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Abstract

Compressed sensing based iterative reconstruction algorithms for computed tomography such as 

adaptive steepest descent-projection on convex sets (ASD-POCS) are attractive due to their 

applicability in incomplete datasets such as sparse-view data and can reduce radiation dose to the 

patients while preserving image quality. Although IR algorithms reduce image noise compared to 

analytical Feldkamp-Davis-Kress (FDK) algorithm, they may generate artifacts, particularly along 

the periphery of the object. One popular solution is to use finer image-grid followed by down-

sampling. This approach is computationally intensive but may be compensated by reducing the 

field of view. Our proposed solution is to replace the algebraic reconstruction technique within the 

original ASD-POCS by ordered subsets-simultaneous algebraic reconstruction technique (OS-

SART) and with initialization using FDK image. We refer to this method as Fast, Iterative, TV-

Regularized, Statistical reconstruction Technique (FIRST). In this study, we investigate FIRST for 

cone-beam dedicated breast CT with large image matrix. The signal-difference to noise ratio 

(SDNR), the difference of the mean value and the variance of adipose and fibroglandular tissues 

for both FDK and FIRST reconstructions were determined. With FDK serving as the reference, the 

root-mean-square error (RMSE), bias, and the full-width at half-maximum (FWHM) of 

microcalcifications in two orthogonal directions were also computed. Our results suggest that 

FIRST is competitive to the finer image-grid method with shorter reconstruction time. Images 

reconstructed using the FIRST do not exhibit artifacts and outperformed FDK in terms of image 

noise. This suggests the potential of this approach for radiation dose reduction in cone-beam breast 

CT.
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1. Introduction

Clinical translation of dedicated breast CT (BCT) is an area of active research [1–5]. Current 

dedicated BCT scanners either use flat-panel detectors with 300 [6] or 500 views [1,7,8] in a 

circular trajectory covering 360 degrees for cone-beam BCT [6] or use photon-counting 

detectors in a helical scan [5]. Typically, Feldkamp-Davis-Kress (FDK) algorithm [9] or its 

variants are used for image reconstruction in cone-beam breast CT using flat-panel 

detectors.

The average glandular dose (AGD) from dedicated breast CT for non-contrast diagnostic 

imaging was reported to be 12.6 mGy (median) and is approximately similar to four 

mammographic views [6]. However, for breast cancer screening, it is necessary to reduce the 

radiation dose to be comparable to a standard 2-view mammographic screening exam. 

Several studies have shown that iterative reconstruction (IR) algorithms can maintain or 

improve image quality compared to the analytical FDK [9] algorithm while enabling 

radiation dose reduction either by reducing the radiation dose per projection or by reducing 

the number of projections [10–17]. One approach is to reduce the number of projections, i.e., 

sparse-view data acquisition. Some groups have investigated sparse-view iterative image 

reconstruction algorithms based on the theory of compressed sensing [18–20]. Among them, 

the algorithm using total variation with projection onto convex sets (TV-POCS) [21] was 

initially developed for sparse-view data set and its improved version, adaptive steepest 

descent POCS (ASD-POCS) [22], has been explored for dedicated breast CT [8]. We are 

actively investigating the potential of sparse-view data acquisition and ASD-POCS 

reconstruction for radiation dose reduction in dedicated breast CT. Our motivation for this 

investigation includes the following: (1) a prior study [1] showed that the conspicuity of 

microcalcifications is reduced in FDK-reconstructed breast CT images. Both system 

resolution and image noise could contribute to reduced conspicuity. In cone-beam breast CT, 

there are ongoing efforts to improve system resolution by pulsing the x-ray source [2,7], by 

using high-resolution detectors [7], and by optimizing scintillator thickness [23]. We 

hypothesize that reducing the image noise without adversely affecting system resolution 

through iterative image reconstruction techniques could potentially improve visibility of 

microcalcifications. (2) For diagnostic imaging using dedicated cone-beam breast CT, it is 

important that the image reconstruction time is minimized. This is necessary for clinical 

practice so as to decide if the results from the breast CT exam indicate the need for follow-

up imaging studies (e.g., targeted ultrasound), or biopsy during the same patient visit. (3) In 

order to translate dedicated breast CT for breast cancer screening, it is necessary to reduce 

the radiation dose to a level comparable to a standard 2-view mammographic screening 

exam. As stated earlier, the compressed-sensing based algorithms such as ASD-POCS are 

well suited for radiation dose reduction by employing sparse-view acquisition. Thus, our 

motivation for this study is based on the need to advance the role of cone-beam breast CT in 

diagnostic imaging of the breast and ultimately for breast cancer screening.

