series of “distributional centrality measures” using 

Kullback–Leibler divergence (KLD) [Goutis and Robert (1998), Smith, Naik and Tsai 

(2006), Tan et al. (2017), Woo et al. (2015), Piironen and Vehtari (2016,2017), Alaa and van 

der Schaar (2017)]. Our strategy will be to use the posterior samples of the effect size 

analogs to infer the relative covariance between genetic variants. This underlying correlation 

structure will then be systematically searched over to posit significant individual 

associations. We refer to this approach as computing the RATE of genetic markers.

3.1. Kullback–Leibler divergence.

Typical questions in network studies simplify to the general issue of determining the 

“centrality” of nodes—the potential importance of individual components in relation to the 

other nodes in the entire network. When network relationships are modeled via multivariate 

distributions, this can be explored in various statistical ways. Assume here that we have a 

collection of deterministically computed samples from the implied posterior distribution of 

the effect size analog β (via the projection in equation (6)). One interpretable way to 

summarize (in a single measure) the influence/importance of the jth variant in xj, on the rest 

of the variants in X−j, is via the computation of the KLD measuring the difference between 

P(β−j ∣ β j) and P(β−j). Specifically, this is defined by solving the following integral:
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KLD(β j) = ∫β−j
log P(β−j)

P(β−j ∣ β j)
P(β−j)dβ−j, j = 1, …, p, (7)

where we use the shorthand KLD(β j) = KLD(P(β−j) ∥ P(β−j ∣ β j)). Here, the KLD is a 

nonnegative quantity and in this context takes the value of zero if and only if 

P(β−j ∣ β j) = P(β−j). Equivalently, this means that the KLD is zero if and only if the 

posterior distribution of β−j is independent of the effect β j. Therefore, the case for which 

KLD(β j) = 0 may simply be interpreted as meaning that variant j is not a key explanatory 

variable relative to others. Otherwise, for any given conditioning value β j the divergence in 

equation (7) represents the information (i.e., entropy) change induced on the distribution of 

β−j—naturally varying as the conditioning value β j varies.

Closed form derivation under approximate normal posteriors.—For our case 

study and immediate applications we are interested in straightforward computation of KLD 

measures in order to address problems with increasingly large numbers of genotypes and 

possible interactions. For these purposes and for the rest of the paper, we therefore restrict 

attention to contexts in which we can assume an adequate normal approximation to the full 

joint posterior distribution of the p-dimensional effect size analog β. Ongoing and future 

work is concerned with computational and numerical aspects of the more general context, 

while the methodological and applied advances enabled by our approach are well-

highlighted under the normal posterior assumption.

Thus, we take the posterior for β as (approximately) multivariate normal with an empirical 

mean vector μ and positive semidefinite covariance/precision matrices Σ = Λ−1 estimated via 

simulation methods. Consider the association mapping case where we want to investigate the 

centrality or marginal importance of marker j. We may partition conformably as follows:

β =
β j
βj

, μ =
μj

μ−j
,

Σ =
σj σ−j

⊺

σ−j Σ−j
, Λ = λj λ−j

⊺

λ−j Λ−j
,

where β j, μj, σj and λj are scalars; β−j, μ−j, σ−j and λ−j are (p − 1)-dimensional vectors; and 

Σ−j and Λ−j are (p − 1) × (p − 1) positive definite, symmetric matrices. Under this 

partitioning we know that the marginally β−j~N(μ−j, Σ−j). Furthermore, we also know that, 

when conditioned on the jth variant, P(β−j ∣ β j) is a multivariate distribution with 

expectation and covariance

E(β−j ∣ β j) = μ−j + θj(β j − μj), V(β−j ∣ β j) = Λ−j−1,
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where θj = − Λ−j
−1λ−j is a (p − 1)-dimensional vector. Inserting these probability density 

forms into equation (7) with some algebraic rearrangement yields the following:

KLD(β j) = 1
2[ − log ∣ Σ−jΛ−j ∣ + E(e−j

⊺ Λ−je−j) − 2E(e−j
⊺ )Λ−jθjej − E

(e−j
⊺ Σ−j

−1e−j) + ej2θj
⊺Λ−jθj],

(8)

where log|•| represents the log determinant function of a matrix, e−j = β−j − μ−j is a vector, 

ej = β j − μj is a scalar and the expectations are taken with respect to the marginal posterior 

distribution of β−j. Next, denote the following definition of an expectation of quadratic 

forms [Mathai and Provost (1992)],

E(u⊺Qu) = E(u⊺)QE(u) + tr(V(u)Q),

for any vector u and positive semidefinite covariance matrix Q, where tr(•) is the matrix 

trace function. Using this equality, the computation of the KLD in equation (8) simplifies to 

the following closed form

KLD(β j) = 1
2[ − log( ∣ Σ−jΛ−j ∣ ) + tr(Σ−jΛ−j) + 1 − p + αj(β j − μj)

2], (9)

where αj = θj
⊺Λ−jθj = λ−j

⊺ Λ−j
−1λ−j and tr(I) = p − 1. By symmetry in the notation for 

elements of subvectors and submatrices, it trivially follows that we may simply permute the 

order of the variables in β and iteratively compute the KLD to measure the centrality of any 

variant j.

