
AUTOMATIC LABELING OF CORTICAL SULCI USING 
SPHERICAL CONVOLUTIONAL NEURAL NETWORKS IN A 
DEVELOPMENTAL COHORT

Lingyan Hao1,2, Shunxing Bao2, Yucheng Tang2, Riqiang Gao2, Prasanna Parvathaneni3, 
Jacob A. Miller5, Willa Voorhies4,5, Jewelia Yao4, Silvia A. Bunge4,5, Kevin S. Weiner4,5, 
Bennett A. Landman2, Ilwoo Lyu2

1Department of Mathematics, Vanderbilt University, TN, USA

2Electrical Engineering and Computer Science, Vanderbilt University, TN, USA

3National Institute of Neurological Disorders and Stroke, National Institutes of Health, MD, USA

4Department of Psychology, University of California at Berkeley, CA, USA

5Helen Wills Neuroscience Institute, University of California at Berkeley, CA, USA

Abstract

In this paper, we present the automatic labeling framework for sulci in the human lateral prefrontal 

cortex (PFC). We adapt an existing spherical U-Net architecture with our recent surface data 

augmentation technique to improve the sulcal labeling accuracy in a developmental cohort. 

Specifically, our framework consists of the following key components: (1) augmented geometrical 

features being generated during cortical surface registration, (2) spherical U-Net architecture to 

efficiently fit the augmented features, and (3) postrefinement of sulcal labeling by optimizing 

spatial coherence via a graph cut technique. We validate our method on 30 healthy subjects with 

manual labeling of sulcal regions within PFC. In the experiments, we demonstrate significantly 

improved labeling performance (0.7749) in mean Dice overlap compared to that of multi-atlas 

(0.6410) and standard spherical U-Net (0.7011) approaches, respectively (p < 0.05). Additionally, 

the proposed method achieves a full set of sulcal labels in 20 seconds in this developmental cohort.
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1. INTRODUCTION

Cortical indentations, or sulci, have served as key phenotypical biomarkers in neuroimaging 

studies. The sulcal patterning of human lateral prefrontal cortex (PFC) has a protracted 

development with extensive individual differences that are correlated with both the 

functional organization of cortex, as well as cognitive skills. Their regional annotation is 

thus a critical step in morphological characterization and understanding. However, the high 

inter-subject variability of sulcal definitions, as well as their branches makes the labeling 

process much more challenging. Hence, a faster and cheaper labeling process necessitates an 
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automatic framework that spans both types of variability (e.g., type of cortex and age), 

especially in a) association cortices that are more variable than primary sensory cortices and 

b) developmental cohorts within which morphological features of the sulcal patterning are 

still changing.

In neuroimaging, cortical surface reconstruction [1, 2] is widely used to model the 3D 

geometry of the cerebral cortex through triangular meshes. Specifically, sulcal region and 

sulcal curve extraction [3–5] techniques have been developed over the years on cortical 

surfaces. Nevertheless, as sulci are commonly defined based on additional labeling steps, a 

multi-atlas approach [6–8] is most popular in automatic sulcal labeling. This approach offers 

higher accuracy, as each atlas is registered to a target surface for its label propagation and 

fusion. In general, a multi-atlas approach performs better as more atlases are included, 

which, however, is computationally demanding as the number of atlases increases due to 

inter-subject registration.

Thanks to the current availability of enhanced computing power with GPUs and readily 

accessible large neuroimaging datasets, deep neural networks (DNN) permit high level 

abstraction and thus, increased complexity for neuroimaging processing. Specifically, 

convolutional neural networks (CNN) are widely adapted to image segmentation problems, 

which aim to preserve spatial relationships and thus, handle more complex images. 

However, conventional CNNs have limited ability to handle non-uniform data represented by 

unstructured grids or graphs (i.e., cortical surface), as CNNs are only optimized for standard 

Euclidean image grids. Nevertheless, with recent advances in spherical CNN architectures 

[9], cortical surface data can be properly handled due to inherent spherical topology of 

cortical surfaces. These architectures utilize spherical convolutional filters and render valid 

parametrizat ion in the spherical space without introducing spatial distortion on the sphere. 

Though these techniques can sufficiently support cortical surface data, a large collection of 

annotated training samples is necessary to yield practically plausible results.

