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Background.  Kawasaki disease (KD) is the leading cause of childhood acquired heart disease in developed nations and can re-
sult in coronary artery aneurysms and death. Clinical and epidemiologic features implicate an infectious cause but specific antigenic 
targets of the disease are unknown. Peripheral blood plasmablasts are normally highly clonally diverse but the antibodies they en-
code are approximately 70% antigen-specific 1–2 weeks after infection.

Methods.  We isolated single peripheral blood plasmablasts from children with KD 1–3 weeks after onset and prepared 60 mon-
oclonal antibodies (mAbs). We used the mAbs to identify their target antigens and assessed serologic response among KD patients 
and controls to specific antigen.

Results.  Thirty-two mAbs from 9 of 11 patients recognize antigen within intracytoplasmic inclusion bodies in ciliated bronchial 
epithelial cells of fatal cases. Five of these mAbs, from 3 patients with coronary aneurysms, recognize a specific peptide, which blocks 
binding to inclusion bodies. Sera from 5/8 KD patients day ≥ 8 after illness onset, compared with 0/17 infant controls (P < .01), rec-
ognized the KD peptide antigen.

Conclusions.  These results identify a protein epitope targeted by the antibody response to KD and provide a means to elucidate 
the pathogenesis of this important worldwide pediatric problem.
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Kawasaki disease (KD) is a febrile illness of young childhood 
that has clinical and epidemiologic features of an infectious dis-
ease [1], including epidemics with geographic wavelike spread 
[2]. KD can result in potentially severe or even fatal coronary ar-
tery aneurysms in infants and children [3]. First described by Dr 
Tomisaku Kawasaki in Japan in the 1960s and now recognized 
worldwide, the etiology has remained elusive. The highest attack 
rates of KD are observed in Asian children, most likely because 
of genetic predisposition to the inciting agent [4]; in Japan, 1 in 
65 children develop the disease by the age of 5 years [5].

The antigens triggering the immune response in KD pa-
tients have been unknown. Analysis of peripheral blood 
plasmablasts, plasma cell precursors, is emerging as a pow-
erful tool in studies of pathogenesis, diagnosis, and thera-
peutic discovery in infectious diseases [6–14], vaccine science 

[14–20], and autoimmune disease [21, 22]. Multiple studies 
have shown that > 70% of peripheral blood plasmablasts 
express antibodies specific to the infectious or immunizing 
agent at 1–2 weeks following infection [23–26]. Identification 
of specific KD antigens would enable diagnostic test develop-
ment and improved therapies.

Our previous studies provided support for the concept that 
KD patients mount an antigen-specific antibody response. We 
identified an oligoclonal immunoglobulin A  (IgA) response 
in KD arterial tissues [27], and made synthetic antibodies 
comprised of clonally expanded α heavy chains from KD ar-
terial tissue paired with random light chains [28,29]. These 
antibodies identified intracytoplasmic inclusion bodies in 
KD but not in infant control ciliated bronchial epithelium by 
immunohistochemistry [28–30]. However, these antibodies 
did not yield the specific antigen, likely because they did not 
include in vivo cognate immunoglobulin variable, diversity, 
joining (VDJ) and variable, joining (VJ) heavy and light chains. 
In the present study, we isolated and analyzed single periph-
eral blood plasmablasts from children with KD 1–3 weeks after 
fever onset, prepared monoclonal antibodies from clonally ex-
panded plasmablasts, and used these antibodies to identify their 
target antigens.
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METHODS

Patients and Specimens

This study was approved by the institutional review board of the 
Ann and Robert H. Lurie Children’s Hospital of Chicago, and 
patients were enrolled following informed consent. Peripheral 
blood was obtained from 11 KD patients on day 8–24 after fever 
onset (Figure 1A and Supplementary Table 1) from April 2017. 
Blood was also obtained from 1 healthy adult volunteer as a 
source of control antibodies. Sera available from additional KD 
children were used for serologic assays, as were sera from febrile 
control children and infant controls.

Flow Cytometry

CD3−CD19+CD38++CD27++ peripheral blood mononuclear 
cells were gated (Figure 1A) and single cells sorted into indi-
vidual wells of 96-well polymerase chain reaction (PCR) plates.