Interference-like artifacts have been reported with statistical image reconstruction [24]. We 

have also observed such artifacts in the ASD-POCS reconstructed clinical breast CT images 

with 1024 x 1024 in-plane voxel array of 0.273 mm voxel pitch. Although ASD-POCS 
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greatly reduced the image noise, the severity of interference-like artifacts degrades the image 

quality. The objective is to suppress these interference-like artifacts. One common method is 

to use finer image-grid followed by down-sampling [24,25]. However, this method requires 

half- or quarter-original voxel size which results in at least 4-fold increase in image array 

size compared to the desired image size. Although this method can remove the interference-

like artifacts, it incurs additional computational cost or reducing the field of view (FOV) 

with interior tomographic reconstruction. Our main goal is to find a solution to generate 

artifact free images with improved image quality within a clinically acceptable 

reconstruction time. In this work, we propose a computationally efficient method by 

modifying the ASD-POCS algorithm without sacrificing the FOV and without artifacts and 

is described in Section 2. In Section 3, the reconstruction time of different image 

reconstruction algorithms in full FOV were compared, and the proposed method is 

quantitatively evaluated by comparing it with FDK images. The FDK reconstructions are 

chosen as reference for image quality comparisons as a multi-reader, multi-case receiver 

operating characteristic (ROC) study with 235 cases interpreted by 18 radiologists showed 

that FDK-reconstructed non-contrast breast CT improved sensitivity over diagnostic digital 

mammography [26]. The clinical cases used in this study were part of the data used in the 

abovementioned reader study.

2. Materials and Methods

2.1. Human subjects

This study used de-identified projection datasets from women assigned American College of 

Radiology (ACR) Breast Imaging–Reporting and Data System (BI-RADS) 4 or 5 diagnostic 

assessment categories that participated in a prior institutional review board (IRB –approved, 

Health Insurance Portability and Accountability Act (HIPAA) - compliant clinical study 

with informed consent. BI-RADS 4 or 5 women have suspicious findings that require tissue 

diagnosis (biopsy). All study participants underwent the non-contrast diagnostic BCT of the 

breast with the suspicious finding prior to biopsy. This dataset was previously analyzed for 

volumetric fibroglandular fraction [27], skin thickness [28] and radiation dose [6]. Part of 

this dataset was also used for evaluating x-ray scatter-correction methods [29–31]. FDK 

reconstructions of this dataset was also included in the case mix, prior to random selection, 

for the multi-reader, multi-case ROC study [26].

2.2 Geometry of cone-beam breast CT scanner

The clinical breast CT datasets were acquired on a clinical-prototype cone-beam BCT 

system. Detailed description of the system and acquisition parameters were reported in prior 

publications [2,6,27]. Briefly, the cone-beam BCT system used a flat-panel detector 

(PaxScan 4030CB, Varian Medical Systems) operated at a pixel pitch of 0.388 x 0.388 mm2 

(after 2x2 hardware binning of 0.194 x 0.194 mm2 pixels) and each projection comprised 

1024 x 768 pixels. There were 300 projection views distributed uniformly over 360 degrees 

of a circular trajectory. The distances from the source to the isocenter and to the detector 

were 650 mm and 898 mm, respectively.
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2.3 Iterative Reconstruction Algorithm – ASD-POCS

In this study, the theory of the iterative reconstruction algorithm is based on a constrained, 

total-variation minimization algorithm, referred to as adaptive steepest descent – projection 

onto convex sets (ASD-POCS) and was developed by Sidky and Pan [32]. It uses the 

projection onto convex sets (POCS) as image constraints to enforce data consistency and 

employs the steepest descent with an adaptive step-size to reduce the total-variation (TV) of 

the image. The inspiration for this algorithm originated from the compressed sensing work 

by Candès et al [18], for the exact recovery of the image, when samples of the discrete 

Fourier transform (DFT) of the image is sparse. Candès et al also pointed out that the 

constrained, TV-minimization can be applied for linear systems [20]. For non-orthogonal 

linear systems such as the cone-beam projections, the developments and implementations 

were performed by Sidky, Kao and Pan [32,33]. The derivation and determinations of the 

parameters of ASD-POCS is beyond the scope of this article, and we refer the interested 

readers to the aforementioned articles.