In this paper, we describe an automatic framework for labeling sulci in PFC using spherical 

CNN. Herein, we address (1) the complex inter-variability of the cortical sulci that hinders 

the accuracy of traditional segmentation methods as well as (2) learning of such variability 

from relatively small training samples. Specifically, we propose a fully automatic framework 

that combines spherical U-Net and data augmentation. We augment geometric features by 

utilizing our recent surface registration method. In particular, we generate deformed features 

obtained by intermediate deformation fields after the surface registration. The key idea of 

data augmentation was first introduced in [10]. Although our approach has similar concepts, 

there are several major distinguishing features: (a) this is the first application of the spherical 

U-Net on cortical sulci labeling with relatively small samples, which is more challenging 

compared to broad lobe- or parcel-wise labeling in cortical surface parcellations and (b) this 

is the first time that we are applying these methods to sulcal definitions in association with 

cortex in a developmental cohort. Fig. 1 shows a schematic overview of the proposed 

framework.
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2. METHODS

2.1 Data augmentation

In general, CNNs tend to offer better accuracy as sample size increases. Due to limited 

availability in the ground-truth data, we increase our sample size by generating artificial 

geometric features to address such a small sample size. The key idea of such augmentation is 

to generate deformed geometric features from intermediate deformation fields of cortical 

surface registration [10]. Here, we use our recent surface registration method that smoothly 

harmonizes rigid and non-rigid deformation. The deformation fields are estimated by a 

linear combination of spherical harmonics orthonormal basis functions, which can 

reconstruct deformed geometric features up to a given spherical harmonics degree. In our 

work, cortical surfaces are deformed for the optimal alignment with a template surface that 

is created in a group-wise manner. After surface registration, we generate intermediate 

deformed features between subject and template by increasing spherical harmonics degree l. 
For notational simplicity, let Dl denote the deformation field at degree l. For surface data 

augmentation, we generate the intermediate deformed features up to l =15 [11].

2.2 Deep learning architecture: spherical U-Net

We adapt the spherical U-Net architecture [9] to annotate six cortical sulci in PFC in a 

developmental cohort. In this method, the parameterized differential operators [9] are used 

to define the convolutional kernels, which linearly combine the 1st and 2nd derivatives. This 

architecture shows improved performance compared to recent work on cortical surface 

parcellation [10]. In our framework, we create 16 deformation fields for each of the 

following cortical geometric features for their augmentation: mean curvature from inflated 

surface (iH), sulcal depth (SD) and mean curvature from cortical surface (H). These features 

are generally used in cortical surface registration for multiresolution optimization that 

captures both global and local spatial alignments [11]. Fig. 2 demonstrates examples of 

deformed cortical features. To augment more samples, we flip the right hemisphere, which 

generates 2×16 (=32) times the original sample size. These augmented features then serve as 

the input features (3 channels). The output of the spherical U-Net is 7 likelihoods including 

background for each label per vertex, and the final labels are determined by finding the 

maximum likelihoods.

2.3 Optimization for spatial label coherence

The spherical U-Net prediction could mislabel sulcal regions even over gyri. To enhance 

spatial label coherence, we employ geometric characteristics of a pial surface, where triangle 

size is adaptively reconstructed along sulci (small) and gyri (large) [1]. Let V denote a set of 

vertices of the cortical surface. Now, we consider the following two energy terms for label 

assignment at xi with its likelihood p(xi) and the association to its neighborhood xj:

φ xi = − log p xi , (1)

ϑ xi, xj = exp − xi − xj 2 . (2)
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Spatial smoothness cost is bounded between 0 and 1 and increased as two adjacent vertices 

are close to each other. This implies that vertices are likely located in sulcal regions and that 

the spatial coherence becomes more important if two vertices are close. The overall energy 

function is given by

E = ∑
xi ∈ V

φ xi + λ ∑
xj ∈ N xi

ϑ xi, xj , (3)

where N(·) is a set of neighborhood and λ ∈ R+ is a scaling factor. We use a standard graph 

cut method [12] to optimize the energy function. In our experiments, we empirically set λ = 

5. Fig. 3 shows an example result of the graph cut method.

3. EXPERIMENTS

3.1. Experimental setup

3.1.1. Data—Brain imaging data were collected on a Siemens 3T Trio system at the 

University of California Berkeley Brain Imaging Center. High-resolution Tl-weighted 

MPRAGE anatomical scans (TR=2300ms, TE=2.98ms, 1×1×1mm voxels) were acquired for 

cortical morphometric analyses. All Tl-weighted images were visually inspected for scanner 

artifacts. The cortical surfaces were reconstructed for each subject [13], and were visually 

inspected for segmentation errors and subsequently corrected if any were found. Labeling 

sulcal landmarks in lateral PFC were based on the most recent parcellation proposed by 

[14].The following 6 sulci in each hemisphere were manually defined at the individual 

subject level on inflated and pial surfaces: (1-2) the anterior (sfs_a) and posterior (sfs_p) 

components of the superior frontal sulcus, (3) the inferior frontal sulcus (ifs), (4) the central 

sulcus (cs), and the (5-6) superior (sprs) and inferior (iprs) precentral sulci. Locations of 

sulci were confirmed by 3 raters and finalized by a senior author.

3.1.2. Deep learning architecture—Both left and flipped right hemispheres were used 

for training, and we augmented the surface data by generating 16 deformation fields for each 

sample. Hence, 30 × 2 ×16 = 960 samples in total were used. We trained the data with the 

spherical U-Net model at level 5 of the icosahedral subdivision with vertices N = 10,242. 

