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Abstract. HPC has undergone a significant transition toward hetero-
geneous architectures. This transition has introduced several issues in
code migration to support multiple frameworks for targeting the vari-
ous architectures. In order to cope with these challenges, projects such
as Kokkos and LLVM create abstractions which map a generic front-
end API to the backend that supports the targeted architecture. This
paper presents a complementary framework for performance measure-
ment and analysis. Several performance measurement and analysis tools
in existence provide their capabilities through various methods but the
common theme among these tools are prohibitive limitations in terms
of user-level extensions. For this reason, software developers commonly
have to learn multiple tools and valuable analysis methods, such as
the roofline model, are frequently required to be generated manually.
The timemory framework provides complete modularity for performance
measurement and analysis and eliminates all restrictions on user-level
extensions. The timemory framework also provides a highly-efficient and
intuitive method for handling multiple tools/measurements (i.e., “com-
ponents”) concurrently. The intersection of these characteristics provide
ample evidence that timemory can serve as the common interface for
existing performance measurement and analysis tools. Timemory com-
ponents are developed in C++ but includes multi-language support for
C, Fortran, and Python codes. Numerous components are provided by
the library itself — including, but not limited to, timers, memory usage,
hardware counters, and FLOP and instruction roofline models. Addition-
ally, analysis of the intrinsic overhead demonstrates superior performance
in comparison with popular tools.
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1 Introduction

A straightforward modular system for user-defined performance measurements
and analysis is notably absent from the vast ecosystem of specialized and generic
tools for sophisticated performance measurements and reflective analysis. The
modular compiler infrastructure provided by LLVM [18] is an excellent example
of the benefits of modularity and has resulted in the development of a number of
tools filling various generic and specialized needs [19]. The programming model
abstractions provided by Kokkos [7] is an excellent example of using C++ tem-
plates to provide a generic and flexible front-end that adapts to the targeted
architecture at compile-time. Timemory attempts to provide the analogue to
the LLVM infrastructure and Kokkos model in the realm of performance mea-
surement and analysis. The framework provides a viable solution to a common
instrumentation interface [5] for multiplexing performance measurement and
analysis tools. As a common instrumentation interface, timemory would pro-
vide a straightforward method for projects with existing instrumentation APIs
to locally! wrap their existing API and introduce a significant number of new
capabilities to the existing tool?> while requiring no significant changes to the
tool itself. Projects that adopt the timemory framework gain the capability to
arbitrarily define multiple bundles of performance measurement and analysis
tools to the need of the project and can customize the activation or deactivation
of these tools in any manner desired. This paper will outline the current state of
performance tools, highlight several key innovations developed in timemory, and
then provide examples which demonstrate how these innovations have enabled
an extensive suite of tools and capabilities.

The timemory library is written in C+4+414 wusing template meta-
programming, is presently available for codes written in C, C++, Python, and
Fortran, and supports interoperability with CUDA, MPI, UPC++, and various
forms of multi-threading. Overall, the contributions through timemory include:

— Common performance measurement and analysis framework with full support
for user-level extensions

— Common framework for: generation of custom event-based, statistical, and/or
instrumentation profilers, custom preload libraries, and tool multiplexing

— Type-safe method for arbitrarily wrapping existing tools which can store data
in any valid C++ data type

— Highly-efficient instrumentation API with almost negligible overhead when
disabled at runtime

— Static and dynamic generation of arbitrary component bundles

— Intermixed call-stack tracing, timeline tracing, and flat-profiling

— Intermixed usage of different tool bundles®.

! j.e., within the existing project’s code and without any required changes upstream

to timemory.

2 Cross-language support, JSON/XML/text output, call-graphs, statistical analysis,
plotting, sampling, MPI support, UPC++ support, multi-threading support.

3 ¢.g., Bundle of A, B, and C can be used alongside bundle of A, C, and D and/or
bundle of E, F, and G.
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2 DMotivation

2.1 Need for Composite Components

A variety of performance measurement and analysis tools co-exist in the HPC
ecosystem. Well known examples include TAU [26], Caliper [6], HPCToolkit [1],
and LIKWID [28]. Each one of these tools provide their capabilities via design
abstractions around the lower-level interfaces for the hardware and generally
build upon the work of more specialized libraries such as PAPI [27], CUPTTI [9],
and Linux perf [11]. However, each tool tends to have a special set of features
in order to provide a unique draw and use case scenario. The special set of
feature(s) provided by the tools form a complementary set of capabilities with
other tools which make them worthwhile to use in combination, however in order
to provide these features, there is commonly a redundancy in basic functional-
ity? [17]. The most disparate properties among these tools is the data storage
model, control methods, and input/output schema. The data storage model is
influenced heavily by the design of the library and very few libraries directly
expose methods for accessing the raw data handled by the library. The plausible
culprit for the commonality of obscuring the data storage model is the type-
obfuscation that arises from either the common C-style generic design patterns,
which commonly restrict supported data types to those listed in an enumera-
tion, and the C++-style generic design pattern of dynamic polymorphism, which
requires non-templated types for virtual functions. Thus, providing access to the
data model is not only prone to complexity and lack of type-safety but it may
also have to be completely re-factored to support new features which necessitate
adding explicit support for new data types.