3.2. Prioritization and relative significance.

In the nonlinear regression context values β j close to zero may be interpreted as “null 

hypotheses” with little to no relevance to the modeled outcome. Therefore, searching for the 

most central (i.e., influential) genetic markers simply reduces to looking for the greatest 

KLD when setting each β j = 0. More contextually specific questions arise when deciding if 

a given centrality measure is significant. Indeed, in practice a threshold may be chosen in 

order to determine if any given KLD represents a significant shift in entropy. Previous 

studies have done this through k-fold permutation to find an effective genome-wide 

threshold [Woo et al. (2015)]. This approach can be costly for datasets with many markers.

A more computationally efficient option for determining a natural ranked cutoff is to explore 

the relevance of variables recursively and to judge their significance via a scaled version of 

the KLD. We call this “RelATive cEntrality” or RATE,

RATE(β j) = KLD(β j) ∕ ∑KLD(β ℓ), ∑RATE(β j) = 1 . (10)

Here, the RATE measure is bounded within the range [0, 1] with the natural interpretation of 

measuring a variable’s relative importance. Suppose that j identifies the genetic marker with 

the largest RATE value. Conditioning on a reduced margin and then repeating the 

Crawford et al. Page 10

Ann Appl Stat. Author manuscript; available in PMC 2020 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



computation outlined in equations (9) and (10) will identify the relatively second most 

explanatory marker. We can repeat this procedure until each of the remaining variants appear 

to be equal in their relative importance. This would indicate that all significant variants had 

been identified, and all that remain are variants for which their influences on the posterior 

distribution are indistinguishable. This recursive process can be simplified to defining an 

initial set of candidate associated markers with first order centrality measures satisfying

{j :RATE(β j) > 1 ∕ p} .

The value 1/p represents the null assumption that there is relatively equal importance across 

all variants; hence, there are no central nodes that exist within the posterior distribution. We 

may quantify this behavior by checking the entropic difference between a uniform 

distribution and the observed RATE measures. Namely,

Δ = log(p) − H, H = − ∑RATE(β j)log(RATE(β j)), (11)

where H represents the intrinsic entropy of the relative centrality measures, and the case of 

no significantly associated markers yields an entropy of log(p). One way to calibrate Δ is 

linked to effective sample size (ESS) measures from importance sampling [Gruber and West 

(2016, 2017)]. In a very different applied context authors have exploited the use of an 

approximate ESS measure defined by

ESS = 1 (1 + Δ ) × 100 % . (12)

This ESS measure is a calibration metric that provides a notion of “loss in uniformity”. For 

example, 50% loss in terms of (1 − ESS) translates to a larger Δ value of 1. This equates to 

the presence of at least one variant that is significantly associated with the observed 

phenotypic trait. On the other hand a minor 5% loss corresponds to a more uniform case 

with Δ value of about 0.05. Again, this latter scenario would occur when there are hardly any 

influential markers within the data.

For any given set of significant variables, according to their estimated RATE measure, 

further analyses may be carried out involving the relative costs of false positives and 

negatives to make an explicitly reasoned decision about which specific variants to pursue 

[Stephens and Balding (2009)]. Unless stated otherwise, the results we present throughout 

the rest of the paper will be based on using RATE. We explore the power of this alternative 

approach for association mapping in Section 4.

3.3. Relationship to graphical models and precision analysis.

In conventional statistics the proposed variable selection procedure is very much related to 

precision analysis. It follows that the rate of change for the KLD (i.e., the first derivative of 

equation (9) with respect to a given effect size analog) is found via the term αj = λ−j
⊺ Λ−j

−1λ−j. 

This means that the closed form computation of the KLD is directly impacted by the 

deviations between the approximation of a given predictor’s posterior mean and the 

assumption that its true effect is zero. Therefore, αj characterizes the implied linear rate of 
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change of information when the effect of any predictor is absent—thus, providing a natural 

(nonnegative) numerical summary of the role of β j in the multivariate distribution. In terms 

of weightings from the precision matrix, we see the following equivalent representation for 

the rate of change of the KLD,

αj = ∑
k ≠ j

∑
ℓ ≠ j

ckℓ λjk λjℓ ,

where ckℓ is the corresponding k-ℓth element of the matrix Λ−j
−1. As derived in the previous 

subsection, we may alternatively denote αj = θ−j
⊺ Λ−jθ−j, where again θ−j = − Λ−j

−1λ−j is a 

(p − 1)-dimensional vector and Λ−j is the precision matrix of the conditional distribution 

P(β−j ∣ β j). These representations help show that, in the context of normal statistical 

regression, αj computes the “variance explained” (i.e., the fitted sum-of-squares) by each 

covariate j.

The idea of variable selection via entropic shifts also has a key connection to graphical 

models. Often the goal of graphical models is to investigate if the precision matrix has some 

off-diagonal series corresponding to an underlying conditional independence structure 

between predictor [Carvalho and West (2007)]. RATE—a relative distributional centrality 

measure that assesses importance (or influence) of each variable on the network of 

relationships reflected in the graph—is greatly affected by the graphical structure resulting 

from the implied zeros in Λ. A missing edge between two predictors j and ℓ means that λjℓ = 

0; hence, limiting the contribution of node ℓ to the overall “network impact factor” of αj. 

From the sum defining αj above, we see that a term related to variables k and ℓ is nonzero 

only when both λjk and λjℓ are nonzero. Therefore, the k-ℓth summation term is nonzero only 

for pairs of predictors that are direct neighbors of j in an undirected graph.

