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Abstract

Objectives—This review aims to: 1) evaluate the quality of model reporting, 2) provide an
overview of methodology for developing and validating Early Warning Score Systems (EWSs) for
adult patients in acute care settings, and 3) highlight the strengths and limitations of the
methodologies, as well as identify future directions for EWS derivation and validation studies.

Methodology—A systematic search was conducted in PubMed, Cochrane Library, and
CINAHL. Only peer reviewed articles and clinical guidelines regarding developing and validating
EWSs for adult patients in acute care settings were included. 615 articles were extracted and
reviewed by five of the authors. Selected studies were evaluated based on the Transparent
Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD)
checklist. The studies were analyzed according to their study design, predictor selection, outcome
measurement, methodology of modeling, and validation strategy.

Results—A total of 29 articles were included in the final analysis. Twenty-six articles reported
on the development and validation of a new EWS, while three reported on validation and model
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modification. Only eight studies met more than 75% of the items in the TRIPOD checklist. Three
major techniques were utilized among the studies to inform their predictive algorithms: 1) clinical-
consensus models (n=6), 2) regression models (n=15), and 3) tree models (n=5). The number of
predictors included in the EWSs varied from 3 to 72 with a median of seven. Twenty-eight models
included vital signs, while 11 included lab data. Pulse oximetry, mental status, and other variables
extracted from electronic health records (EHRS) were among other frequently used predictors. In-
hospital mortality, unplanned transfer to the intensive care unit (ICU), and cardiac arrest were
commonly used clinical outcomes. Twenty-eight studies conducted a form of model validation
either within the study or against other widely-used EWSs. Only three studies validated their
model using an external database separate from the derived database.

Conclusion—This literature review demonstrates that the characteristics of the cohort,
predictors, and outcome selection, as well as the metrics for model validation, vary greatly across
EWS studies. There is no consensus on the optimal strategy for developing such algorithms since
data-driven models with acceptable predictive accuracy are often site-specific. A standardized
checklist for clinical prediction model reporting exists, but few studies have included reporting
aligned with it in their publications. Data-driven models are subjected to biases in the use of EHR
data, thus it is particularly important to provide detailed study protocols and acknowledge,
leverage, or reduce potential biases of the data used for EWS development to improve
transparency and generalizability.

Keywords

Early Warning Scores; Clinical Predictive Modeling; Monitoring; Physiologic; Electronic Health
Records; Decision Support Technique; Prognosis

1. Introduction

In the United States, over 200,000 patients die in the hospital each year due to cardiac arrest.
[1] Additionally, an estimated 14% to 28% of ICU admissions are unplanned transfers to the
ICU.[2] These outcomes are considered clinical deterioration events and many hospital
practices are directed towards intervening before they occur. Multiple studies provide
evidence that patients usually develop physiological instability preceding clinical
deterioration.[3, 4] In response, early warning scores (EWSs) have been developed to assist
clinicians in recognizing signs of early physiological deterioration, allowing them to
intervene in a timely manner and provide more intensive care. EWSs generally take
routinely measured physiological measurements (e.g., vitals signs, lab data) as input and
evaluate patients’ risk of developing clinical deterioration events as output. When a patient’s
score passes a certain threshold, an alarm may be sent to the corresponding clinicians for
further evaluation and intervention.

The concept of EWSs dates back to the late 1990s when five physiological parameters were
utilized for bedside evaluation: 1) systolic blood pressure, 2) pulse rate, 3) respiratory rate,
4) temperature, and 5) mental status based on expert opinion.[5] Developed by Subbe et al.,
the Modified Early Warning Score (MEWS) became one of the most cited models.[6] To
date, EWSs are widely used internationally and various algorithms have been published.
Several literature reviews compare and validate the predictive power of existing EWSs and
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their effects on clinical outcomes.[7-12] Since the development of MEWS, many more
EWSs built with more complex statistical learning algorithms have been published. The
Transparent Reporting of a multivariable prediction model for Individual Prognosis Or
Diagnosis (TRIPOD) statement was published in 2015 in response to the rapid growth of
clinical prediction models as well as the incomplete reporting of model development and
validation studies. TRIPOD provides detailed guidance on the 37 key items to report in
studies of developing, validating, or updating clinical prediction models.[13, 14] Complete
reporting of research facilitates reproducibility of models, appraisal of model validity, and
judgement of model generalizability to other clinical settings.[15] Given the evolving
science, a thorough review of methods for developing and validating EWSs must first be
conducted, and yet, such a systematic review does not exist to date. This review aims to: 1)
evaluate the quality of model reporting, 2) provide an overview of methodology for
developing and validating EWSs for adult patients in acute care settings, and 3) highlight the
strengths and limitations of the methodologies, as well as identify future directions for EWS
derivation and validation studies.

Material and Methods

To include all relevant scientific literature, a systematic search was performed within the
PubMed, CINAHL, and Cochrane Library databases from their date of inception to March
2"d 2019, Search terms included free-text as well as controlled terms from MeSH in
PubMed, and free-text only in Cochrane Library and CINAHL. A broad search strategy was
applied in an attempt to include all available literature regarding EWSs. Search terms with
wild cards “warning scor*” OR “warning system*” were used in combination with
“validat™” (see Figure 1: search strategy). The results of the search were stored and managed
in EndNote X9 (Thomson Reuters, New York, NY).