2.4 Artifacts on Large Field of View (FOV) Image

ASD-POCS has been applied on different computerized phantoms, such as the FORBILD 

jaw [32], and it outperformed the expectation-maximization (EM) algorithms. The potential 

of ASD-POCS to provide better image quality in breast CT at lower radiation dose than the 

FDK algorithm has been reported [8]. The dimensions of image array in their breast CT 

study was 380 x 380 and the voxel size was 0.33 mm which results in 125.4 mm FOV.

In our breast CT study, the dimension of the image array is 1024 x 1024 with in-plane voxel 

size of 0.2734 mm, resulting in 280 mm FOV. GPU-based image reconstruction software 

(Tomographic Iterative GPU-based Reconstruction Toolbox, TIGRE) was employed for our 

image reconstruction processes [34]. When the ASD-POCS as implemented in TIGRE 

toolbox is used, interference-like artifacts can be found in many samples. Zbijewski and 

Beekman showed that the discretization errors at the vicinity of the large gradient in linear 

attenuation coefficients contributes to these artifacts [24]. In breast CT, this occurs at the 

breast periphery due to large attenuation coefficient difference between skin and air. One 

example from our patient data is used for demonstrating these artifacts (Fig. 1). The 

reconstructed image array from the full FOV is shown in the left panel and the zoomed in 

view is shown in the right panel. The interference-like artifacts are indicated by arrows in the 

right panel. Hereon, only the zoomed-in images are shown for clarity.

The clinically used FDK reconstruction is shown in Fig 2a. For statistical image 

reconstruction algorithms, finer image-grid followed by down-sampling, was proposed by 

Zbijewski and Beekman and is commonly used to overcome these interference-like artifacts 

[24,25]. This was also applied in a prior breast CT study [8]. We found that these 

interference-like artifacts persisted unless quarter in-plane voxel size (0.0683 mm, resulting 

in 4096 x 4096 image array) was used. Fig 2b and Fig 2c show the same sample case before 

and after implementation of the finer image-grid method using the TIGRE toolbox. 

Although using finer image-grid method with quarter in-plane voxel size is a potential 

solution, it is challenging for practical use, when a large FOV, like our case (280 mm), needs 

to be reconstructed. In spite of GPU acceleration (NVIDIA QUADRO P6000 with 3840 
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cores), for reconstructing a breast with 310 slices, it takes more than 238 hours to complete 

100 iterations to obtain a 4096 x 4096 x 310 reconstructed image volume. It will take longer 

to reconstruct breasts with longer chest-wall to nipple length. Chest-wall to nipple length as 

long as 17.5 cm (640 slices) have been reported [27].

2.5 Proposed Algorithm for Suppression of Artifacts

In this section, the proposed method using a modification to the ASD-POCS algorithm is 

described and the results using different methods were compared for the sample case shown 

in Fig. 1. The original ASD-POCS algorithm by Sidky and Pan [22] used the algebraic 

reconstruction technique (ART) [35] for the TV regularization step to solve the constrained 

minimization problem. In ART, the image is updated for each ray. Following the works of 

Censor and Elfving [36] and Jiang and Wang [37,38], the ART step have been replaced in 

many algorithms [39–45] and software [34] aimed for 3D CT image reconstruction with 

either simultaneous algebraic reconstruction technique (SART) [46] or with the ordered-

subsets SART (OS-SART) [37], to accelerate the image reconstruction. In SART, the image 

is updated after each projection (view angle) and in OS-SART the image is updated after a 

subset of projections. Thus, SART is a special case of OS-SART, when the number of 

subsets is set to equal the number the projections. When the number of subsets in OS-SART 

is set to 1, then the image is updated after using all projections, and in this sense, is similar 

to simultaneous iterative reconstruction technique (SIRT) [47]. Initializing with non-zero 

image, such as with FDK reconstruction, have also been used in several iterative 

reconstruction algorithms [48–52]. Inspired by these studies, we investigated the 

combinations of the initial image and the algorithm used in the gradient descent steps for the 

TV penalty. For initialization, both zero-valued image and the FDK reconstructed image 

were considered. The ASD-POCS algorithm implemented in the TIGRE toolbox [34] uses 

SART for the TV regularization step. In order to distinguish this implementation using 