For the training parameters, we used batch-size of 4 and initial learning rate of 0.01 with 0.9 

step decay for every 20 epochs. We used cross entropy loss optimized by the Adam 

optimizer. Each epoch took about 2 minutes to compute on NVIDIA Titan Xp.

3.1.3. Baseline methods—We used two baseline methods: multi-atlas and standard 

spherical U-Net. In multi-atlas, we registered all the training samples [15] and mapped them 

to a single subject, and the final labels were determined by a majority vote scheme. For the 

standard spherical U-Net, we trained the model with only 60 samples of the left and flipped 

right hemispheres without data augmentation, which only took 10 seconds per epoch to 

train. The same parameter settings were used as those with our augmentation. For a fair 

comparison, we rigidly aligned spheres to the templates in the standard spherical U-Net. The 

proposed graph cut technique was applied to the two baseline methods.
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3.2. Cross-validation

We evaluated the standard spherical U-Net and our method by 5-fold cross validation, where 

the samples were split into the following ratio: 60% training (36 samples, 576 samples after 

data augmentation), 20% validation (12 samples) and 20 % testing (12 samples). Note that 

data augmentation was not used for the validation or test. For each fold, we rotated the test 

and validation sets and used the rest of the dataset as training set. Fig. 4 shows the respective 

cross-entropy losses at 80 and 25 epochs for the standard spherical U-Net and proposed 

methods. The loss converges more quickly (before 25 epochs) in our method while 

achieving less errors than the baseline method (after 60 epochs). This implies that our 

training method with data augmentation is more stable than the standard spherical U-Net. 

We chose the minimum validation loss to evaluate the model performance.

3.3. Comparison with existing methods

In comparisons with the two baseline methods, the mean Dice overlap was 0.6410 ± 0.0756, 

0.7011 ± 0.1566 and 0.7749 ± 0.0987 for multi-atlas, standard spherical U-Net, and the 

proposed method. Though improvement in Dice overlap was marginal (0.0066, 0.0066, and 

0.0077) after graph cut, it provides qualitative improvement (isolated region removal and 

spatial coherence) as shown in Fig. 3. Among these methods, ours achieved the highest 

average Dice overlap with statistical significance. For individual sulci, we performed paired 

statistical t-tests with multi-comparison correction using a false discovery rate (q=0.05) [16]. 

Fig. 5 illustrates the ROI-wise Dice overlap for each of the 6 sulci for the three methods. 

Specifically, we observed improved cortical sulcal labeling in (a) all regions compared to 

multi-atlas method and (b) 4 regions compared to standard spherical U-Net method. Fig. 6 

demonstrates qualitative comparisons.

4. CONCLUSION

We presented a new application of an automatic framework for labeling of cortical sulci 

using spherical U-Net in a developmental cohort. The proposed method overcame problems 

of inter-variability of the cortical sulci and learning from a relatively small training sample 

size. To enhance the capability of the spherical U-Net with limited samples, we augmented 

the geometric features from the training data with their deformed features guided by the 

intermediate deformation fields. In the experiments, the proposed method demonstrated 

superior performance than multi-atlas and standard spherical U-Net methods both 

qualitatively and quantitatively; it is also more stable even when training with a limited 

sample size in this developmental cohort.
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Fig.1. 
An overview of the proposed method. The three geometric features (iH , SD, H) for each 

subject are augmented by 16 times for training samples. Given the input features, cortical 

sulci labels are then predicted using a spherical U-Net.
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Fig. 2. 
Surface data augmentation. Mean curvature of an inflated surface (first row), sulcal depth 

(second row) and mean curvature of a cortical surface (third row). These features capture 

global and local spatial patterns of cortical folds. During data augmentation, the features are 

smoothly deformed via cortical surface registration with increasing spherical harmonics 

degree l from 0 to 15. The deformed cortical features are well aligned to their templates as 

degree increases.
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Fig. 3. 
Improved spatial coherence. The small isolated regions (circled in black) are removed after 

post-refinement with the proposed graph cut method. The refined result matched more 

closely with the ground truth sulcal labels.
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Fig. 4. 
Average loss after 5-fold cross validation along the training, validation and testing epochs 

for standard spherica U-Net (left) and our method (right). The curves represent the average 

of 5-fold experiments. The shaded regions represent the standard deviations at each epoch.
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Fig. 5. 
Dice overlap of 6 regions of multi-atlas, baseline spherical U-Net and the proposed method 

after multicomparison correction (FDR q = 0.05). The improved regions are represented by 

* (black) if improved against both, * (blue) if improved against multi-atlas.
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Fig. 6. 
Qualitative comparison between multi-atlas, standard spherical U-Net, our method, and 

ground-truth. Our method yields a better qualitative performance than the other two 

methods. Multi-atlas provides less accurate boundary delineation.
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