2.1 Study Selection

All potentially relevant titles and abstracts were independently screened by five reviewers
(LH, AM, JS, MK, JG) for eligibility. Studies were included based on the following criteria:
(i) the study used physiological measurements from adult human subjects in acute care units,
(ii) the study was related to the development and validation of an EWS system, and (iii) the
study was a peer-reviewed publication. Studies were excluded if they were: (i) studies
restricted to pediatric, obstetric, or intra-operative units, or restricted to trauma patients or
patients in an ICU or emergency room, (ii) studies restricted to a subgroup of patients with
specified primary diseases, (iii) qualitative or implementation evaluation studies, (iv) pure
validation studies testing an existing EWS without modification, (v) not accessible for full-
text review, or (vi) not written in English. Studies selected by at least one reviewer were
subjected to a full-text review, and consensus was reached by discussion. In addition,
reference lists of selected literature and clinical guidelines were reviewed to identify studies
that were not covered by initial search terms.

2.2 Analysis of EWS Development and Validation

Studies that met inclusion and exclusion criteria were first evaluated using the TRIPOD
checklist.[14] We focused our analysis on study design, predictor selection, outcome
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measurement, modeling methodology, and validation strategy. In addition, we categorized
the selected models into three classes by their scoring methods: unweighted activation
criteria, aggregated weighted scores, and complex computerized scores. The unweighted
activation criteria category was composed of a list of physiological criteria where one or
more out-of-range variable(s) could trigger the activation. The aggregated weighted score is
a multivariable function where vital signs and other predictors are categorized into different
levels of abnormality and are assigned point values. The weighted model returns an
aggregated score and is easy to calculate manually. The final class was comprised of
complex computerized models, including more recently developed EWSs that used more
complex statistical and machine learning methodologies. These models usually included
feature engineering and are often not feasible to calculate manually.

3. Results

3.1. Search Results

The search generated a total of 615 references from PubMed (n=282), CINAHL (n=125),
and Cochrane Library (n=208). Five-hundred thirty unique references were identified after
removing duplicates. Since we were only interested in literature regarding the development
and validation of EWSs, 471 references were excluded after screening titles and abstracts
based on our criteria. Fifty-nine publications were considered relevant and were subjected to
a full-text review. Twenty-nine were included for final analysis. The flowchart displays our
search and selection process as recommended by PRISMA guidelines (Figure 2).[16]

3.2 Results of EWS Development and Validation Analysis

In total, 29 studies were included in our analysis (Table 1). Twenty-six were development
and validation studies[6, 18, 20, 22—44] and three were validation studies of model
modification.[17, 19, 21] Twenty-nine distinct EWSs, all published after the year 2000, were
identified.

3.2.1 Reporting of Clinical Prediction Models—Of the 29 studies, only eight[17,
28, 38-41, 43, 44] met more than 75% of the items in the TRIPOD checklist, and two of
those studies were published before the TRIPOD publication. In total, 19 studies were
published before TRIPOD’s publication in 2015. Three studies explicitly stated that they
followed the TRIPOD checklist to report their research. TRIPOD items from the abstract,
introduction, source of data, participants, model performance, and discussion sections were
reported in more than 75% of the studies. Items from the sample size and participants
sections were reported in less than 25% of the studies (Table 2).

3.2.2 Study Designs—Twenty-two of the 29 models were developed utilizing a
retrospective cohort study [18-20, 22, 25-27, 29, 30, 32—-44] and 17 were conducted at a
single center.[6, 18-25, 27, 29-34, 42] Fourteen models were derived from health records of
general ward admissions.[17, 19, 21, 25, 27, 28, 34-40, 42, 44] Eleven models were limited
to medical admissions only[6, 18, 20, 22, 24, 29-31, 33, 41, 43], while two studies extended
their cohort to coronary care unit (CCU) or ICU patients.[17, 19] One study built a model
based on surgical ward data.[23] The settings of the included studies varied from a single
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center containing several hundred beds to a multicentered health system encompassing 21
hospitals that provide healthcare to millions. Study cohort sizes varied greatly from
hundreds[6, 17, 21, 23, 24, 26] to hundreds of thousands.[28, 35-38, 43]

3.2.3 EWS Development Approaches and Scoring Criteria—Three major
techniques were utilized among the studies to inform their predictive algorithms: 1) clinical
consensus (n=6)[6, 17-21], 2) regression models (n=15)[22-25, 27-29, 31, 34-36, 38, 39,
41], and 3) tree-based methods (n=5).[30, 32, 33, 37, 40]