3.4. Software implementation.

Software for computing the RATE measure is carried out in R code which is freely available 

at https://github.com/lorinanthony/RATE. Detailed derivations of the algorithm, which 

utilizes low-rank matrix factorizations for a more practical implementation, are derived in 

the Supplementary Material [Crawford et al. (2019)].

4. Results.

We now illustrate the utility of using centrality measures for genetic association mapping 

through extensive simulation studies and real data analyses. The motivation for each set of 

examples is to better understand the performance and behavior of RATE under different 

types of genetic architectures. First, we use a small simulation study to help the reader build 

a stronger intuition about how RATE prioritizes influential variables in a dataset. It is during 

this demonstration where we also explore what happens to the concepts of “centrality” and 

“uniformity,” when the effects of all known significant markers are assumed to be absent 

from the model. Next, we use more realistic simulations to assess the mapping power of our 

approach in genetic-based applications. Here, the goal is to show that RATE performs 

association mapping as well as the most commonly used Bayesian and regularization 
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modeling techniques. Finally, we assess the potential of the our approach in two real 

datasets. The first is an Arabidopsis thaliana QTL mapping study consisting of six different 

metabolic traits from an F6 Bay-0 × Shahdara recombinant inbred lines (RILs) population. 

The second is a genome-wide association study (GWAS) in a heterogeneous stock of mice 

from the Wellcome Trust Centre for Human Genetics.

4.1. Simulation studies.

For all synthetic demonstrations and assessments we consider a simulation design that is 

often used to explore the utility of statistical methods across different genetic architectures 

underlying complex phenotypic traits [Crawford and Zhou (2018), Crawford et al. (2017), 

Zeng and Zhou (2017)]. First, we assume that all of the observed genetic effects explain a 

fixed proportion of the total phenotypic variance. This proportion is referred to as the 

“broad-sense heritability” of the trait, which we denote as H2. From the more conventional 

statistics perspective the parameter H2 can alternatively be described as a factor controlling 

the signal-to-noise ratio in the simulations. Next, we use a genotypic matrix X with n 
samples and p single nucleotide polymorphisms (SNPs) to generate synthetic real-valued 

phenotypes that mirror genetic architectures affected by a combination of linear (additive) 

and interaction (epistatic) effects.

We randomly choose a select subset of j* “causal” (or truly associated) SNPs as the 

determining factors of the data generating process. The linear effect sizes for all j* 

associated genetic variants are assumed to come from a standard normal distribution, 

βj∗~N(0, 1). When applicable, we also create a separate matrix W which holds all pairwise 

interactions between the causal SNPs. These corresponding interaction effect sizes are 

drawn as γ~N(0, I). We scale both the additive and interaction effects so that collectively 

they explain a fixed proportion of H2. Namely, the additive effects make up ρ%, while the 

pairwise interactions make up the remaining (1 − ρ)%. Alternatively, the proportion of the 

heritability explained by additivity is said to be V(Xβ) = ρH2, while the proportion detailed 

by nonlinearity is given as V(Wγ) = (1 − ρ)H2. We consider two choices for the parameter ρ = 

{0.5, 1}. Intuitively, ρ = 1 represents the limiting case where the variation of a trait is driven 

by solely additive effects. For ρ = 0.5, the additive and interaction effects are assumed to 

equally contribute to the total phenotypic variance. Once we obtain the final effect sizes for 

all causal variants, we draw normally distributed random errors as ε~N(0, I) to make up the 

remaining (1 − H2)% of the total V(y). Finally, continuous phenotypes are then created by 

summing over all observed effects using two simulation models:

i. Standard model: y = Xβ + Wγ + ε.

ii. Population stratification model: y = Zω + Xβ + Wγ + ε,

where Z contains covariates representing additional population structure, and ω are the 

corresponding fixed effects which are also assumed to follow a standard multivariate normal 

distribution. Alternatively, one can think of the combined effect of Zω as structured noise. 

To this end, simulations under model (ii) will make the appropriate assumption that 

V(Zω) + V(ε) = (1 − H2). For any simulations conducted under model (ii), genotype PCs are 
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not included in any of the model fitting procedures, and no other preprocessing 

normalizations were carried out to account for the added population structure.

It is helpful to point out here that the main purpose of the following simulations is to 

demonstrate the utility of RATE in providing an explicit ranking of variable importance, so 

as to uncover the implicit ranking assigned by nonparametric regression methods. Our 

simulation comparisons are thus targeted to illustrate how RATE can be used in this task, 

and how its overall variable selection performance differs from standard parametric mapping 

procedures in different scenarios.

4.1.1. Proof of concept simulations: Demonstrating centrality.—In this 

subsection we show how distributional centrality measures may be used and interpreted 

when prioritizing genetic markers in an association mapping study. Our main concern is to 

familiarize the reader with the behavior and concepts underlying RATE. To do this, we make 

use of n = 2000 synthetic genotypes that are independently generated to have p = 25 single 

nucleotide polymorphisms (SNPs) with allele frequencies randomly sampled from a uniform 

distribution over values ranging from [0.05,0.5]. The resulting n × p simulated genotype 

matrix X is then used to create continuous phenotypes using the standard generative model 

(i). Here, we assume that only the last three variants j* = {23, 24, 25} are causal, and that 

their combined genetic effects make up H2 = 60% of the total phenotypic variation. We then 

examine the full two cases for the parameter ρ = {0.5, 1}. As a brief reminder ρ represents 

the proportion of broad-sense heritability that is contributed by additivity versus interaction 

effects. Indeed, these simulation assumptions are not realistic in terms of the qualities 

observed in real data applications; however, we stress that this section merely serves as a 

simple demonstration of “centrality” and “uniformity.” The small number of variants allows 

us to clearly illustrate and visualize these proofs of concepts.