The timemory library presents an unique solution to these challenges.
Through the use of C++ template meta-programming, a package can expose
any number of unique C++4 classes that encapsulate a performance measure-
ment or analysis pattern. The C++ classes have only one core requirement: a
public type declaration of the value_type used by the component, which can
be any valid C++ data type, including void. In timemory, only the names for
the functions are required to be consistent and there are no restrictions on the
data types that non-void functions return. Thus, one component can imple-
ment the data access member function get() to return a floating-point value
and another component can implement this member function to return an array
of integers. Once this minimal set of requirements is provided, the component
can be bundled alongside any number of other components into a single handle.
Various other capabilities/features can be activated within a component simply
through implementing the corresponding member function inside the compo-
nent. These member functions are optional due to extensive use of SFINAE and
empty base-class implementations of these functions. Additionally, components

4 Support for various parallelization models, data acquisition techniques (instrumen-
tation, sampling, etc.), and injection techniques (symbol overloading, binary modi-
fication, etc.).
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can be designed as composites of other components. This building-block charac-
teristic is unique to the framework and strengthens the argument for timemory
as the universal interface for performance measurement and analysis.

2.2 Need for Common Instrumentation Interface

Numerous tools provide instrumentation APIs that are directly inserted into the
application source code. The instrumentation APIs for many tools provide the
capability to enable/disable a tool when connected, provide context labels for
code regions, and track simple event metrics. Common examples include the
ittnotify [8] API for Intel’s VTune Amplifier and Advisor, NVTX for NVIDIA’s
Nsight and NVprof, gperftools, LIKWID, TAU, and Score-P [17]. Some of these
tools center their usage around a command-line tool while other tools, such as
the Caliper package, focus their usage around instrumentation markers.

The potential for performance degradation via instrumentation APIs, even
when dormant at runtime, is supported by the results of applying an edge-case
scenario of injecting 500,000 runtime-disabled instrumentation points within a
matrix multiplication benchmark (Fig.1) to Caliper, TAU, and timemory [5].
Unlike statistical profilers which take measurements at a given rate, the over-
head of deterministic instrumentation cannot be fully negated and the overhead
associated with the instrumentation is subject to high variability: Caliper mark-
ers increased run time by ~397% while TAU markers increased run time by
~262%. These overheads stand in stark contrast to the methods provided by
timemory, which increased the runtime by a minimum of ~42% and a maximum
of ~82%. The primary objective of timemory is not to serve as a replacement for
Caliper, TAU, etc. but, instead, provide a common, easily extendable interface
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Fig. 1. Average (samples = 100) runtime of 500,000 dormant instrumentations for
100 x 100 Matrix-Multiply Calculation. BASELINE is without instrumentation, CALIPER
is with Caliper instrumentation, TAU is with TAU instrumentation, and remaining
data points (FUNCTIONAL, HEAP, LIBRARY, STACK) use different models of timemory
instrumentation, where each model has different compile-time and runtime capabilities.
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for the deployment of performance analysis tools which is optimized for minimal
overhead when not being utilized. With concerns about unintentional overhead
minimized, HPC developers can safely provide built-in performance monitoring
which can deploy whichever performance tool(s) are available for a given archi-
tecture. Significant progress towards this objective has been achieved: at present,
timemory provides one or more components for ARM-MAP, Caliper, TAU, LIK-
WID, CrayPAT, Intel VTune, Intel Advisor, gperftools, CUDA, NVTX, CUPTI,
and PAPI.

2.3 Need for Object-Level Analysis Granularity

Profiling tools generally support one or more granularities for reporting per-
formance measurements: functions, addresses, lines, and files, in descending
order of commonality. However, object-oriented programming is a widely uti-
lized paradigm in HPC and is supported by C++, Fortran, and Python. The
tasking and object-oriented model presents a challenge for performance mea-
surements frameworks using a procedural design. Since the lifetime of objects
typically overlap, these designs struggle to distinguish measurements from differ-
ent objects when only the function, file, and line metadata is available. In other
words, object-oriented codes violate the LIFO model of function call-stacks that
these frameworks might rely upon. Furthermore, providing measurements and
analysis for an object introduces a configuration issue for the tool when objects
derive from abstract objects because the tool (ideally) should support the user
coalescing the data at an arbitrary abstraction granularity of their choosing.