Older EWSs were mainly developed using clinical consensus and informed by minimal
statistical analysis. Well-known and widely used EWSs, such as the Medical Emergency
Team activation criteria (MET), the Modified Early Warning Score (MEWS)[6], the
VitalPAC Early Warning Score (VIEWS)[18], and the National Early Warning Score
(NEWS)[20], were all developed according to that method. Three studies modified the
existing clinical consensus models and validated them against original models.[17, 19, 21]
Logistic regression[21, 22, 25, 27, 28, 39, 41] and linear discrimination analysis[23, 24]
were found to be handy tools for binary classification. Six models utilized more flexible
techniques, such as splines and the generalized additive model, to tackle non-linear
relationships.[22, 29, 31, 35-37] The discrete time logistic regression, a survival analysis
model, was used in five studies.[34-38] Decision trees were employed in three studies[30,
32, 33], while more advanced tree models using ensemble methods, such as bagging,
boosting, and random forest, were utilized in two studies.[37, 40] Other statistical learning
techniques, including Naive Bayes classification and Kernel-base density, were also applied
for modeling in this review.[26, 42, 44] In total, we reviewed two studies that used
unweighted activation criteria[17, 25], 13 studies that utilized aggregated weighted scores[6,
18-22, 26, 27, 30, 33, 39, 43, 44], and 14 studies that applied complex computerized scores.
[23, 24, 28, 29, 31, 32, 34-38, 40-42]

3.2.4 EWS Predictors and Outcome Selections—The number of predictors
included in the EWSs varied from 3 to 72 with a median of seven. Vital signs, like heart rate
(n=28)[6, 17-32, 34-44], respiratory rate (n=28)[6, 17-32, 34-44], systolic blood pressure
(n=24)[6, 17-22, 25, 26, 28, 29, 31-33, 35-44], diastolic blood pressure (n=13)[21, 27-29,
32, 34-38, 40, 41, 43], and body temperature (n=19)[6, 18-20, 25, 28, 29, 32, 33, 35-44],
were commonly used as predictors. Three models used vital sign trends by studying the
mean, standard deviation, maximum, minimum, or range of observations over a period of
time.[28, 36, 38] Eleven studies utilized lab data for model derivation.[28-30, 32, 34, 35, 37,
38, 40, 41, 43] However, the lab items used varied greatly across studies. One model was
derived purely on lab data[30], while two studies used the Laboratory-based Acute
Physiology Score (LAPS), a composite score of 14 lab test results obtained in the 72 hours
preceding hospitalization.[28, 38] Mental status (n=21)[6, 17, 18, 20-22, 25, 28, 29, 32-35,
37-44], pulse oximetry (Sp02) (n=25)[18-26, 28, 29, 31-44], and age (n=9)[27, 29, 34, 35,
37, 38, 40-42] were also frequently used in EWS models. More complex algorithms
incorporated the comorbidity index[28, 38], length of stay[28, 34, 35, 37, 38], history of
ICU stays[34, 35, 37], care directive status[28, 38], physician orders[29], and patient
demographic data.[28, 38, 40, 41] Four studies applied feature engineering and used
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transformed terms as substitutes or in parallel to the originals.[28, 38, 40, 41] Only six
studies reported predictor selection processes for their multivariable models. Three used
simple backward selection[25, 34, 38], while the others utilized penalized model selection,
such as Akaike information criterion (AIC)[27, 35] and Bayesian information criterion
(BIC).[39]

In-hospital mortality (n=24)[6, 17-22, 25, 28-33, 35-44], unplanned transfer to the ICU
(n=18)[6, 17, 21, 23, 24, 27-29, 31, 33-38, 42-44], and cardiac arrest (n=10)[6, 17, 27, 29,
33-37, 44] were the most commonly used clinical outcomes. In addition, Dziadzko et al.
used respiratory failure requiring machine ventilation as a primary outcome[40], while
Kirkland et al. included rapid response team (RRT) calls.[31] Ten studies used composite
endpoints that included two or more outcomes.[21, 29, 31, 33, 35-37, 40, 43, 44] Outcome
events within 24 hours or 48 hours preceding an observation were the most common
timeframes established for evaluating outcomes (n=18).[17, 18, 20, 21, 27-29, 31, 33-38,
40, 42-44] The second most common timeframe was in-hospital mortality during a period of
time following the time of admission (n=8).[6, 19, 22-25, 30, 32, 39, 41]

Several studies utilized a single set of observations for each patient at various time points for
model training, like the first observation set since admission[22, 30], the maximum and
minimum value of each vital sign within the 24 hours preceding outcomes[27], and a
randomly chosen observation set per patient.[40] Kirkland et al.[31] used generalized
estimating equations to account for multiple observations per patient while training logistic
regression. Churpek et al.[34-36] and Kipnis et al.[38] introduced a discrete time logistic
regression model for EWS derivation. This survival analysis approach involves fitting the
occurrence of an outcome into discrete time intervals, taking the closest observation set to
the beginning of each time interval for model training.