Throughout the rest of this subsection, we detail the behavior RATE in the simple linear case 

with ρ = 1. Similar results for ρ = 0.5 can be found in the Supplementary Material. For each 

simulation we fit a standard GP regression model under a zero mean prior and a Gaussian 

covariance function using a Gibbs sampler with 10,000 MCMC iterations and hyper-

parameters set to a = 5 and b = 2/5. During each iterate a corresponding nonlinear projection 

is computed as in equation (5). This results in an approximation of the implied posterior 

distribution for the effect size analog. With these conditional draws we calculate the 

distribution’s empirical posterior mean, covariance, and precision. Next, we use the closed 

form solutions in equations (9) and (10) to derive a RATE measure for each genetic marker.

Figure 1(a) depicts an illustration of first order centrality across the 25 variants. Here, the 

three known causal SNPs are colored in blue. As a reference we also display a red dashed 

line that is drawn at the level of relative equivalence (i.e., 1/p). This represents the value for 

which all variants are approximately uniform in their centrality or significance. To put this 

into better context, we provide uniformity checks: (i) the entropic difference Δ according to 

equation (11) and (ii) the corresponding empirical ESS estimate as computed in equation 

(12). In this first panel figure we see that RATE accurately determines variants #23–25 as 

being the most central to the posterior distribution.
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To demonstrate what it conceptually means to be central to a distribution, we next consider a 

series of follow-up analyses. Here, we iteratively assume that the genetic effect of the most 

significantly associated SNP has been nullified from the dataset. We then condition on a 

reduced margin for the posterior distribution and recompute the RATE measures. The key 

takeaway is that, without the effect of the data’s most influential SNPs, the relative 

importance of the remaining variants will continue to increase until each of them are 

approximately equal in weight—hence, resembling a uniform distribution. Consider the 

ongoing example and assume that we nullify the effect of variant # 24. After recomputing 

RATE(β j ∣ β 24) = 0 for every j ≠ 24th variant, we see that while markers #25 and #23 are still 

the most significant according to their second order centrality; the importance levels of the 

other markers have shifted closer to becoming relatively equivalent (see Figure 1(b)). This 

shift continues when the effects of the remaining causal variants are also removed 

successively (see Figures 1(c) and (d) respectively). Also notice during this transition, Δ → 
0 and ESS → 100%. This same trend happens both in the presence of interaction effects 

(Figure S2), as well as when the causal variants are in nearly perfect collinearity (or “linkage 

disequilibrium” (LD)) with noncausal markers (Figures S3 and S4). In the latter case we 

force variants # 23–25 to have a correlation coefficient R = 0.9 with variants #1–3.

It is also important to demonstrate what happens to the proposed centrality measures if one 

mistakenly removes the effect of a genetic marker that is not central to explaining the 

observed phenotypic variation. Reconsider the ongoing example where, instead of iteratively 

removing the effect of the most central variant, we simply nullify the effect of markers #1–3, 

which we know to be nonsignificant (see Figure 2(a)). Figures 2(b)–(d) (and Figure S5) 

illustrate that the three true causal variants (i.e., markers #23–25) are continuously identified 

as the most associated or central to the overall posterior distribution. Noticeably, with each 

passing removal of a noncentral variant, the degree to which the RATE measures begin to 

look uniform has slowed substantially.

As a final demonstration we show what happens when the null assumptions of relative 

centrality are met. Recall that under the null hypothesis, RATE assumes that every variant 

equally contributes to the broad-sense heritability of a trait— that is, no one SNP is more 

important or more central than the others. To illustrate this, we generate synthetic 

phenotypes such that the effect sizes of all 25 SNPs in the data are set to 1. Figure S6 shows 

results from four different datasets. The key takeaway here is that in these cases RATE 

produces much more uniformly distributed first order centrality measures as indicated by the 

entropic statistics Δ and ESS. For completeness, in Figure S7 we also show what happens to 

the raw and unscaled KLDs when phenotypes have been permuted.

4.1.2. Power assessment and method comparisons.—We now assess the power 

of RATE and its ability to effectively prioritize truly associated variants under different 

genetic architectures. To do this, we now consider simulations that mirror more realistic 

genetic applications. Here, we utilize real genotypes from chromosome 22 of the control 

samples in the Wellcome Trust Case Control Consortium (WTCCC) 1 study [The Wellcome 

Trust Case Control Consortium (2007)] (http://www.wtccc.org.uk/) to generate continuous 

phenotypes (see the Supplementary Material for details). Exclusively considering this group 
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of individuals and SNPs leaves us with an initial dataset consisting of n = 2938 samples and 

p = 5747 markers. During each simulation run we randomly choose j* = 30 SNPs, which we 

classify into the two distinct causal groups: (1) a small set of five variants, and (2) a larger 

set of 25 variants. All causal markers have additive effects and, when applicable, the group 1 

causal SNPs interact with group 2 causal SNPs but never with each other (the same rule 

applies to the second group). We will consider three simulation scenarios. Scenario I 

involves phenotypes generated by standard model (i); while scenarios II and III consider 

model (ii) where we introduce population stratification effects by allowing the top five and 

10 genotype principal components (PCs) Z to make up 30% of the overall variation in the 

simulated traits respectively. Within these three scenarios we set the broad-sense heritability 

to be H2 = 0.3 and consider two choices for the parameter ρ = {0.5, 1}.