The Geantd toolkit [2] — a Monte Carlo particle transport toolkit for the
simulation of the passage of particles through matter® — provides an excellent
example of the need for a new performance analysis model that tracks measure-
ments at object-level granularity. The Geant4 toolkit is written in C4++ and
makes extensive use of dynamic polymorphism in ~1 million lines of code. This
code supports 125+ derived particle types, 550+ derived physics processes, and
1000+ derived process models. Each particle type is subject to a unique set of
stochastic physics process model pairs whose probabilities for interaction and
secondary particle generation vary tremendously across the spectrum of particle
energy and target material. From a performance analysis standpoint, this cre-
ates a challenging task for determining improvable “hotspots” and traditional
performance analysis fails because the Geant4 execution model does not have
any core “hotspot” routines at function-level granularity.

Timemory proposes that in order to provide object tracing measurements
and customization of the abstraction-level®, the analysis tool itself should pro-
vide instrumentation objects which locally store intermediate data instead of
instrumentation points which invoke global functions or pseudo-instrumentation
objects which couple the global function invocations to RAII. With this inter-
mediate storage design, these instrumentation objects can be inserted into the

5 j.e., Radiation shielding, particle accelerator simulations, nuclear reactor design.
6 j.e., Ability to associate measurements with either the derived or abstract object.
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target object itself at the desired abstraction-level, be treated by the application
as just another member variable, increase data locality for measurements, and
support asynchronous paradigms. Timemory also proposes that a well-designed
framework adhering to these principles should provide multiple variants of these
instrumentation objects which (A) utilize RAII to easily couple of the measure-
ment scope to the scope of the target object and (B) permit the insertion or
activation of different analysis types during compilation and/or runtime.

3 Library Design

The timemory library is implemented in C+414 with the curiously recurring
template pattern (CRTP) style and was designed from the outset to:

— Allow for user-level implementations of tools (also called “components”)
— Allow for components to store measurements in an arbitrary data type

— Allow for arbitrary bundling of tools into a single handle

— Fully support modularity

— Utilize thread-local memory to minimize synchronization bottlenecks

— Strictly avoid spawning background work in library core

— Minimize any runtime logic which can be evaluated at compile-time

— Minimize overhead when enabled at compile-time but disabled at runtime
— Provide an easy-to-use interface.

A sample of the basic design of timemory in C++ is demonstrated in List-
ing 1.1.

Listing 1.1. Sample Usage in C++ of bundle of tools combining: wall-clock timer,
peak memory measurement, and various markers for external tools which are removed
at compile-time when not available.

1 | #include <timemory/timemory.hpp>

2 |using namespace tim::component;

3 |using markers_t = type_list<nvtx_marker, likwid_marker, tau_marker>;
4 |using tools_t = tim::component_tuple<wall_clock, peak_rss, markers_t>;
5

6 |void foo() {

7 tools_t obj("foo"); // create marker

8 obj.start(); // start all components

9 sleep(1); // sleep for 1 second

10 obj.stop(); // stop all components

11 // access specific component

12 wall_clock* wc = obj.get<wall_clock>();

13 double elapsed = wc->get(); // computed value

14 std::string unit = wall_clock::display_unit();

15 // Output: "Wall time: 1.000 sec"

16 printf("Wall time: %f %s\n", elapsed, unit.c_str());

17 |
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3.1 Components

Timemory uses the term “component” to refer to a single structure that provides
a certain functionality in the form of a “caliper” (i.e., a region enclosed by a
start and stop). The definition of a component is straightforward and a sample
is provided in Listing 1.2. In general, a component inherits from a templated base
class and specifies itself as the first template parameter and the data type that
the component will be using to store the metric (if any). The data type can be
any valid C++ data type, e.g., int, double, vector<MyClass>, etc. Components
that accumulate no internal data, such as a component that just forwards the
marker labels to another tool, can designate the data type as void.

Listing 1.2. Sample component in timemory. The macros TIMEMORY_<XYZ> are used
for type declarations and setting type-traits which activate various features for the
type, e.g., statistics, unit conversion support, category-specific formatting, etc.