3.2.5 EWS Validation, and Performance Assessment—Twenty-eight studies
conducted model validation either within study or against other widely-used EWSs.[6, 17—
25, 27-44] Eight studies validated their model on the same dataset used for model
derivation.[17, 18, 20, 23-25, 27, 33] Three studies also validated their model on the same
dataset, but employed an internal validation technique, such as cross-validation[34, 39] or
bootstrapping.[41] Four studies randomly split the dataset into a derivation set and a
validation set.[28, 29, 32, 40] Ten studies validated their model on temporally-split
datasets[22, 30, 31, 35-38, 42—-44], while three studies additionally validated their model
using an external database separate from the derivation database.[40, 41, 43]

Area Under the Curve (AUC) and Receiver Operating Characteristics (ROC) curves were the
most widely used methods to assess model performance(n=28).[6, 17-25, 27—44] Seven
studies used a decision curve or positive predictive value to evaluate the effectiveness of
detecting a true positive case.[18, 28-30, 33, 34, 38]
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4. Discussion

4.1 TRIPOD and Model Reporting

This systematic review identified 29 distinct EWSs that support early detection of clinical
deterioration events in the adult acute care setting. Sufficiently detailed key information on
how a model is built and validated is essential in order to appraise the risk of bias and
generalizability of each published model, and to subsequently encourage reproducibility of
results and the applicability of a model to other clinical settings. However, we found that
only TRIPOD items from the abstract, introduction, source of data, participants, model
performance, and discussion were generally well-reported. Similar findings were recorded
by a recent study on clinical model reporting.[15] There is a need for greater awareness of
the checklist, including awareness by journal editors and educational institutions. Only eight
studies included in this review reported more than 75% of key information recommended by
TRIPOD guidelines. Yet, we noted that two of those studies were published before the
TRIPOD guidelines were published. Future studies are needed to evaluate the impact and
limitations of the TRIPOD checklist on quality of clinical prediction model reporting.

4.2 From Clinical Consensus to Data-Driven Models

The characteristics of the cohort, predictors, outcome selection, as well as the metrics for
model validation vary greatly across EWS studies. However, we found a paradigm shift in
EWS development over the past two decades from clinical consensus to data-driven
approaches. Five of the six models based on clinical consensus were built before 2013. Of
the 24 data-driven models, 17 were published after 2013. Among clinical consensus models,
the parameters and critical values were mainly set by existing knowledge of the relationship
between physiology and adverse clinical events[4, 45, 46], literature review of previous
EWSs[12], and clinical practice recommendations as well as meaningfulness.[47] The
VIEWS study reported that the critical value and weighting for each of the parameters were
then adjusted based on model performance.[18] Conversely, data-driven models rely on
statistical methods for feature selection, engineering, and model derivation, which are often
associated with increased complexity and flexibility. The performance of data-driven models
is therefore strongly influenced by the database from which it derives. For instance, the
Decision-Tree Early Warning Score (DTEWS) did not assign weights to low respiratory rate
and set the critical value considerably high for high blood pressure compared to the NEWS.
Such values were likely caused by low prevalence in the study cohort.[33] Data-driven
approaches reflect the characteristics of a given dataset, while clinical consensus models
consider the clinical importance of given values. The difference between the two approaches
is also reflected in their modeling strategies. Earlier clinical consensus models were
designed as paper-based standardized scoring systems aimed to be generalizable across all
hospitals. Since patient care varies greatly between healthcare systems, researchers built
parsimonious models based on measurements routinely collected in daily patient care across
most healthcare systems. Therefore, such simple models could be easily adapted, and were
shown to have acceptable generalizability on external databases in various validation studies.
[9, 48, 49] Thus, they are commonly used as benchmarks in EWS validation. The NEWS
further provides guidance for educational programs and implementation of standardized
clinical response mechanisms according to the score.[20]
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4.3 Approaches to Data-Driven EWS Derivation

Increasing availability of data and computational power in the past decade has allowed
researchers to train models on larger datasets, with more predictors, and with more complex
statistical and machine learning methods. The 2009 Health Information Technology for
Economic and Clinical Health (HITECH) Act, which includes the concept of meaningful use
of electronic health records, promoted the adoption and use of EHRs throughout healthcare
systems in the United States. There was a significant increase in EHR integration from 2010
to 2013.[50] Escobar et al[28] and Kipnis et al[38] utilized huge databases that stored
hundreds of thousands of general ward admissions from the EHRs of 14 hospitals and 21
hospitals within the Kaiser Permanente Northern California (KPNC) healthcare system for
their research. Their models included 38 and 72 predictors respectively, including vital signs,
lab results, length of stay, care directives, and other demographic information.

4.3.1 Predictor Selection—The goal of predictive models is to find the combination of
predictors that results in optimal predictive accuracy; interpretability may be of secondary
importance.[51] Luis et al. used simple logistic regression to evaluate each variable in
NEWS and demonstrated that temperature and systolic blood pressure were not statistically
significantly associated with mortality. Their final model dropped temperature but kept
systolic blood pressure because of improved predictive power compared to the original
NEWS.[21] This demonstrates that statistical significance between variables of a model does
not necessarily reflect overall prediction performance. Similarly, multicollinearity is less of a
problem for a predictive model since it does not affect the ability of prediction, unless the
importance or contribution of individual independent variables to the dependent variables is
of interest.[51] Researchers could explore a wide range of variables to capture relationships
such as non-linearity and interactions. However, the inclusion of a large number of variables
increases the risk of including spurious predictors and may lead to overfitting, especially in
studies with a smaller sample size.[13] Backward selection is the most commonly used
method for predictor selection. Yet, backward selection is particularly suboptimal for models
with a large number of variables since many potential predictors are highly correlated. The
use of penalized model selection methods, such as AIC, BIC, and least absolute shrinkage
and selection operator (LASSO), are recommended for prediction model derivation.[13, 52]