We compare the GP regression model and our proposed distributional centrality measures to 

a list of standard Bayesian and regularization modeling techniques. Specifically, these 

methods include: (a) a genome scan with a single-SNP univariate linear model that is 

typically used in GWAS applications (SCANONE) [Yandell et al. (2007)], (b) L1-

regularized lasso regression; (c) the combined regularization utilized by the elastic net 

[Waldmann et al. (2013)]; and (d) a commonly used spike and slab prior model, also 

commonly known as Bayesian variable selection regression [Guan and Stephens (2011)] 

which places a prior distribution on each SNP as a mixture of a point mass at zero and a 

diffuse normal centered around zero. For each Bayesian method we run a Gibbs sampler for 

10,000 MCMC iterations. Regularization approaches were fit by first learning tuning 

parameter values via 10-fold cross validation.

All results described in the main text are based on scenarios I and II, while results for 

scenario III can be found in the Supplementary Material. We evaluate each method’s ability 

to effectively prioritize the causal SNPs in 100 different simulated datasets. The criteria we 

use compares the false positive rate (FPR) with the rate at which true variants are identified 

by each model (TPR). This is further quantified by assessing the area under the curve 

(AUC). Note that SCANONE produces p-values, lasso and the elastic net give magnitude of 

regression coefficients and the Bayesian variable selection model computes posterior 

inclusion probabilities (PIPs). Method performance varies depending on the two factors: (a) 

the presence of interaction effects, and (b) additional structure due to population 

stratification. For example, in the first simulation scenario all methods exhibit lower power 

when a proportion of the broad-sense heritability is made up of interaction effects (e.g., 

Figure 3(a)). This power increases when additive effects dominate the heritability (e.g., 

Figure 3(b)). Overall, the lasso is the worst performing method. In the cases where there are 

no additional population stratification effects, the SCANONE approach proved to be better 

method. These results are unsurprising since this scenario best suites the assumptions of this 

approach.

While the performance of our distributional centrality measures are comparable in the first 

setting, its true advantage becomes apparent when there is some underlying population 

structure between genotypes (i.e., scenarios II and III). Importantly, under this type of data 

the power of RATE is consistently better than its counterparts (e.g., Figures 3(c), (d) and 

S8). From a significance threshold perspective RATE also proves to have the best “optimal” 
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selection metric. Solely considering SNPs with RATEs > 1/p consistently yielded more 

associative mapping power than observing both (a) the equivalence of the Bayesian “median 

probability model” (i.e., PIPs > 0.5) [Barbieri and Berger (2004)], and (b) SCANONE p-

values below the Bonferroni-corrected significance threshold (i.e., P < 8.7 × 10−6) (see 

Figure S9). For example, in simulation scenario II the “optimal” RATE model identified 

72% and 78% of the casual variables for ρ = 0.5 and 1 respectively. This compared to 24% 

and 37% for the median probability model, and 32% and 46% for the multiple testing 

corrected SCANONE model (see Figure S9). This trend is consistent across all of the 

simulation settings that we consider.

Altogether, we want to stress that these simulation results are important from a model 

interpretation perspective. Even though methods like SCANONE effectively prioritize SNPs 

in certain scenarios, their significance metrics struggle to create separation between selected 

and nonselected markers. Therefore, if a practitioner were to choose variants satisfying some 

“optimal” genome-wide threshold, the more conservative methods will simply miss the 

majority of the true causal variables (i.e., a higher count of false negatives). RATE, on the 

other hand, is consistently able to distinguish among the SNPs in a given set. Even in the 

scenarios where phenotypes are simulated without population stratification effects, RATE is 

more likely to deem associated variants as significant genome-wide—just at the possible 

cost of slightly more false positives.

4.2. Real data analysis: Arabidopsis QTL study.

We now apply our approach to a quantitative trait loci (QTL) association mapping study 

focused on the characterization of complex phenotypes in Arabidopsis thaliana, a small 

flowering plant native to Eurasia. The specific dataset that we consider comes from the 

Versailles Arabidopsis Stock Center [Loudet et al. (2002)] (http://

publiclines.versailles.inra.fr/page/33) and has been previously used for evaluating the 

mapping power of other statistical methods [Demetrashvili, den Heuvel and Wit (2013)]. 

More descriptively, it consists of n = 403 F6 plants from a Bay-0 × Shahdara recombinant 

inbred lines (RILs) population that were genotyped for p = 1028 genetic markers and 

phenotyped for 63 different metabolic traits [Wentzell et al. (2007)]. After pruning the 

genotypes of variants with near perfect correlation (R ≥ 0.99), we obtained a final set of 524 

markers (see the Supplementary Material for details). We limit the scope of our analysis to 

six biochemical content measurements including allyl, Indol-3-ylmethyl (I3M), 4-methoxy-

indol-3-ylmethyl (MO4I3M), 4-methylsulfinylbutyl (MSO4), 8-methylthiooctyl (MT8) and 

3-hydroxypropyl (OHP3) (see Table S2). Importantly, the goal of the original study was to 

highlight complex connections between gene expression and metabolite (glucosinolate) 

variation [Wentzell et al. (2007)]. Here, we consider this particular case study not only 

because it presents a variety of quantitative traits, but also because the data contains a 

mixture of additive and some epistatic effects. Indeed, this dataset presents a realistic mix 

between the cases we previously examined for simulation scenario I.