1 | TIMEMORY_DECLARE_COMPONENT (wall_clock)

2 | TIMEMORY_CONCRETE_TRAIT (uses_timing_units, wall_clock, true_type)
3 | TIMEMORY_CONCRETE_TRAIT (is_timing_category, wall_clock, true_type)
4 | TIMEMORY_STATISTICS_TYPE(wall_clock, double)

5

6 | struct wall_clock : public base<wall_clock, int64_t>

7 14

8 static string label() { return "wall"; }

9 static string description() { return "wall-clock timer"; }
10 static value_type record() { return get_time_now(); }

11 // ’value’ and ’accum’ are inherited int64_t

12 void start() { value = record(); }

13 void  stop() { value = (record() - value); accum += value; }
14 // ’get_units()’ is base-class func controlled via type-traits
15 double get() const { return accum * get_units(); }

16 |3;

Several type-traits are provided to customize functionality, provide default
output formatting, unit support and conversions, etc. The details of the var-
ious type-traits are beyond the scope of this paper with the exception of the
most important type-trait with respect to portability: is_available. This type-
trait creates a template meta-programming system through which a type can
be forward declared, and thus be portably declared as a component in a bun-
dle, but filtered out entirely from the template specification before the type
is instantiated when is_available evaluates to false. Thus, tuple<A, B, C> will
be implicitly implemented as tuple<A, B> if component C is not available. The
timemory-provided components which rely on external packages use the absence
of the package-specific pre-processor definition (e.g., TIMEMORY_USE_PAPI) to set
the is_available type-trait to false. In addition to the portability benefits, this
feature also allows timemory to minimally function as a header-only library for
C++ codes.
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3.2 Data Storage

The data storage for each component type is handled dynamically via storage
class singletons that are templated on the component type. Each storage class
singleton maintains a unique call-graph per-thread (see Fig.2) for components
which store data. This call-graph handles the accumulation of data throughout
the application and supports arbitrarily mixing hierarchical, timeline, and flat
node insertion modes. This approach also enables an arbitrary number of compo-
nents to operate independently by eliminating the need for fixed array limits on
the number of tools that can concurrently allocate storage space. Furthermore,
since the component-specific storage is templated on the component type, the
data storage model ensures complete type-safety.

3.3 Parallelism Support

The timemory framework supports both MPI and UPC++ for distributed mem-
ory parallelism and neither backend imposes any communication overhead during
the application execution outside of the one-time communication to the zeroth
rank during finalization and output. Within a process, timemory makes careful
use of static and thread-local static storage singletons to provide an efficient
model for multi-threading which is highly scalable for HPC. The data storage
model is entirely free from the use of synchronization primitives (i.e., locks)
outside of the construction and destruction of the storage singleton on a worker

Head
Siblings
Depth =0
Depth =1
Child
Siblings
Depth = 2

Fig. 2. Call-graph per component. Each node is keyed to a label (e.g., function name,
file, and line number) and contains an instance of the component. The component
instance within the call-graph provides data-storage only. When a new component
instance is created and assigned a label, the component searches the children of the
current node for a matching key. If no matching key is found, the component creates
a new node. The address of the node is stored internally in the component and when
the component instance is stopped, the instances adds its data to the component at
that node address and resets it’s internal data to zero. Thus, temporary component
instances are fully responsible for finding and creating new nodes for persistent storage
and updating those nodes.
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thread. During the construction of the storage singleton on a worker thread,
the master instance is locked to ensure the worker-thread can safely bookmark
(perform a copy) the current instrumentation stack location. Beyond this point,
no synchronization is performed until the worker thread terminates and cleans
up the thread-local memory. At this point, the manager thread is locked and
the instrumentation stack from the worker thread is inserted as a child of the
bookmarked location on the master thread.

3.4 Bundling Components

Timemory provides variadic template wrappers that allow multiple components
to be bundled together into a single handle whose member functions correspond
to the invocation of the similarly named member function for each component.
The variadic template wrappers rely on the temporary construction of operation
classes which are templated per-component (see Listing 1.3). These operation
classes are the key to the flexibility of timemory. These classes provide both the
ability to specialize the behavior of a component in a multiplexing scenario (see
Listing 1.4) and provide a generic interface for calling similarly named member
functions with different signatures per component through the use of SFINAE
(see Listing 1.3). The instantiation and translation of these concepts for a generic
variadic wrapper (Listing 1.5) is demonstrated in Listing 1.6.

Listing 1.3. Sample foo operation struct that is templated on a component. SFINAE
is used to determine desired call signature at compile-time and int and long are used
to control overload resolution. The first bar function checks if T has foo() member
function that accepts the given arguments. If this check fails, then the foo() member
function is called without arguments. This methodology can be easily extended to a
third option that does not call the member function at all.

template <typename T>
struct foo {
foo(T obj, args...) { bar(obj, 0, args...); 1}

auto bar(T obj, int, args...) -> decltype(obj.foo(args...), void())
{ obj.foo(args...); 1}

void bar(T obj, long, ...) { obj.foo(); 2}
};

Listing 1.4. Sample specialization of foo operation struct from Listing 1.3 for com-
ponent A where it is known that A does not accept arguments and has foo() member
function

template <> struct foo<A> { foo(T obj, ...) { obj.foo(); } };
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Listing 1.5. Sample of internals from generic variadic component wrapper (template
<typename... T> struct component_tuple) combining concepts from Listing 1.2 and
Listing 1.3. Template parameters are omitted for readability.