4.3.2 Sample Size—There is no consensus on how to determine an adequate sample
size for predictive modeling.[13] The optimal algorithm with small prediction error is often
determined from the data, thereby requiring a sufficiently large sample for algorithm
selection.[51] Therefore, it is reasonable to use an entire dataset for model building.
Additionally, larger datasets enable more complex models to be built for specific patient
cohorts. Escobar and colleagues further built sub-models for each of the 24 diagnosis groups
included in their model.[28]

4.3.3 Sampling from Longitudinal Dataset—The database for EWS derivation
usually involves a longitudinal dataset since most predictors are physiological
measurements, which are repeatedly measured during hospital admission according to
policy. However, most models were built by taking transactional data points from a series of
observations and treating each observation as an independent trial process. This assumption
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allows researchers to apply regression and tree models during model derivation. Still, there
is no consensus on which observation set to use for model derivation. Using a single data
point could not capture the pattern of changes in physiological measurements over a period
of time. These patterns typically provide valuable clinical information to clinicians when
evaluating patient status. Nonetheless, several studies demonstrated that EWSs trained on
transactional health data still display acceptable predictive accuracy.[22, 27, 30, 40] In order
to take series of observations into account while modeling, four studies utilized discrete time
survival analysis, a technique that can easily estimate time-varying covariates and produce
competing risk models that are intuitive and easy to interpret.[34-36, 38] This method
utilizes the same number of observations for each patient over the same period of time,
removing the potential bias of sicker patients having a higher physiological measurement
frequency.

4.3.4 Outcome Selection—The choice of study endpoints also influences the
performance and generalizability of an EWS. Frequently used outcomes in the reviewed
studies included in-hospital mortality, unplanned transfer to the ICU, and unexpected cardiac
arrest, as well as composites of two or more outcomes. In-hospital mortality was the most
commonly used outcome and was relatively more accessible from databases. However, this
outcome, which includes expected mortality among those who had a do-not-resuscitate
(DNR) order or end-stage diseases, may decrease a model’s discriminating power among
deteriorating patients who are not expected to die. Some studies excluded admissions for
comfort care, but not every study was able to retrieve such care directives from the database.
Churpek et al conducted a sensitivity test on eCART by excluding patients who died without
a resuscitation attempt, showing no significant changes in predictive accuracy.[35] Transfer
to the ICU partially reflects clinical concerns for patients with worsening clinical
presentations and may require more intensive management. But there is no general guideline
for ICU admissions, so ICU patient cohorts have different characteristics across healthcare
systems.[53] As a result, using unplanned transfer to the ICU as a primary outcome could
make a model less generalizable to other hospitals. Unexpected cardiac arrest on wards
represents a group of patients who develop cardiopulmonary collapse but fail to be noticed
by the clinicians in advance. It is possible that this cohort may benefit greatly from EWSs
due to early detection and timely treatment prior to cardiac arrest. However, the incidence of
in-hospital cardiac arrest is relatively rare, with a mean of less than 1.6 per 1000 admissions
in both the US and UK[1, 54], which can lead to imbalanced datasets. Several resampling
techniques have been proposed to improve performance.[55] Models built upon in-hospital
mortality, unplanned transfer to the ICU, and/or unexpected cardiac arrest may be
intrinsically biased towards patients with severe conditions. These endpoints are not able to
capture patients who had less severe vital sign derangement as a prodrome of a clinical
deterioration event. If these patients’ derangement received timely treatment, they would not
develop an endpoint. Other clinical outcomes have been proposed to identify patients with
less severe though still critical conditions, like pulmonary failure, myocardial infarction,
deep vein thrombosis, pulmonary embolism, acute renal failure, gastrointestinal hemorrhage,
sepsis, and shock, that require timely elevation of care.[56-58] Moreover, different primary
outcomes could result due to different patient cohorts. Churpek et al. built models on cardiac
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arrest and ICU transfer patients separately and demonstrated that the two subgroups gave
different characteristics.[34]

4.3.5 Model Selection—Multiple studies have shown that aggregated weighted scores
and computerized scores perform better in discriminating patients with higher risk of clinical
deterioration than activation criteria. [29, 59, 60] Though easier to implement, simplified
models using cut-points (e.g. respiratory rate > 35) for single parameters may result in
information loss and diminished prediction power.[61, 62] Clinicians consider multiple
predictors to make clinical decisions and predictors are not weighted with equal clinical
importance. Therefore, the former two classes of models better reflect the clinical decision-
making process.