For each metabolic trait we provide a summary table which lists centrality measures for all 

gene expression polymorphisms as detected via GP regression and RATE (see Table S3). To 

contrast the associations identified by our nonparametric method, we also directly compared 
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results from implementing the SCANONE approach, since it proved to be the most powered 

of the competing methods in simulations (again, see Table S3). Figures 4 and S10–S14 

display plots of enrichment for a genome-wide scan on the six traits according to the RATE 

enrichment metric. These figures also show the comparative results for the standard single-

variant testing approach. Referenced in all images are blue points which represent genetic 

markers with significant distributional centrality measures above the line of relative 

equivalence (i.e., RATEs > 1/p). In Table 1 we report the number of significant markers that 

are identified by both methods. Once again, these are determined by markers with 

RATE(β ) > 1 p and P < 9 × 10−5 respectively. Again, the latter represents the genome-wide 

Bonferroni-corrected significance threshold. In the second part of Table 1, we take the 

significant markers identified by each model and refit simple linear regressions with them. 

Here, we report R2 as a way to assess which method was able to select markers that explain 

the greatest proportion of variance in all six traits.

Overall, RATE consistently identified genomic locations that correspond to known members 

of biosynthetic pathways in Arabidopsis thaliana. Most of these, as in the original study, 

were small networks of QTLs known to control biosynthetic pathways. For example, in 

MO4I3M, the most central loci appeared on the second chromosome and were headlined by 

the marker tagged At2g14170 (see Figure 4(a)). This variant is associated with ALDH6B2—

a gene within the Arabidopsis genome known to catalyze enzymatic reactions in valine and 

pyrimidine catabolism (i.e., destructive metabolism) [Hou and Bartels (2015), Kirch et al. 

(2004)]. Similarly, on the first chromosome RATE featured a small group of central loci lead 

by At1g78370—which encodes a core glucosinolate biosynthesis gene GSTU20 and plays a 

key role in glutathione transferase activity and metabolism [Wu et al. (2016)]. For the trait 

MT8 content RATE deemed the most important region of the genome to be on the fifth 

chromosome (see Figure S13). Here, the marker At5g22630 had the greatest relative 

centrality measure. This polymorphism represents ADT5 which has recently been suggested 

to moonlight proteins that play an enzymatic role in biosynthesis [Bross et al. (2017)]. This 

same marker is also highlighted as being moderately influential in explaining the variability 

inallyl content across the plants (see Figure S10). This makes sense because of the strong 

positive correlation between the content of these two traits.

These validated findings from previous experimentally based studies lead us to believe that 

our results contain true positives. Lastly, in order to bolster confidence in the relative 

centrality measures identified by our nonparametric approach, we also display the 

correlation structure across the genotypes and phenotypes for the 403 Bay-0 × Shahdara 

RILs (see Figures S15 and S16). Consistent with our results, there appeared to be strong cis-

type covariances between groups of genetic markers located on the same chromosome. This 

underlying genetic architecture resembles data analytic situations where our approach is 

most powered.

In order to better explain why our nonparametric approach and the SCANONE method 

performed similarly in each of the six phenotypes, we use a variance component analysis to 

evaluate how different types of genetic effects (i.e., linear vs. nonlinear) contribute to the 

overall broad-sense heritability [Zhou (2017)] (see text in the Supplementary Material for 

details). Briefly, we use a linear mixed model with multiple random effects to partition the 
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phenotypic variance into three different categories: (a) an additive component, (b) a pairwise 

interaction component and (c) a third order interaction component. Disregarding the 

contribution of random noise, we quantify the contribution of these genetic effects by 

estimating the proportion of heritability that is explained via their corresponding variance 

components. Table S4 displays these results which effectively highlights that each of the six 

traits are primarily dominated by additivity.

4.3. Real data analysis: Heterogenous stock of mice GWAS.

We lastly assess RATE’s association mapping ability in a more traditional GWAS setting by 

analyzing three quantitative traits in a heterogeneous stock of mice dataset [Valdar et al. 

(2006)] from the Wellcome Trust Centre for Human Genetics (http://

mtweb.cs.ucl.ac.uk/mus/www/mouse/index.shtml). This data contains n ≈ 2000 individuals 

and p ≈ 10,000 SNPs with minor allele frequencies above 5%—with exact numbers varying 

slightly depending on the phenotype (see the Supplementary Material for details). The three 

quantitative traits we consider include body weight, percentage of CD8+ cells and high-

density lipoprotein (HDL) content. We consider this particular dataset not only because it 

contains a wide variety of quantitative traits but also because the data contains related 

samples. Relatedness has been shown to manifest different orders of interaction effects 

[Hemani, Knott and Haley (2013), Crawford et al. (2018,2017)], and thus this dataset also 

presents a realistic mix between the cases we examined in simulation scenarios II and III.