// generic data type held by component_tuple<T...>

tuple<T...> m_data;

// generic foo member function for component_tuple<T...>

void foo(args...) { apply<operation::foo<T>...>(m_data, args...); }
};

Listing 1.6. Sample of internals from generic variadic component wrapper
component_tuple<A, B> when Listing 1.5 is instantiated with types A and B. Template
parameters are omitted for readability.

// data type held by component_tuple<A, B>
tuple<A, B> m_data;
// foo member function for component_tuple<A, B> after instantiation
void foo(args...) {
operation: :foo<A>(get<0>(m_data), args...);
operation: :foo<B>(get<i>(m_data), args...); }

};

The variadic wrappers are provided in numerous flavors for compile-time
and runtime configuration via various type-traits, configuration bundles, call-
backs, and custom environment variables. These various methods are provided
to empower projects to build in custom schemes for utilizing their bundles which
conform to the standard configuration methods of the project itself. Thus, the
timemory framework facilitates the generation of easy-to-use built-in perfor-
mance diagnostic tools that can be quickly switched on by developers and users
when performance analysis is either desired or required.

4 Profiling Capabilities

Profilers generally fall into two broad categories: statistical profilers which oper-
ate via sampling and instrumentation profilers. Instrumentation profilers effec-
tively inject additional instructions into the binary and are implemented through
several methods: manually, automatic source-level (tool that modifies source-
code), compiler-assisted, binary translation (tool that modifies compiled binary),
runtime instrumentation (tool that supervises and controls execution after tem-
porarily injecting instrumentation), and runtime injection (a lightweight form
of runtime instrumentation that instruments jumps to helpers functions). At
present, timemory supports manual instrumentation, runtime instrumentation
for dynamically-linked binaries via Gotcha [23], binary translation, runtime
instrumentation, and a simple command-line execution wrapper similar to the
UNIX command-line tool time except with extensions to include memory and
I/0O values and rates and hardware counters. Additionally, timemory distributes
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a number of “instrumentation libraries” which provide simple function interfaces
for activating instrumentation around performance monitoring APIs exposed by
several commonly-used APIs, e.g., Kokkos, MPI, and OpenMP. These instru-
mentation libraries can be directly inserted into the application codes or injected
externally via binary translation or runtime instrumentation. For Python codes,
the timemory package supports context-managers and decorators for instrument-
ing specific functions and regions of code and can also leverage the built-in
debugging and profiling capabilities of the interpreter.

Dynamic Instrumentation. Timemory provides a command-line tool,
timemory-run, for runtime instrumentation and binary translation of
dynamically- and statically-linked binaries via the Dyninst [4] toolkit. The
command-line tool combines a number of features derived from various pos-
itive experiences with existing profiling tools. These features include: using
regular expressions (regex) and/or text files for precise selection of which
modules and functions to instrument (inclusive, exclusive, and inclusive/ex-
clusive unions), lightweight stub instrumentation during binary translation for
LD_PRELOAD, loop instrumentation, defining the default set of components during
binary translation, insertion of user-defined functions from custom instrumen-
tation libraries, and two different modes which offer a choice between whether
the dynamic instrumentation is affected by manual timemory instrumentation
with the C/C++/Fortran library interface. With respect to these two different
“modes” of instrumentation, an application using manual timemory instrumen-
tation may be precisely configured at a high-level to collect different components
in different regions of the code and dynamic instrumentation may be deployed
for fine-grained analysis. In one scenario, a user may want to keep these precise
configurations intact as a reference point for the overhead of the fine-grained
analysis. In another scenario, the user may want to propagate these precise
configurations to the dynamic instrumentation. The aforementioned “modes” of
instrumentation address these two scenarios. In one mode, the set of compo-
nents collected by the dynamic instrumentation points are configurable via its
own distinct environment variable and unaffected by changes to the component
collection set via the library interface. In the second mode, instrumentation is
synchronized with the manual instrumentation: both the manual and dynamic
instrumentation are configurable with the same environment variable and mod-
ifications to the instrumentation component set via the library interface are
applied to the dynamic instrumentation.

