Skip to main content
. 2020 Jun 2;9:e53913. doi: 10.7554/eLife.53913

Figure 1. Generation of TMEM95 deficient mice.

(A) Structure prediction of TMEM95 protein (left) using IZUMO1 (right) as template, created by SWISS-MODEL software. (B) Tmem95 KO allele generated following CRISPR-mediated edition. CRISPR target sequence and PAM are depicted in blue and purple letters, respectively. (C) The deletion of 10 bp altered Tmem95 ORF. Large letters indicate the aminoacid sequence corresponding to the codons (DNA sequence) shown in smaller letters below. (D) Western Blot images for TMEM95, IZUMO1 and β-tubulin proteins from protein extracts from WT or KO sperm. Graph on right indicates the abundance of IZUMO1 in WT and KO extracts. (E) Immunocytochemistry images of KO and WT sperm stained with an antibody against TMEM95 and the acrosomal stain PNA. TMEM95 localized to the acrosomal cap in acrosome intact sperm and in the equatorial segment after acrosome reaction. (F) Immunocytochemistry images of acrosome intact (upper images) or reacted (lower images) WT sperm stained against IZUMO1 and TMEM95. Both proteins relocalize to the equatorial segment following acrosome reaction.

Figure 1.

Figure 1—figure supplement 1. Offtarget analysis.

Figure 1—figure supplement 1.

None of the 5 most probable off-target sites for the sgRNA used were edited, showing the same sequence as the WT. Location of the possible off-target is coloured in gray.
Figure 1—figure supplement 2. WB images related to Figure 1D.

Figure 1—figure supplement 2.

(A) Immunoblotting of protein extracts obtained from WT and KO epididymal sperm samples following two lysis protocols. In lysis protocol #1, sperm were re-suspended in 4X reducing SDS Sample Buffer and boiled for 10 min. In lysis protocol #2, sperm were re-suspended in 1% Octyl β-D-glucopyranoside solution in PBS and incubated on ice for 30 min (Nishimura et al., 2011). Supernatants were probed with anti-TMEM95 (MyBiosource MBS7004333), anti-IZUMO1 (Abcam ab211623) or anti-β-TUBULIN (Sigma T8328) antibodies. (B) Gel electrophoresis of PCR products amplified from cDNA obtained from testis, seminal vesicle (S.V.) prostate (prost.), epididymis (epid.) or a negative control testis RNA not retrotranscribed (RT-) to detect Gapdh and Tmem95 transcripts. (C) Immunoblotting of protein extracts obtained from WT epididymal sperm, testis or accessory glands (seminal vesicle and prostate). Same antibodies than (A). (D) Uncropped images of the WB used to generate Figure 1D. (E) WB images used for the quantification of IZUMO1 and β-TUBULIN shown in Figure 1D. Four samples were used for quantification (marked with asterisk), as β-TUBULIN band on samples #4 was dispersed, leading to inaccurate quantification.
Figure 1—figure supplement 3. Acrosomal cap localization of TMEM95 and IZUMO1 and IZUMO1 relocalization in WT and KO sperm.

Figure 1—figure supplement 3.

(A) Immunocytochemistry images of WT sperm stained with PNA and IZUMO1 antibody (upper row) or PNA and TMEM95 antibody (lower row) in the absence of permeabilizing agents. Despite the absence of permeabilizing agents (30 min fixation in 4% PFA without Triton X-100), TMEM95 and inner acrosomal (PNA) and acrosomal membrane (IZUMO1) markers were detected. (B) IZUMO1 relocates to the equatorial segment following acrosome reaction in TMEM95 KO sperm. Upper row shows one acrosome intact spermatozoon. Lower rows show WT and KO acrosome reacted sperm where IZUMO1 has relocated to the equatorial segment.