Various algorithms have been applied and compared for EWS derivations. Kipnis et al.
selected discrete time logistic regression as a final model because it outperforms other
ensemble models.[38] While Churpek et al. tested several machine learning algorithms (i.e.,
logistic regressions, tree-based models, k-nearest neighbors, support vector machines, and
neural network) and suggested that a random forest model was an ideal algorithm for EWS
derivation.[37] Random forest algorithms generally perform well in classification problems
and intrinsically capture non-linear and interactional relationships between variables.
Several methods exist for the extraction of important features and interactions to help
interpret models.[52] The “No-free-lunch” theory of statistics indicates that there is no
ubiquitous model for all possible datasets.[63] Complex models built by feature engineering
and elaborate machine learning algorithms do not guarantee superior performance. This is
demonstrated by the random forest algorithm involving 42 variables proposed by Dziadzko
et al. The algorithm displayed good predictive power but did not perform significantly better
than MEWS and NEWS when externally validated.[40] Although the primary goal for
predictive modeling is to optimize predictive power, there is growing concern about the
ability of machine learning models to align with domain knowledge about relationships
contained in data, often referred to as model interpretability.[52] Complex algorithms that
fail to provide clear explanations for its predictors and outcomes are less appealing and less
credible to many clinicians and patients.[64] Frameworks for discussing interpretability have
been proposed recently as the debate continues on whether interpretability is an essential
characteristic of clinical prediction models and there is no consensus on how to evaluate
interpretation methods.[52, 65] Therefore, we recommend researchers should strike a
balance between predictive accuracy and interpretability while building new EWSs.

4.3.6 Model Evaluation and Validation—Among earlier studies, EWSs were
developed and validated on the same dataset. This “apparent validation” usually leads to
overly optimistic performance. Several internal validation techniques can more honestly
estimate model performance. For example, the split-data approach is commonly used in
EWS validation. However, randomly splitting a dataset into derivation and validation sets is
often sub-optimal. The difference between the two split datasets is a result of chance, and
thus, the performance of the model is likely to be very similar on either set. A better
alternative is splitting by time.[13] Recent studies validated their models on external datasets
rather than on the original dataset from which the model was derived. Furthermore, EWS
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validation should not only consider accuracy, but also other clinically relevant metrics like
positive predictive value (PPV) and sensitivity.[66] Repeated and inappropriate alerts
resulting from poor PPV and sensitivity potentially lead to alert fatigue and poor clinical
usability of the model.[67, 68] Only one third of the studies reviewed used PPV or
predicting efficiency curve (PEV) to evaluate a model’s ability to identify positive cases.

4.4 Potential Bias in EWS Derivation Using EHR Data

EWSs are typically intended to be used in clinical decision support tools and therefore
require stringent data quality. EHR data are not collected without reason, but their collection
process can be highly complex and diverse. For example, some inpatient data are collected
on all patients automatically (e.g., vital signs) whereas some data are collected only if
required for treatment (e.g., a CT scan). EHR data can be noisy and wrong and are
sometimes unfit for use for other purposes.[69-72] At a high level, EHR data are governed
by physiology and the health care process.[73, 74] The data themselves are not independent
of their existence and values, making their use complex[75]. The healthcare process
encompasses how clinician judgment in relation to individual patients, clinical guidelines,
reimbursement systems, EHR implementation, and risk of lawsuits triggers interventions,
documentation, etc. This process induces differences in clinical practice across health
systems, which could lead to selective recording in the EHR.[72, 76] Such biases can cause
data to be incorrect, misrepresentative of their outfacing meaning, can confound the truth,
but can also reveal much more than the data elements themselves. For example, patient
measurements taken at night represent a different acuity level than patient data collected
during the day. This difference in measurement representative of acuity level can generate a
signal based entirely on the difference in health care process between night and day instead
of a change in patient status.[77, 78] We can also leverage elements of the health care
process, like nursing documentation[79, 80], to predict changes in the patient and outcomes.
While such biases can be detected and removed, they can also be exploited to yield more
information than is present in the data elements alone.[81] While it is important to exercise
great care when using EHR data to create predictive models, this data is real-world data[82]
and comes with substantial advantages when the processes that generate the data are taken
into account. Because these data are special in this way, one should be aware of potential
biases—both the benefits and limitations—when using EHR data for developing EWSs. As
such, every decision made during data preparation, feature engineering, and analytic
methods have an impact on modeling.[72, 83] Efforts must be taken to either leverage or
remove the health care process bias.[84, 85]

Studies of more complicated models provide strategies and methodologies for healthcare
systems to establish their own EWSs that reflect characteristics of their patient populations.
However, they are subject to biases in the use of EHR data. Therefore, it is particularly
important for studies on data-driven models to provide detailed study protocols and
acknowledge, leverage or reduce[84, 85] potential biases in the data used for model
development to improve transparency and generalizability.
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4.5 Limitations

There are several limitations in this review. To the best of our knowledge, our criteria
include an exhaustive list of original studies pertaining to the development and validation of
new EWSs as well as validation and modification of existing EWSs for adult patients in
acute care settings. Commercial clinical deterioration models that have only published about
implementations and not development and validations of the underlying models are not
included since implementation of EWSs and impacts on actual patient care are out of the
scope of this review. The TRIPOD checklist is mainly designed for clinical prediction
models using regression modeling and is not necessarily a suitable checklist for studies
using more complicated machine learning algorithms. In response to the growing degree of
clinical artificial intelligence research, a new initiative to develop an updated version of
TRIPOD specific to machine learning algorithms was announced.[86]