SART instead of ART, we refer to it as T-ASD-POCS. We modified T-ASD-POCS by 

retaining the adaptive steepest descent step from the original ASD-POCS algorithm and 

implemented OS-SART for the TV regularization step. In order to distinguish from the 

original ASD-POCS and the T-ASD-POCS, we refer to this method using OS-SART as Fast, 

Iterative, TV-Regularized, Statistical reconstruction Technique (FIRST). We investigated a 

range of ordered subsets (30 subsets to 1 subset) for the OS-SART. Hyper parameters used 

in this study are listed in Table 1. Other initial values [42,43] or filters [53,54] in FDK might 

work along with proper hyper parameters, but we focus on the use of FDK reconstruction 

with Ram-Lak filter, or the zero-valued image, as an initial image in this article. Hereon, we 

denote the investigated method as FIRST, when the number of subsets n = 1 and when 

initialized with FDK image. When n ≠ 1, then n is specified. If initialized with zero-valued 

image, then this is also specified.

2.6 Quantitative Image Quality Analysis

For quantitative comparison between the proposed method and the other methods described 

in the previous section, 15 clinical datasets, all with microcalcifications, were used in the 

analysis. The choice of using clinical datasets with microcalcifications is based on the 

observation that the conspicuity of microcalcifications is reduced in breast CT compared to 

mammography [1]. All analyses were performed on linear attenuation images (units of cm
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−1). Signal-difference to noise ratio (SDNR) between adipose and fibroglandular tissues and 

its constituents, viz., the signal difference between adipose and fibroglandular tissue, and the 

noise (variance) within adipose and fibroglandular tissue regions were computed for both the 

FDK and the FIRST reconstructions. Additionally, the following metrics were calculated 

with the FDK reconstruction as the reference: root-mean-square error (RMSE), bias, percent 

difference in linear attenuation coefficients in fibroglandular and adipose tissue regions, and 

the percent difference in full-width at half-maximum (FWHM) for microcalcifications that 

were quantified along two orthogonal directions. The FDK reconstruction was chosen as the 

reference as it is used in the clinical breast CT system [26]. For microcalcifications, a single 

calcification from each case (n=15) was used to quantify the percent difference in FWHM. It 

is relevant to note that the SDNR is a commonly used image quality metric and is identical 

to the contrast-to-noise (CNR) metric used in a prior study to evaluate FDK and ASD-POCS 

reconstructions for sparse-view cone-beam CT [55]. The size of regions-of-interest (ROIs) 

for the SDNR, the percent difference in linear attenuation coefficients in adipose and 

fibroglandular tissue regions, and the variance in fibroglandular and adipose tissue regions 

were between 20 x 20 and 32 x 32 voxels and depended on the shape and size of the 

fibroglandular tissue regions. The RMSE and bias values were calculated based on the 

largest square ROI encompassing the breast tissue excluding the skin. This corresponded to 

approximately 80% of the image slice, and varied with breast size and shape. The slices 

containing the pectoralis muscle and the retro-areolar region were excluded for these 

quantitative measurements.

The obtained quantitative measures were statistically analyzed. All continuous variables for 

tested for normality assumption (Shapiro-Wilks test) and appropriate summary statistics 

were reported. For the metrics (SDNR, signal-difference and variance) with paired 

measurements from the FDK and the FIRST reconstructions, Wilcoxon signed rank sum test 

was used to test if they differed. For the percent difference in FWHM computed with FDK 

as the reference, one sample median test was used to test if the median significantly differed 

from zero. Effects associated with p<0.05 were considered statistically significant. All 

analyses were performed using statistical software (SAS version 9.4, SAS Institute Inc., 

Cary, NC).

3. Results

The results are organized as follows: The effect of number of subsets in FIRST algorithm is 

shown first. This is followed by showing the effects of initialization with zero-valued image 

and FDK reconstructed image. Finally, quantitative analysis and the reconstruction time are 

shown. It is relevant to note that all of the reconstructions presented in this manuscript 

reconstruct the full FOV and zoomed regions encompassing the breast are shown for clarity. 

Also, all reconstructed images are shown after 100 iterations. Figure 3 shows the results of 

the FIRST, when the number of subsets in the OS-SART is varied (30 to 6 subsets), and with 

FDK image initialization. Interference-like artifacts persisted until the number of subsets 

were reduced to 6 or less. Since the reconstruction time decreases with reducing number of 

subsets, subsequent evaluations using FIRST were performed with 1 subset as it provided 

the shortest reconstruction time.