Statistical Profiling. At present, timemory does not provide an API for the
generation of performance measurements via sampling on par with the facili-
ties for instrumentation. However, the need for this capability was factored into
the design of the library and is currently being deployed in the timem execution
wrapper. This command-line tool is similar to the UNIX time command except it
extends the measurement set beyond timers to include resource usage and hard-
ware counter measurements. This command-line tool uses a fork + execv model
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and thus, in order to post-process and produce output, only the parent process
can invoke start and stop on the component bundle since the child process never
returns. Although this model does not present issues for numerous components
that either inherently include or are configurable to include activity within child
processes, certain components such as those which read from Linux process ID
files (e.g., /proc/<PID>/statm) or hardware counters must record measurements
at or very near the end of the child process but before the child process exits and
execution on the parent process resumes (where stop on the component bundle
in the parent process is called). Thus, when building this command-line tool,
the components with this criteria must be customized to sample their value(s)
during an interrupt and measurements during the stop operation must be either
be discarded or the operation itself should not be invoked. Through the use
of a local specialization on the corresponding operation classes introduced in
Sect. 3.4, this is easily accomplished: operation: :start<T> and operation: :stop<
T> for any component T requiring sampling is locally specialized so that the start
and stop member functions of an instance of T are never invoked when start or
stop is invoked on the component bundle and operation::sample<T> is special-
ized for these components to update their values accordingly. The success of this
model for the timem executable will likely serve as a template for the creation of
independent sampling libraries which can be inserted into applications directly
and/or through the dynamic instrumentation command-line tool.

Gotcha Support. The timemory library simplifies using Gotcha for re-writing
the Global Offset Table on the Linux operating system that links inter-library
call-sites and variable references to their targets. In general, a set of components
for performance measurement or analysis can be injected around any externally
linked function in as little as 23 lines of code plus one line for each function to
be wrapped.

Listing 1.7 demonstrates a hypothetical timemory Gotcha implementation
which wraps a wall-clock timer around the C exp(double) function and a C++
function, sum_exp, which takes an array of floating-point values and accumulates
the result of calling exp in each value. Thus, invocation of the sum_exp function
with two floating-point values results in a nested hierarchy of one wall-clock mea-
surement around sum_exp at depth 0 and two wall-clock measurements around
exp as children of sum_exp in the call-graph (see Listing 1.8).

Listing 1.7. Sample Gotcha specification around two external dynamically-linked func-
tions: exp and sum_exp

using wc_t = component_tuple<wall_clock>;
using got_t = gotcha<2, wc_t>;

extern "C" double exp(double);
double sum_exp(vector<double>);

N OOt W N

int main() {
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8 got_t::get_initializer() = [1(Q)

9 { TIMEMORY_C_GOTCHA (got_t, O, exp);

10 TIMEMORY_CXX_GOTCHA(got_t, 1, sum_exp); };
11
12 auto_tuple<got_t> obj("example");
13 auto ret = sum_exp({ 1.0, 2.0});

14 |}
Listing 1.8. Abbreviated output for Listing 1.7
| LABEL | COUNT | DEPTH | METRIC | UNITS | SUM |
I | I | | I |
| >>> sum_exp | 1] 0 | wall | msec | 0.072 |
| >>> |_exp | 2 | 1 | wall | msec | 0.043 |

In addition to instrumenting functions, the timemory Gotcha component
can be used to provide wholesale function replacement of the Gotcha wrappee
when (1) a third template parameter is provided, (2) the third template param-
eter is a timemory component, and (3) the timemory component provided as
the third template parameter has an overloaded function operator (operator())
whose return type and arguments match the function being wrapped, e.g., to
replace double exp(double), the timemory component provided as the third tem-
plate parameter must provide double operator() (double). Thus, not only can
the timemory Gotcha component be utilized to instrument external function
calls but it can also be utilized to provide wholesale replacement of external
function calls for optimization, as illustrated in Sect.5.2. Finally, similar to the
operator () overloading scheme, components which are instrumenting functions
instead of replacing them can provide void audit(Args...) member functions
where Args... matches the function parameter types of the original function
and/or the return type of the original function to gain access to the values of
the input parameters before the original function is invoked and the return value
of the original function before it returns.”

Instrumentation Libraries. Timemory distributes several stand-alone
libraries which can be utilized to activate instrumentation around APIs which
provide their own performance monitoring framework, e.g., Kokkos, MPI, and
OpenMP. With respect to Kokkos, timemory generates one traditional profil-
ing library whose selection of components is configurable via environment vari-
ables at runtime and then over a dozen of pre-configured profiling libraries
with dedicated functionality, e.g., kp_timemory_trip_count.so is explicitly config-
ured to collect trip-counts, kp_timemory_cpu_flops.so is explicitly configured to
count floating-point operations, etc. Concerning OpenMP, timemory distributes
a library that provides instrumentation via the OMPT [13] call-back system.