Amplification, Sequencing, and Cloning of Immunoglobulin Variable 

Regions

Reverse transcription and PCR of heavy and light chain vari-
able genes were performed according to a published protocol 
[31,32], and PCR products were directly sequenced. Heavy 
chain sequences were analyzed for variable heavy (VH) family 
and complementarity-determining region 3 (CDR3) sequence 
and clonally related sequences identified and prioritized for an-
tibody synthesis. Light chains were cloned into human immu-
noglobulin κ or λ light chain expression vectors [32] and heavy 

chains were cloned into human γ1 and rabbit γ (pFUSEss vec-
tors; InvivoGen) heavy chain expression vectors, to enable pro-
duction of human and rabbit versions of the antibodies.

Antibody Production and Analysis

Antibodies were produced by transfection of 293F sus-
pension cells using a 1.5:1 ratio of light chain:heavy chain 
DNAs and Freestyle MAX reagent, and were purified 
using protein A  agarose beads (ThermoFisher Scientific). 
Immunohistochemistry was performed on KD and control 
infant tissues as previously reported [28, 33].

Monoclonal Antibody Reactivity With Animal Virus Peptides
A custom animal virus discovery peptide array was de-
signed (PEPperPRINT, www.pepperprint.com) and anti-
bodies KD4-2H4 and KD6-2B2 tested on the array. To identify 
common motifs of binding peptides, MEME bioinformatics 
analysis was performed on those peptides with the highest spot 
intensities (meme-suite.org/tools/meme).

Substitution Analysis
Substitution analysis was performed on viral peptides recog-
nized by antibodies KD4-2H4 and KD6-2B2 by creating a pep-
tide array that includes stepwise substitution of all amino acid 
positions of the peptide with all 20 amino acids, to determine 
the amino acids that yielded optimal binding to the antibody 
(PEPperPRINT).
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Figure 1.  Experimental strategy and characteristics of PB isolated from peripheral blood of 11 children 1–3 weeks after KD fever onset. A, Study overview. B–D, Analysis 
of single cells from 11 children with KD. B, Most PB were VH3, VH4, or VH1. C, Number of PB by isotype; IgA and IgG PB were most commonly identified. D, Of 1156 PB 
sequenced, 42 sets of oligoclonal PB were identified for antibody production and 15 somatically mutated IgA plasmablasts were also selected for production. Of 60 mono-
clonal antibodies prepared, 10 strongly bound to intracytoplasmic inclusion bodies in ciliated bronchial epithelial cells of children who died of KD using immunohistochemistry 
and 22 were found to bind weakly. Strongly binding antibodies were tested on an animal virus peptide array. Abbreviations: IgA, immunoglobulin A; IgG, immunoglobulin G; 
KD, Kawasaki disease; PB, plasmablasts; RT-PCR, reverse transcription and polymerase chain reaction; VH, variable heavy; VL, variable light.

http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiaa066#supplementary-data
http://www.pepperprint.com
http://meme-suite.org/tools/meme﻿
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ELISA for Binding of Peptides to KD Monoclonal Antibodies
Maxisorp Nunc Immuno 96-well plates were coated with 
1  μg of synthetic peptides (Anaspec) per well and incubated 
with rabbit KD monoclonal antibodies at 10, 1, and 0.1  µg/
mL followed by horseradish peroxidase-labelled goat anti-
rabbit antibody at 1:3000 (Fisher). Absorbance at 450  nm 
was determined on a Multiskan FC spectrophotometer after 
addition of ultra 3,3′,5,5′-tetramethylbenzidine followed 
by 1.5 M sulfuric acid solution. Absorbance of the KD pep-
tide (KPAVIPDREALYQDIDEMEEC) assays were recorded 
after subtraction of absorbance with the scrambled peptide 
(IYPLEDMAEPKVERIDAQEDC). An OD reading >0.4 was 
arbitrarily determined as a positive; all negative antibodies had 
values of ≤0.04.

Blocking Experiments to Determine Specificity of Peptide Binding
Monoclonal antibodies showing binding to animal virus pep-
tides were incubated with a 5-fold excess (by weight) of rep-
resentative peptide or a scrambled peptide at 37°C for 45 
minutes, and each mixture was then applied to KD lung tissue 
for immunohistochemistry.