Tseng et al. Page 6

Phys Med. Author manuscript; available in PMC 2021 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



For the sample case shown in figure 1, the four combinations comprising two different initial 

images (zero and FDK) and the two algorithms (T-ASD-POCS and FIRST) are shown in 

figure 4. The number of iterations was fixed (100 iterations). Artifacts appear on 

reconstructed images for T-ASD-POCS with either zero (figure 4a) or FDK (figure 4b) as 

the initial value. When FIRST is initialized using zero-valued image, the resulting 

reconstruction is blurred (figure 4c). Initializing FIRST with FDK image provided an artifact 

free image.

The average reconstruction time (seconds) per iteration per slice is summarized in Table 2. 

The reconstruction time, in this study, is inclusive of the computational time by the 

algorithm, hard disk access time for read/write operations, and any other sources of latency. 

All methods used full FOV reconstruction (1024 x 1024 in-slice pixel matrix) with GPU-

based implementation (Quadro P6000, NVidia Corporation, Santa Clara, CA) on the same 

reconstruction workstation. Substantial improvement in reconstruction time is achieved with 

FIRST compared to T-ASD-POCS.

It is relevant to note that the T-ASD-POCS with zero-valued initial image results in artifacts 

(Figure 4a). While FDK provided the fastest reconstruction, the resulting images are noisier 

compared to the proposed method. This is shown for the evaluation dataset of 15 cases with 

microcalcifications (Figure 5). The reference FDK reconstructions are shown in odd 

numbered rows in Figure 5. In each panel, the location of the microcalcification(s) are 

indicated by an arrow. The corresponding FIRST reconstructions are shown in even 

numbered rows. Qualitatively, a substantial reduction in image noise can be readily observed 

without a noticeable degradation in spatial resolution. Quantitative analyses are addressed 

below.

Summary statistics of the image quality measures are shown in Table 3. All metrics are 

reported as median (inter-quartile range). SDNR computed between adipose and 

fibroglandular tissue regions and its constituents, viz., the signal-difference between adipose 

and fibroglandular tissue regions, the variance within adipose tissue region, and the variance 

within the fibroglandular tissue region were computed for both the FDK and FIRST 

reconstructions. RMSE, bias, percent difference in FWHM for microcalcifications along the 

two orthogonal directions were computed for the FIRST reconstruction with the FDK 

reconstruction as the reference.

For pairwise comparisons between FDK and FIRST reconstructions, SDNR showed a 

significant improvement (P<0.0001) for FIRST. Further analysis of the signal-difference and 

noise (variance) showed that the difference in signal-difference was not significant (P=0.18) 

and the variance was significantly reduced with FIRST (P≤0.0001). These results are in 

agreement with theoretical expectations of reduced variance with FIRST, while preserving 

the quantitative nature of breast CT. For the percent FWHM of microcalcifications 

calculated with respect to the reference FDK reconstruction, FIRST did not show a 

significant difference (P≥0.125) with a median of zero%. Thus, the investigated FIRST 

method showed a significant improvement in SDNR compared to the FDK reconstruction, 

while preserving the spatial resolution. Also, the reconstruction time is substantially reduced 
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to make it practical for clinical use in diagnostic setting, which requires reconstructed 

images to be available in a timely manner for clinical workflow.

4. Discussion

This study describes an artifact-free, full FOV reconstruction without using finer image-grid 

for ASD-POCS based reconstruction. Although the finer image-grid method can remove the 

interference-like artifacts, it is computationally expensive even with GPU implementation. 

The investigated reconstruction method, FIRST, even in full FOV, achieves artifact-free 

reconstruction similar to the finer image-grid method and within a clinically acceptable 

reconstruction time. Using the same hardware and GPU implementation, FIRST reduced 

reconstruction time by 600-fold compared to the finer image-grid method using T-ASD-

POCS, and by 30-fold compared to T-ASD-POCS with standard voxel size (Table 2). 