" Users can also alternatively provide void audit(string, Args...) if the (deman-
gled) name of the function is required.
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For MPI, timemory distributes a library which leverages it’s Gotcha capabilities
to wrap the equivalent of the PMPI [22] interface without breaking any exist-
ing user-defined MPI functions using the PMPI interface. Additionally, both the
OpenMP and MPI instrumentation libraries provide reference counting modes
to enable scoped instrumentation. Although these libraries will satisfy the needs
of the vast majority of use cases, we would like to note that the implemen-
tation of these instrumentation libraries is straight-forward and the MPI and
OpenMP instrumentation libraries require less than 100 lines of code — with min-
imal effort these libraries can be customized to include user-defined components
which, when paired with the Gotcha method to wrap the targeted function call,
can produce instrumentation libraries which are capable of replacing the original
function call or analyzing the input parameters and return values of the function
call and then inserted into the binary via the dynamic instrumentation tool.

5 Novel Use Cases

5.1 Performance Measurements and Analysis in Geant4

Section 3.4 introduced the concept of using timemory to build an extensible,
built-in performance measurement and analysis framework that conforms to the
design of the project. This concept was put into practice within the Geant4
toolkit, whose description was provided in Sect. 2.3.

The Geant4 source code implements a G4TiMemory header file which pro-
vides empty macro replacements when Geant4 is configured without timem-
ory support. When Geant4 is configured with timemory support, Geant4 takes
advantage of the pre-defined tim::auto_timer bundle to instrument always-on
high-level measurements around approximately two dozen core routines. To pro-
vide user-customizable performance analysis in low-level functions invoked at a
high frequencies, Geant4 defines a G4Profiler class templated on the value of the
profiler type enumeration and a variadic list of types that form an instrumenta-
tion context (see Listing 1.9). Using this scheme, each instrumentation instance
can arbitrarily adapt to the runtime data analyzed in the callbacks and selec-
tively: enable/disable the instrumentation, customize the label, and add/remove
components.

Listing 1.9. Geant4 Profiler Definitions for timemory. The query, label, and tweak
functions apply their arguments to call-backs provided by the user-application.
G4ProfilerBundle is an alias to the timemory user_bundle component which pro-
vides an interface for manipulating an array of components during runtime.

template <size_t Category, typename... Types>
class G4Profiler {
using type = tim::auto_tuple<G4ProfilerBundle<Category>>;
static bool  query(Types...);
static string label(Types...);
static type& tweak(type&, Types...);
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Listing 1.10. Hypothetical User Configuration of G4TrackProfiler which only instru-
ments Electrons, customizes the label to reflect the physical volume of track, and
defaults to wall-clock and thread-specific cpu-clock timers for instrumentation unless
the electron energy is below 100 keV, at which point the API supplements the
instrumentation to include data collection for the classical roofline plot on the CPU.
Data types abbreviated for readability, assume all code is specifically applied to the
G4TrackProfiler.

get_query() = [](GATrack* t) { return t->GetType() == Electron; };
get_labeler() [1(G4Track* t) { return t->GetVolumeName(); };
get_tweak() [1 (auto& p, G4Track* t) {
if (t->GetEnergy () < 100.%keV) { p.insert<cpu_roofline_flops>(); }
return p;
configure<wall_clock, thread_cpu_clock>();

};

5.2 Mixed-Precision Analysis

Floating-point arithmetic [15,16] is ubiquitous in High Performance Computing
applications and it is the source of numerical bugs [10]. Due to the complexity of
understanding the impact of floating-point arithmetic on result accuracy, many
applications are written entirely with double precision despite the growing gap
between half, single, and double precision performance [21].

The precision required in different phases of an application to achieve the
desired precision in the result remains an open question. One of the projects
at NERSC consists of developing a systematic approach to optimize scientific
applications using multiple precisions for calls to mathematical library functions
(exp, log, sin, cos, etc.). The basic idea is to intercept these function calls and to
execute some of them in lower precision, searching the space by using existing
heuristics [25].

Section 4 introduced the timemory Gotcha capability for providing wholesale
function replacement for optimization purposes and Listing 1.11 demonstrates
the simplicity of this feature: the struct mixed_prec_exp_t shown there is a fully-
defined timemory component. Additionally, as a by-product of the object-based
design of and reference counting within the Gotcha component, timemory intro-
duces the concept of a “scoped Gotcha”, which deactivates the Gotcha wrapper
when no object of that Gotcha component is within a start/stop region. Thus,
in the mixed-precision analysis scenario, the developer can perform piece-wise
analysis by simply changing the scope(s) of one or more instances of this com-
ponent within a variadic wrapper, executing the application, and validating the
result(s) until all regions which permit mixed-precision have been identified.