5. Conclusion

This literature review demonstrates that the characteristics of the cohort, predictors, and
outcome selection, as well as the metrics for model validation, vary greatly across EWS
studies. There is no consensus on the optimal strategy for developing such algorithms since
data-driven models with acceptable predictive accuracy are often site-specific. A
standardized checklist for clinical prediction model reporting exists, but few studies have
included reporting aligned with it in their publications. Data-driven models are subjected to
biases in EHR data, thus it is particularly important to provide detailed study protocols and
acknowledge, leverage, or reduce potential biases of the data used for EWS development to
improve transparency and generalizability.
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HIGHLIGHTS

Most of the EWS derivation and validation studies failed to comply to the
TRIPOD checklist in reporting their models. Incomplete reporting hinders the
assessment of bias in and generalizability of EWSs, as well as validation and
comparison between models.

The characteristics of the cohort, predictors, and outcome selection, as well as
the metrics for model validation vary greatly across EWS studies. In the
literature, there is no consensus on the optimal strategy for developing a ‘best
EWS since a data-driven model with acceptable predictive accuracy is often
site-specific.

Interpretability may increase EWSs credibility among end-users, though the
balance to strike between interpretability and accuracy is often debated and
frameworks for discussing interpretability have been recently proposed.

EWSs are intended as an algorithm to be used in clinical decision support,
thus the models require stringent data quality. Therefore, one should be aware
of potential biases—both the benefits and limitations—when using EHR data
for developing an EWS.

J Biomed Inform. Author manuscript; available in PMC 2021 May 01.




1duosnuepy Joyiny 1duosnuely Joyiny 1duosnue Joyiny

1duosnuely Joyiny

Fuetal. Page 18

1. “warning scor*” OR “warning system*” including (“warning system” OR “warning systems”)
OR (“warning score” OR “warning scores” OR “warning scoring”)

2. “validat®” including (“validate” OR ““validation” OR “validating”)

3. ("monitoring, intraoperative"[MeSH Terms] OR "obstetrics"[MeSH Terms] OR
"pediatrics"[MeSH Terms] )

Selection:
4. (#1 AND #2) NOT #3

Figure 1.
PubMed search strategy
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Table.2 —
TRIPOD Checklist

Subbe | Cretikos | Duckitt | Cuthbertson | Prytherch | Cuthbertson | Bleyer | Tarassenko | Kellett | Churpek | Escobar | RC
2001 2007 2007 2007 [23] 2010 [18] 2010 [24] 2011 2011 [26] 2012 2012 2012 | 201
[6] [17] [22] [25] [19] [27] [28] | [2
Model Type D \% DIV D D D D D \% D DIV D/
Title and abstract
Title 1 0 0 0 0 0 0 0 0 0 0 1 0
Abstract 2 1 1 1 0 1 0 1 0 1 1 1 1
Introduction
Background 3a 1 1 1 1 1 1 1 0 1 1 1 1
and objectives
3b 1 1 1 1 1 1 1 1 1 1 1 1
Methods
Source of data 4a 1 1 1 1 1 1 1 1 1 1 1 1
4b 1 1 1 1 1 1 1 1 1 1 1 0
Participants 5a 1 1 1 1 1 1 1 1 1 1 1 1
5b 1 1 1 0 1 0 1 0 0 1 1 0
5c NA NA NA NA NA NA NA NA NA NA NA N/
Outcome 6a 1 1 0 1 1 1 0 0 0 1 1 1
6b NA NA NA NA NA NA NA NA NA NA NA N/
Predictors 7a 1 1 1 0 1 0 1 0 0 1 1 1
7b NA NA NA NA NA NA NA NA NA NA NA N/
Sample size 8 0 1 0 0 0 0 0 0 0 0 0 0
Missing data 9 la 1 la 1 0 0 0 0 la 1 1 0
Statistical 10a 0 NA 1 1 1 1 1 1 NA 1 1 1
analysis
methods 10b 1 NA 1 1 1 1 1 1 NA 1 1 1
10c NA 1 1 NA NA NA NA NA 1 NA 1 1
10d 0b 0b 1 0b Ob 0b 0b 0 1 0b 0b 0b
10e NA 1 NA NA NA NA NA NA 0 NA NA N/
Risk groups 11 NA NA NA NA NA NA NA NA NA NA NA N/
Development 12 NA 0 1 NA NA NA NA NA 0 NA Oe 0
vs. validation
Results
Participants 13a 0 0 0 0 0 0 0 0 0 0 1 0
13b 0 1 1 0 0 0 0d 0 0d od 1 0
13c NA 0 0 NA NA NA NA NA 0 NA Oe 0
Model 1l4a 0 NA 0 0 0 1 0 0 NA 1 1 0
development
14b NA NA NA 1 NA 1 NA 0 NA 0 NA N/
Model 15a 1 NA 1 1 1 1 1 1 NA 1 1 1
specification
15b 1 NA 1 1 1 1 1 1 NA 1 1 1
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Subbe | Cretikos | Duckitt | Cuthbertson | Prytherch | Cuthbertson | Bleyer | Tarassenko | Kellett | Churpek | Escobar | RC
2001 2007 2007 2007 [23] 2010 [18] 2010 [24] 2011 2011 [26] 2012 2012 2012 | 201
[6] [17 [22] [25] [19] [27] [28] | [2
Model 16 1 1 1 1 1 Oc Oc 0 1 Oc 1 1
performance
Model- 17 NA 1 NA NA NA NA NA NA 1 NA NA 1
updating
Discussion
Limitations 18 1 1 1 1 1 1 1 1 1 1 1 0
Interpretation 19a NA 1 NA NA NA NA NA NA 1 NA NA 1
19b 1 1 1 1 1 1 1 1 1 1 1 1
Implications 20 1 1 1 1 1 1 1 1 1 1 1 1
Other information
Supplementary | 21 0 1 0 1 0 0 1 1 0 0 1 0
information
Funding 22 1 1 0 0 1 0 1 1 0 1 1 1