Human Protein Array Analyses and Human Protein 
Immunohistochemistry
KD monoclonal antibodies human KD4-2H4 and rabbit 
KD6-2B2 were tested for binding to a human proteome array 
(HuProt v 4.0; CDI Laboratories).

Western Blot Assay Using Glutathione Sulfur Transferase-
Concatemerized KD Peptide Fusion Protein
We optimized the nucleotide sequence that codes for the KD 
peptide sequence for expression in Escherichia coli and prepared 
a multimer with 3 copies of the peptide linked by short spacers: 
(glutathione sulfur transferase [GST]-3X: AGKPAVIPDREALY
QDIDEMEECLDEAGKPAVIPDREALYQDIDEMEECLDEAG
KPAVIPDREALYQDIDEMEECLD). The multimer sequence 
was cloned into the pGEX-KG plasmid (ATCC No. 77103) and 
fusion protein expression was induced. Western blot assays 
were performed following electrophoresis on 12% Tris-glycine 
gels (Biorad) and transfer to PVDF membrane (IPVH00010; 
Fisher). After blocking the membranes, serum samples from 
KD patients and controls (Supplementary Table 5 and Table 6) 
were diluted 1:5000 and incubated with membranes overnight 
at 4°C. Following incubation, membranes were washed and in-
cubated with horseradish peroxidase-labelled goat anti-human 
IgG (A18811; Thermo Fisher) at a dilution of 1:5000 and devel-
oped using Supersignal West Femto Substrate (Thermo Fisher).

Statistical Analysis

GraphPad Prism 8 was used to plot enzyme-linked immuno-
sorbent assay (ELISA) results. Comparison of serologic results 
between groups was performed using a 2-tailed Fisher exact test 
using the function fisher.test in R 3.6.1.

Additional detailed methods are available in the 
Supplementary Material.

RESULTS

Plasmablasts From KD Patients

Our approach for studying single peripheral blood plasmablasts 
from KD patients is outlined in Figure 1. We identified heavy 
chain sequences in 1156 plasmablasts derived from 11 patients. 
Most of the plasmablasts encoded antibodies of the VH3 family 
(Figure  1B); 462 were IgA, 482 were IgG, and 212 were IgM 
(Figure 1C).

Genetic Characterization of KD Plasmablasts Reveals an Oligoclonal 

Response

We identified 42 sets of clonally related plasmablasts in 10 
patients (Figure 1D), typical of B-cell response to specific an-
tigen. One patient (KD patient 7) did not have clonally related 
plasmablasts but did have IgA plasmablasts with many mu-
tations from germline (Supplementary Table 2). More than 
1 isotype was present in 12/42 (29%) of the clonally related 
plasmablast sets from these 10 patients (Supplementary Table 
2). KD plasmablasts were otherwise of varying genetic com-
position and the clonally related heavy chain CDR3 sequences 
differed among patients. This result was expected based on pub-
lished data showing that the VH nucleotide repertoire is highly 
private [34, 35]. We selected clonally related sets of plasmablasts 
and selected IgA plasmablasts with many somatic muta-
tions for antibody production (Figure 1D and Supplementary 
Table 2). VDJ and VJ sequences of these plasmablasts and for 
healthy adult volunteer plasmablasts E3 and E4 are available as 
GenBank accession numbers MK416266-MK417513.

Generating KD Monoclonal Antibodies

We expressed the antibodies encoded by 38 clonally related sets 
of plasmablasts and 12 highly mutated single IgA plasmablasts in 
293F cells, generating approximately 300 μg to 1 mg of human/
rabbit or human/human antibodies in one 60-mL culture flask 
per assay. Of the 60 antibodies, 52 had entirely different VH/VL 
sequences and 8 were members of clonally related plasmablast 
sets in which the related antibodies had 1–4 amino acid muta-
tions in the CDR3 sequence within the set.