Timemory: Modular Performance Analysis for HPC 449

Listing 1.11. Using the Gotcha framework through timemory component

struct mixed_prec_exp : tim::component::base<mixed_prec_exp, void>
{
double operator() (double v) { return PrecisionTuner(expf, exp, v); }
};
// pair the operator of mixed_prec_exp with a Gotcha
using mixed_prec_exp_t = gotcha<l, tuple<>, mixed_prec_exp>;

5.3 Roofline

The roofline model [29] is a visually intuitive performance model used to bound
the performance of various numerical methods and operations running on multi-
core, many-core, or accelerator processor architectures. It is a valuable tool in
HPC to determine inherent performance limitations related to locality, band-
width, and different parallelization paradigms.

The roofline model is an excellent example of the benefits of the timemory
design. The generation of a roofline plot requires 3 capabilities: (1) a method
for measuring the wall-clock run-time for all the desired regions, (2) a method
for collecting the desired hardware-counter values for the all the desired regions,
and (3) an empirical method for approximating the peak performance charac-
teristics (i.e., the “roof” part of the roofline). Although numerous existing tools
undoubtedly included the capabilities #1 and #2 and capability #3 could be
provided by the user’s runtime, these tools do not expose enough modularity for
this calculation to be fully integrated into the tool itself with respect to input
and output. In other words, the lack of modularity in these tools necessitates the
user engage in post-processing of the data outside of the application execution
in order to generate the final result. Within the timemory framework, combining
these three capabilities into a stand-alone output is arbitrary to provide since (1)
there are no restrictions with respect to components using other components, (2)
components are designed to be fully-functional when used explicitly instead of
through a variadic wrapper, and (3) explicitly used component instances without
variadic wrappers do not interact with the global call-graph storage unless the
insert_node() and pop_node() member functions are invoked?®.

At present, timemory is the only existing tool, to the knowledge of the
authors, that is capable of generating the roofline for both the CPU and GPU.
Furthermore, timemory contains a built-in extension of the Roofline Model
Toolkit [20] that is capable of stand-alone execution and provides a level of cus-
tomization unavailable in any existing Roofline tools. The design of the roofline
toolkit is such that the traditional algorithms for calculating the various peak-
performance metrics of the roofline, e.g., fused-multiply-add operations, can be
customized within user applications in order to better emulate the operations of
the target application.

8 Thus, this eliminates the potential for data-corruption in the call-graph storage.
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5.4 Instruction Roofline

Timemory provides support for instructions roofline plot generation on the GPU
for applications which are integer heavy and do not make use of floating-point
instructions. In [12] authors have used a GPU Kernel of Smith-Waterman algo-
rithm [3] (GPU-BSW) as a case-study. Here, we use the Diagonal-Major memory
indexing version of the same kernel to validate the timemory generated instruc-
tion roofline against the manually generated one in [12].

We used timemory’s built-in features to auto-generate the instruction roofline
shown in Fig. 3. It can be observed that the timemory generated roofline is similar
to the manually created roofline in [12] for the same kernel on the same GPU
(NVIDIA V100).

Roofline

s HBM: program

e L1: program

e L2: program

= HBM: thrust kernel

= L1: thrust kernel

= L2: thrust kernel

s HBM: thrust kernel

s L1: thrust kernel

s L2: thrust kernel
HBM: thrust kernel
L1: thrust kernel
L2: thrust kernel

+  HBM: GPU-BSW-Kernel =

«  L1: GPU-BSW-Kernel

+  L2: GPU-BSW-Kernel

> HBM: thrust kernel

»  L1: thrust kernel

> L2: thrust kernel

489.60 warps GIP!

Performance [Warp GIPS]

10 w0t w o
Instruction Intensity [Warp Inst. Per Transaction]

Fig. 3. Timemory generated instruction roofline for the diagonal major indexing GPU-
BSW kernel

6 Future Work

In the near future, planned support includes MPI performance variables (MPI-
T) [24] and extensions to the Python interface for post-processing context-trees
and Jupyter notebooks. In the long-term, there are two goals for timemory which
have not been prioritized. The first goal is to add support for compiler-assisted
instrumentation in the form of compiler-flags and pragmas. The second goal is
support for ClangJIT [14] which could theoretically add limited support for the
injection of new components from C, Python, and Fortran.

7 Conclusion

This paper presents a unified framework for performance measurement and anal-
ysis, timemory. It provides an easy-to-use interface, supports multiple program-
ming languages, object-level measurement granularity, and superior performance
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in runtime overhead. The most significant contributions of timemory lie in its
modular design, straightforward implementation of complex analysis methods
such as the Roofline analysis, flexibility and extensibility for user-defined analy-
sis, simplifications to the Gotcha model, and wide applicability to modern archi-
tectures such as CPUs and GPUs. With these favorable features, HPC users and
performance engineers are expected to be able to perform profiling and analysis
of large scale HPC applications in an easier, faster, and more flexible way.
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