Once again, we compare the GP regression model to the single-SNP approach via 

SCANONE which serves as a baseline. For each trait we provide a summary table which 

lists the corresponding RATEs and p-values for all SNPs (see Table S5). Figures 5, S17 and 

S18 then visually display this information via Manhattan plots. In these figures 

chromosomes are shown in alternating colors for clarity with the top five most enriched 

regions (according to RATE measures) being highlighted as a way to facilitate comparisons 

between the mapping approaches.

As in the previous real data application our nonparametric approach was able to detect 

multiple loci that have been previously validated as having functional associations with the 

traits of interests. Many of these findings were also indicated in the original study that 

produced this dataset [Valdar et al. (2006)]. For example, the X chromosome is well known 

to majorly influence adiposity and metabolism in mice [Rance, Hill and Keightley (1997), 

Chen et al. (2012, 2013), Cox, Bonthuis and Rissman (2014)]. As expected, in the body 

weight and HDL content traits, our approach identified significant enrichment in this 

genomic region—headlined by the chromatin remodeling complex gene Smarca1 in both 

cases. Additionally, for the body weight phenotype, RATE also prioritized markers on 

chromosomes 7 and 10 as having notable associations. Previous computational studies have 

shown variants on both of these chromosomes to have additive effects and statistical 

epistatic interactions that influence mice body composition [Ankra-Badu et al. (2009), 

Brockmann et al. (1998), Diament and Warden (2003), Kleyn et al. (1996)]. In this particular 

analysis we attribute the selection of these loci to the nonlinear properties of the Gaussian 

covariance function and the nonparametric nature of the GP regression model. Similarly, for 

HDL content RATE found many significant SNPs on the first, eleventh and twelfth 
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chromosomes. The corresponding spike on chromosome 1 is a genomic location that most 

notably harbors the HDL driver gene Ath-1 [Paigen et al. (1987)] (see Figure 5(a)). Finally, 

for the phenotype detailing the percentage of CD8+ cells, our method identified the majority 

of significant SNPs to be on the seventeenth chromosome—including those within boundary 

of Myof1, a gene that has been suggested to modulate cell adhesion and motility in the 

immune system [Kim et al. (2006)]. Overall, this general genomic location that has been 

validated to greatly determine the ratio of T-cells [Yalcin et al. (2010)].

Once again, we use variance component analysis to now dissect the broad-sense heritability 

of these three mice traits and help better explain why there could be differences in the loci 

discovered by RATE and SCANONE (see Table S6). As in the previous subsection we 

implement a linear mixed model to partition the overall broad-sense heritability into the 

same additive, second order (pairwise) interaction and third order interaction genetic effect 

types. Note that, unlike in the Arabidopsis QTL study, additive effects do not dominate the 

genotypic contribution in any of the three mice phenotypes that we consider—this is 

particularly obvious for the trait detailing the HDL content (Figure 5 and Table S6). Instead, 

the variance components corresponding to the second and third order interactions make up 

the majority of the broad-sense heritability. We believe that accounting for these nonlinear 

relationships, as well as controlling for the relatedness between samples, allows RATE to 

identify loci that SCANONE misses.

5. Discussion.

In this paper, we proposed a new general measure for conducting variable selection in “black 

box” Bayesian methodologies. While many of these black box approaches often give notable 

predictive performance gains, the reasoning behind these results can be difficult to explain 

and interpret. Within a statistical genetics context we discussed how the previously proposed 

effect size analog for nonparametric regression enables the prioritization of variants based 

on their marginal associations. Recognizing that one of the main sources of performance 

gains in black box modeling is through underlying interactions and nonlinear effects 

between predictor variables, we introduced our new distributional centrality measure RATE

—meant to rank genetic markers based on their influence on the joint distribution with other 

markers. As we demonstrated with simulation studies, our new measure can be used for 

feature selection, giving state-of-the-art performance even in the presence of population 

structure. In real QTL and GWAS data applications, RATE allowed us to uncover 

biologically relevant markers by simultaneously taking into account significant interactions 

when ranking variants based on their relative importance.

In its current form we have focused on demonstrating RATE with a Gaussian process 

regression model. Although our entire illustration of the method is based on the 

manipulation of approximate posterior distributions in Bayesian applications, each of the 

innovations that we present can be applied in a frequentist setting. The effect size analog is 

merely a summary statistic which can be derived after fitting any model. Therefore, one 

could envision a frequentist setting in which parameter estimation and uncertainty is done 

using bootstrap, for example. In particular this would lead to a multivariate normal-like 

estimator for the mean and covariance of the effect size analog. One could then proceed to 
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compute the relative centrality measures with this distribution. The utility of our approach, 

from this alternative point of view, remains an open question.

RATE is not without its limitations. One particular limitation of RATE is that while it 

provides a measure of general association for nonparametric methods, it cannot be used to 

directly identify the component (i.e., linear vs. nonlinear) that drives individual variable 

associations. Thus, despite being able to detect significant variants that are associated to a 

response in a nonlinear fashion, the RATE measure is unable to directly identify the detailed 

orders of interaction effects. A key part of our future work is learning how to disentangle 

this information. A second, and perhaps the most noticeable, limitation of RATE is that the 

computation of the centrality measures scales at least cubically with the number of features 

in the input data (see Table S7 in the Supplementary Material). This is opposed to the other 

methods we compare in this study (e.g., single-SNP tests) which take a fraction of the time 

to compute. In future work we would like to consider the challenges of analyzing large scale 

studies. An example of this would be consortium-sized efforts in human-based genome-wide 

association studies with millions of markers and thousands of genotyped individuals 