1: (D;V) Identify the study as developing and/or validating a multivariable prediction model, the target population, and the outcome to be predicted.

2: (D;V) Provide a summary of objectives, study design, setting, participants, sample size, predictors, outcome, statistical analysis, results, and
conclusions.

3a: (D;V) Explain the medical context (including whether diagnostic or prognostic) and rationale for developing or validating the multivariable
prediction model, including references to existing models.

3b: (D;V) Specify the objectives, including whether the study describes the development or validation of the model or both.

4a: (D;V) Describe the study design or source of data (e.g., randomized trial, cohort, or registry data), separately for the development and validation
data sets, if applicable.

4b: (D;V) Specify the key study dates, including start of accrual; end of accrual; and, if applicable, end of follow-up.

5a: (D;V) Specify key elements of the study setting (e.g., primary care, secondary care, general population) including number and location of
centres.

5b: (D;V) Describe eligibility criteria for participants.

5c: (D;V) Give details of treatments received, if relevant.

6a: (D;V) Clearly define the outcome that is predicted by the prediction model, including how and when assessed.
6b: (D;V) Report any actions to blind assessment of the outcome to be predicted.

7a: (D;V) Clearly define all predictors used in developing or validating the multivariable prediction model, including how and when they were
measured.

7b: (D;V) Report any actions to blind assessment of predictors for the outcome and other predictors.
8: (D;V) Explain how the study size was arrived at.

9: (D;V) Describe how missing data were handled (e.g., complete-case analysis, single imputation, multiple imputation) with details of any
imputation method.

10a: (D) Describe how predictors were handled in the analyses.

10b: (D) Specify type of model, all model-building procedures (including any predictor selection), and method for internal validation.
10c: (V) For validation, describe how the predictions were calculated.

10d: (D;V) Specify all measures used to assess model performance and, if relevant, to compare multiple models.

10e: (V) Describe any model updating (e.g., recalibration) arising from the validation, if done.

11: (D;V) Provide details on how risk groups were created, if done.
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12: (V) For validation, identify any differences from the development data in setting, eligibility criteria, outcome, and predictors.

13a: (D;V) Describe the flow of participants through the study, including the number of participants with and without the outcome and, if
applicable, a summary of the follow-up time. A diagram may be helpful.

13b: (D;V) Describe the characteristics of the participants (basic demographics, clinical features, available predictors), including the number of
participants with missing data for predictors and outcome.

13c: (V) For validation, show a comparison with the development data of the distribution of important variables (demographics, predictors and
outcome).

14a: (D) Specify the number of participants and outcome events in each analysis.
14b: (D) If done, report the unadjusted association between each candidate predictor and outcome.

15a: (D) Present the full prediction model to allow predictions for individuals (i.e., all regression coefficients, and model intercept or baseline
survival at a given time point).

15b: (D) Explain how to the use the prediction model.

16: (D;V) Report performance measures (with ClIs) for the prediction model.

17: (V) If done, report the results from any model updating (i.e., model specification, model performance).

18: (D;V) Discuss any limitations of the study (such as nonrepresentative sample, few events per predictor, missing data).

19a: (V) For validation, discuss the results with reference to performance in the development data, and any other validation data.

19b: (D;V) Give an overall interpretation of the results, considering objectives, limitations, results from similar studies, and other relevant evidence.
20: (D;V) Discuss the potential clinical use of the model and implications for future research.

21: (D;V) Provide information about the availability of supplementary resources, such as study protocol, Web calculator, and data sets.
22: (D;V) Give the source of funding and the role of the funders for the present study.

a: Complete-case analysis

b: Did not report calibration of models

c¢: Did not report confidence interval of AUC

d: Did not report the number of participants with missing data for predictors and outcome.

e: Randomly splitting a single data set into a development and a validation data set

f: Did not report intercept of the multivariable model
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