KD Monoclonal Antibodies Bind to Cytoplasmic Inclusion Bodies in KD 

Ciliated Bronchial Epithelium

Our prior studies demonstrated binding of synthetic antibodies 
with noncognate VDJ and VJ pairs to intracytoplasmic inclusion 
bodies in ciliated bronchial epithelial cells of children who died 
from acute KD but not of infant controls who died of non-KD 
illnesses [28–30, 36]. Initial studies with antibodies KD1-2G11 and 
KD4-2H4 revealed strong binding of the antibody to KD lung tis-
sues from the United States (n = 3) and Japan (n = 2) and not to in-
fant control lung tissue (n = 3) (Figure 2A–2D), similar to our prior 
studies [28–30, 36, 37]. To test all 60 monoclonal antibodies for 

http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiaa066#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiaa066#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiaa066#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiaa066#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiaa066#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiaa066#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiaa066#supplementary-data
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inclusion body binding, we used lung tissue from a KD child found 
in our prior studies to have many inclusion bodies. Strong positive 
staining similar to that demonstrated in our prior studies [28–30, 
36, 37] was observed using 10 monoclonal antibodies (Table  1, 
Supplementary Table 3, and Figure 2A and 2D). Another 22 mon-
oclonal antibodies showed weak binding to the inclusion bodies. 
Overall, an antibody that recognizes KD inclusion bodies was 
made from 9/11 (82%) KD patients. The 2 patients from whom 
we did not clone such an antibody were sampled at the latest time 
points after onset in the cohort, on days 20 and 24 after fever onset, 
at which time the antigen-specific plasmablast response may have 
abated [38].

Identifying a Protein Target of Monoclonal Antibody KD4-2H4

To determine whether KD monoclonal antibodies bind to an epi-
tope that is shared with a known animal virus, we created a custom 
array (PEPperPRINT; Supplementary Table 4) of peptides reported 
to be B-cell epitopes of animal viruses and included in the Immune 
Epitome Database and Analysis Resource (https://www.iedb.org/). 

Monoclonal antibody KD4-2H4 showed binding to multiple sim-
ilar peptides from the C-terminal region of hepacivirus NS4A 
(Figure 3A). MEME bioinformatic analysis was used to identify a 
shared motif among the top 27 peptide hits, which yielded a motif 
that was significant at 1.1e−118 (Figure 3B).

KD4-2H4 Binds to a Novel Peptide Epitope Demonstrated by Substitution 

Matrix Array Analysis

To identify the critical amino acids required for 
KD4-2H4 peptide binding, we tested a peptide substitu-
tion array, in which each position of the reactive peptide 
AIIPDREALYQEFDEME was sequentially replaced by each 
of 20 amino acids (PEPperPRINT). The substitution array 
showed that amino acids 9L and 11Q of this peptide were es-
sential for antibody binding (Figure 3C). Replacement of 12E 
by D, T, or S and of 13F by I and V resulted in a marked increase 
in antibody binding on the array. These results indicate that 
the length of the reactive epitope is an approximately 8 amino 
acid segment, similar to the length of other linear epitopes 
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US KD pt A lung
with mAb KD1-2G11

US KD pt A lung
with control mAb

US KD pt A lung
with mAb KD4-2H4

Control infant lung
with mAb KD1-2G11

Figure 2.  A and D, KD monoclonal antibodies recognize ICI in KD ciliated bronchial epithelium by immunohistochemistry (arrows). A, ICI are identified by monoclonal anti-
body KD1-2G11 in a 4-month-old male infant (KD patient A) who died of acute KD in the United States at 3 weeks after fever onset. B, No staining is observed using KD1-2G11 
in a 3-month-old US female infant who died of influenza. D, ICI are identified in KD patient A using antibody KD4-2H4. A–D, ×20. Abbreviations: ICI, intracytoplasmic inclusion 
bodies; KD, Kawasaki disease; mAb, monoclonal antibody; pt, patient.

http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiaa066#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiaa066#supplementary-data
https://www.iedb.org/
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bound by antibodies [39], and BLAST analysis showed that 
it does not match any known hepacivirus sequence. We des-
ignated a new peptide (AVIPDREALYQDIDEME), which in-
cludes the critical amino acid sequence in the center of the 
peptide, as KD peptide.