However, the T-ASD-POCS with standard voxel size suffers from artifacts and finer image-

grid is needed (Figure 2). It is important to recognize that the reconstruction time includes 

the computational time by the algorithm, time to access the hard disk for any read/write 

operations, and any other latency that may be present. The TIGRE toolbox used for both T-

ASD-POCS and FIRST algorithm performs all the computational steps in the GPU and the 

reconstructed image volume is stored in the hard disk. The FIRST reconstruction uses OS-

SART with 1 subset. Hence, the image volume that is stored in the hard disk is updated once 

after using all projections per iteration. In comparison, T-ASD-POCS uses SART and the 

image volume is updated after each projection (300 projections in the studied breast CT 

cohort) per iteration. Additionally, the number of ray angles for forward and back projection 

is increased by a factor of 16 with the finer image-grid using quarter voxel size. Collectively, 

these factors contribute to the observation of substantial reduction in reconstruction time 

with the FIRST algorithm, making it practical for clinical use in a diagnostic setting.

The reconstructed images using FIRST outperformed the traditional FDK reconstruction in 

terms of image noise (variance) resulting in higher SDNR. We also found that the spatial 

resolution of the images reconstructed by FIRST is maintained compared to the FDK 

reconstruction, based on the measurements of FWHM of microcalcifications. Collectively, 

these factors could potentially improve the conspicuity of microcalcifications. Traditionally 

used metrics such as RMSE and bias were also computed with the FDK reconstruction as 

the reference. Regarding RMSE and bias, the observed median of 3.5x10−6 cm−1 and 

5.8x10−3 cm−1 correspond to approximately 0.001% and 2%, respectively, for the range of 

linear attenuation coefficients expected for breast tissue. Although the FDK reconstruction 

was used as a reference to calculate bias and RMSE, it is far from an ideal reference 

standard due to substantial image noise. In FDK reconstructions, the standard deviation 

(square-root of variance, Table 3) for adipose and fibroglandular tissues were approximately 

2–2.5% of the mean and is comparable to the observed bias.

Irrespective of initialization with zero-valued or FDK image, artifacts were present in T-

ASD-POCS without finer image-grid. These artifacts can be attributed to the discretization 

errors described previously. For FIRST reconstruction with zero-valued image initialization, 

the resulting images are blurred. In general, the updates/changes to the image volume per 

iteration are smaller with OS-SART (with 1 subset) than with SART. While increasing the 

Tseng et al. Page 8

Phys Med. Author manuscript; available in PMC 2021 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



number of iterations may converge to a better solution, the increased computational time 

would make it challenging for practical use. Initializing with the FDK image enables the 

algorithm to converge to a better solution rapidly.

The primary reason for this study was to find a practical use of ASD-POCS in diagnostic 

setting, where the reconstruction time has to be compatible with clinical workflow, as the 

patient awaits the result from the breast CT exam. Our motivation was not to determine if 

replacing with OS-SART in ASD-POCS improves image quality, but whether using OS-

SART (and number of subsets) could provide reconstruction times compatible with clinical 

workflow and if the image quality is comparable to FDK, with the added advantage of 

reduced image noise that may improve microcalcification visibility. The comparisons with 

ASD-POCS employing SART, i.e., T-ASD-POCS, with and without finer image-grid, are 

intended to show the presence of artifacts when finer image-grid is not employed, and the 

long reconstruction time when the finer image-grid is employed, both of which are 

detrimental for clinical adoption.

Our study had limitations. FDK is a naïve and straight forward option and it may not be the 

only option to be the initial value. Alternative initialization may be of value, but this was not 

the goal of this study. The primary aim of this study was to provide an easy implementation 

to suppress the interference-like artifacts, potentially improve the conspicuity of 

microcalcifications by reducing image noise, and to reduce the computational time so that it 

is clinically feasible. We also did not study the convergence with varying number of 

iterations. Considering that our proposed method, FIRST, after 100 iterations with FDK 

initialization showed reduction in noise, while preserving spatial resolution, it is possible 

that fewer than 100 iterations may be sufficient. This could further reduce reconstruction 

time. This is a subject of ongoing investigations and will be reported in future.

Based on the promising results obtained in terms of improved image quality, particularly in 

terms of image noise (variance) and SDNR, while maintaining spatial resolution as 

measured by FWHM of calcifications, future work will focus on reader studies to determine 

the improvements in lesion conspicuity (particularly calcified lesions) and in diagnostic 

performance through a receiver operating characteristic (ROC) study. Also, the FIRST 

algorithm is based on ASD-POCS and hence it could also be potentially used for sparse-

view reconstruction, short-scan reconstruction, and for laterally-displaced detector 

reconstruction [56].