[Sudlow et al. (2015), The 1000 Genomes Project Consortium (2010), The Wellcome Trust 

Case Control Consortium (2007)]. In these settings one possible immediate fix would be to 

use a two step procedure. In the first step we implement a more scalable mapping method 

[Lippert et al. (2011), Purcell et al. (2007), Zhou and Stephens (2012)] as a screen to select 

the top marginally associated markers. Then, in the second step we test for more detailed 

nonlinear prioritization using centrality measures. Nonetheless, new algorithms and 

alternative code implementations are likely needed to scale RATE up to datasets that are 

orders of magnitude larger in size.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Orders of distributional centrality via RATE measures. These are simple proof of concept 
simulations with broad-sense heritability level H2 = 0.6 and ρ = 1. Here, (1 − ρ) is used to 
determine the proportion of signal that is contributed by interaction effects. Data are 
simulated such that the effects of only the last three genetic variants j* = {23, 24, 25} (blue) 

are nonzero. The dashed line is drawn at the level of relative equivalence (i.e., 1/p). Figure 
(a) shows the first order centrality across all markers; (b)–(d) show results when the most 
significantly associated variants are iteratively nullified. Uniformity check values are also 
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reported: (i) the entropic difference Δ, and (ii) the corresponding empirical effective sample 
size (ESS) estimates.
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Fig. 2. 
Orders of distributional centrality via RATE measures when nonassociated variants are 
deemed significant. These are simple proof of concept simulations with broad-sense 
heritability level H2 = 0.6 and ρ = 1. Here, (1 − ρ) is used to determine the proportion of 
signal that is contributed by interaction effects. Data are simulated such that the effects of 
only the last three genetic variants j* = {23, 24, 25} (blue) are nonzero. The dashed line is 
drawn at the level of relative equivalence (i.e., 1/p). Figure (a) shows the first order centrality 
across all markers; (b)–(d) show the results when nonsignificant markers #1-3 are iteratively 
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nullified. Uniformity check values are also reported: (i) the entropic difference Δ, and (ii) the 
corresponding empirical effective sample size (ESS) estimates.
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Fig. 3. 
Power analysis for prioritizing genetic variants. Phenotypes are simulated with broad-sense 
heritability level H2 = 0.3 with control parameter ρ = {0.5, 1} in Figures (a) and (c) and 
Figures (b) and (d) respectively. Here, (1 − ρ) is used to determine the proportion of signal 
that is contributed by interaction effects. Compared approaches include Gaussian process 
regression with RATE (blue), Bayesian variable selection with a spike and slab prior (PIPs) 

(pink), lasso regression (red), the elastic net (green) and the SCANONE method (orange). 

Area under the curve (AUC) is reported to facilitate comparisons. Scenario I corresponds to 
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phenotypic outcomes being generated via simulation model (i). Scenario II introduces 
population stratification effects with simulation model (ii) by allowing the top five genotype 
PCs to make up 30% of the phenotypic variance. Results are based on 100 replicates in each 
case.
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Fig. 4. 
Genetic map wide scan for the 4-methoxy-indol-3-ylmethyl (MO4I3M) glucosinolate trait 
analyzed in Arabidopsis thaliana QTL mapping study. Compared methods are: (a) Gaussian 
process regression with RATE and (b) SCANONE (orange). Significant markers are 
determined by RATE(β ) > 1 p and P < 9 × 10−5 respectively. The latter represents the 
genome-wide Bonferroni–corrected significance threshold. To ease the comparisons, points 
in blue represent genetic markers with significant distributional centrality measures. Markers 
labeled in color were not found by RATE.
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Fig. 5. 
Genome-wide scan for high-density lipoprotein (HDL) content in the heterogeneous stock of 
mice dataset. Figure (a) depicts the relative distributional centrality measures (RATE) of 
quality–control-positive SNPs plotted against their genomic positions. Gaussian process 
regression was used to derive these measures. Chromosomes are shown in alternating colors 
for clarity, with the top five most enriched regions (according to RATE) being highlighted by 
the star symbol. Figure (b) serves as a direct comparison and depicts results from a typical 
GWAS analysis using SCANONE. Here, we overlay the enriched regions detected by RATE 
to simplify the comparison.
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Table 1

Comparing RATE and the SCANONE mapping approach in the Arabidopsis QTL study. Glucosinolate 
content traits include allyl content, indol-3-ylmethyl (I3M), 4-methoxy-indol-3-ylmethyl (MO4I3M), 4-

methylsulfinylbutyl (MSO4), 8-methylthiooctyl (MT8) and 3-hydroxypropyl (OHP3). Significant markers are 

determined by RATE(β ) > 1 p and P < 9 × 10−5 respectively. The latter represents the genome-wide 

Bonferroni-corrected significance threshold. Values in bold denote the best according to R2 when considering 
“optimal” model fit with the significant markers. The last section describes the percent overlap between the 
significant markers found using the two methods

Phenotypic traits

Category Method Allyl I3M MO4I3M MSO4 MT8 OHP3

# Sig. Markers RATE 64 130 165 117 85 96

SCANONE 61 75 99 100 71 98

R2 of Sig. Model RATE 0.686 0.472 0.570 0.544 0.610 0.569

SCANONE 0.675 0.353 0.452 0.494 0.527 0.566

% Overlap SCANONE ⊆ RATE 97% 100% 98% 100% 100% 97%
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