5. Conclusion

We report on the implementation of an effective artifact suppression method and apply this 

method on breast CT images. We demonstrated that our developed method provided images 

without interference-like artifacts and without using smaller pixel size resulting in full FOV 

reconstruction that is completed in a short time. Our results also show that the image quality 

is better than the FDK reconstruction without sacrificing the spatial resolution. Because the 

proposed method is based upon the theory of ASD-POCS, it can potentially be used in 

incomplete CT data acquired by sparse-view or by short-scan method for radiation dose 

reduction.
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Highlights

• Ultra-fast version of the ASD-POCS algorithm has been developed.

• Reconstruction speed was improved by 600 fold.

• Image reconstruction field of view and spatial resolution are preserved.

• Effective suppression of interference-like artifacts on the periphery.
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Figure 1. 
An example of breast CT image reconstructed using ASD-POCS algorithm implemented in 

the TIGRE toolbox. Left: original image array of the entire field of view. Right: image array 

with zoom in. Interference-like artifacts (indicated by red arrows) can be clearly observed. 

The display range is [0.20 0.40] cm−1.
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Figure 2. 
Image reconstruction of the same sample case in figure 1 using different methods. The full 

reconstruction FOV is 280 mm and the voxel size is 0.2734 mm. (a) The reference; FDK 

method using full FOV reconstruction FOV and zoom in. (b) ASD-POCS method as 

implemented in TIGRE toolbox using full FOV reconstruction and zoom in. Red arrows 

indicate the interference-like artifacts. (c) ASD-POCS as implemented in TIGRE toolbox 

with finer image-grid using quarter in-plane voxel size and quarter reconstruction FOV 

(69.99 mm) followed by down-sampling. The display range is [0.20 0.40] cm−1.
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Figure 3. 
FIRST with FDK initialization for the same sample case in figure 1. The number of ordered 

subsets were varied: (a) 30; (b) 15; (c) 12; and, (d) 6 subsets. Red arrows indicate the 

interference-like artifacts. Interference-like artifacts persisted until the number of subsets 

was reduced to 6 or less. The display range is [0.20 0.40] cm−1.
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Figure 4. 
Image reconstruction of the same sample in figure 1 using four different combinations of the 

initial value and the implemented algorithms. T-ASD-POCS initialized with (a) zero-valued 

image and (b) FDK image. FIRST initialized with (c) zero-valued image and (d) FDK 

image. The display range is [0.20 0.40] cm−1.
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Figure 5. 
FDK and FIRST reconstructed images. In each panel of FDK images, the red arrow 

indicates the location of the microcalcification. The display range is [0.15 0.35] cm−1.
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Table 1.

Hyper parameters used in this study.

β βred α αred ng rmax

1 0.995 0.001 0.95 30 0.95
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Table 2.

Average reconstruction time (seconds) per slice per iteration (if applicable) for full FOV reconstruction for 

each method studied here. The reconstruction time is inclusive of computational time by the algorithm, hard 

disk access time for read/write operations, and any other sources of latency. The finer image-grid uses T-ASD-

POCS with quarter in-plane voxel size. All methods were implanted on a GPU (Quadro P6000, NVidia 

Corporation, Santa Clara, CA).

FDK FIRST T-ASD-POCS Finer image-grid

0.029 0.034 1.25 20.85
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Table 3.

Summary statistics [median (interquartile range)] of image quality measures from the FDK the FIRST 

reconstruction methods. All metrics were computed using linear attenuation coefficients and not HU. RMSE, 

bias and percent difference in FWHM for microcalcifications were computed with respect to the reference 

FDK reconstruction. [FWHM: Full-Width at Half-Maximum]

Metric FDK FIRST P-value

Signal-difference to noise ratio, SDNR 59.15 (49.23–62.20) 119.86 (117.41–145.36) P<0.0001

Signal-difference (cm−1) 0.0657 (0.0563–0.0675) 0.0652 (0.0596–0.0692) P=0.18

Variance within fibroglandular region ( × 10−4 cm−2) 1.03 (0.88–1.12) 0.25 (0.16–0.35) P=0.0001

Variance within adipose region ( × 10−4 cm−2) 0.65 (0.57–0.90) 0.09 (0.05–0.17) P<0.0001

% FWHM (x) Reference 0 (0 – 0) P=0.25

% FWHM (y) Reference 0 (0 – −0.06) P=0.125

RMSE ( × 10−6 cm−1) Reference 3.52 (3.29–4.31) NA

Bias ( × 10−4 cm−1) Reference 58.64 (49.70–57.41) NA
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