Multiple KD Monoclonal Antibodies Recognize the KD Peptide by ELISA

To determine if monoclonal antibodies from multiple KD patients 
recognize the KD peptide, we conjugated the peptide and a scram-
bled version of the peptide to bovine serum albumin to improve 
microtiter well coating and tested all 60 KD monoclonal anti-
bodies by ELISA. We found that monoclonal antibodies KD4-2H4, 
KD6-2B2, KD6-1A10, KD8-1B10, and KD8-1D4 reacted with KD 
peptide and not with the scrambled peptide by ELISA (Table 2 and 
Figure 4A). The remainder of the KD monoclonal antibodies did not 
show specific binding to KD peptide by ELISA. All of the antibodies 

reactive with the peptide by ELISA identify inclusion bodies in KD 
ciliated bronchial epithelium by immunohistochemistry. Therefore, 
of the 9 KD patients in this study whose antibodies identified KD 
inclusion bodies, 3 patients (33%) had plasmablasts with differing 
VDJ and VJ sequences (Table 2 and Supplementary Table 3) that 
recognize the KD peptide. These antibodies were not polyreactive 
against DNA, insulin, or bovine serum albumin by ELISA 
(Supplementary Figure 1).

Monoclonal Antibodies KD4-2H4 and KD6-2B2 Share a Common Epitope

We noted that KD4-2H4 and KD6-2B2 showed strong reactivity 
with KD peptide by ELISA (Figure  4A), indicating that they 
likely recognize the same peptide epitope. To further evaluate 
this, we performed substitution matrix analysis on KD6-2B2, 
which revealed that its binding epitope is highly similar to that 
of KD4-2H4 (Figure 4B).

Table 1.  Genetic Characteristics of KD mAbs That Bind Strongly to KD Inclusion Bodies

mAb Heavy Chain
CDR3 Length, 
Amino Acids

No. of Mutations 
From Germline, 

Amino Acids Light Chain KD Patient
Original 
Isotype

1-2G11 IGHV3-15/JH4 15 10 IGKV1-30/JK3 1 IgA

4-2H4 IGHV3-74/JH2 14 4 IGLV2-14/JL3 4 IgG

6-1A10 IGHV3-33/JH4 20 11 IGLV1-44/JL3 6 IgA

6-2B2 IGHV3-33/JH3 12 15 IGKV1-5/JK1 6 IgA

7-1D3 IGHV3-23/JH4 11 15 IGKV1-5/JK1 7 IgA

7-2C1 IGHV3-23/JH4 14 13 IGLV5-45/JL3 7 IgA

9-1E10 IGHV1-46/JH4 12 22 IGLV1-44/JL1 9 IgA

11-1E9a IGHV1-46/JH4 16 28 IGKV2-30/JK5 11 IgG

11-1C2a IGHV1-46/JH4 16 15 IGKV2-30/JK5 11 IgA

11-2E10 IGHV4-59/JH3 16 16 IGKV1-33/JK3 11 IgG

Abbreviations: aa, amino acid; CDR3, complementarity-determining region 3; IgA, immunoglobulin A; IgG, immunoglobulin G; KD, Kawasaki disease; mAb, monoclonal antibody.
aClonally related plasmablasts from KD patient 11.
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Figure 3.  Identifying the peptide motif recognized by Kawasaki disease (KD) monoclonal antibody KD4-2H4 using animal virus peptide array and substitution array. A, 
Animal virus peptide array demonstrates that KD4-2H4 recognizes multiple related peptides with averaged median foreground fluorescence intensities above a cutoff value 
of 200; the epitope identity number from the Immune Epitope Database (www.iedb.org) is listed for each reacting peptide. B, The motif of KD4-2H4 binding identified as 
statistically significant by MEME bioinformatics analysis. C, Substitution matrix array of peptide AIIPDREALYQEFDEME using KD4-2H4. Preferred amino acids for binding are 
those on the left of the substitution matrix while nonpreferred amino acids are those on the right.
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http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiaa066#supplementary-data
http://www.iedb.org


Protein Epitope and KD antibodies  •  jid  2020:222  (1 July)  •  163

KD Peptide Blocks Binding of KD4-2H4 and KD6-2B2 to Inclusion Bodies

To determine if the KD peptide would compete with mono-
clonal antibodies KD4-2H4 and KD6-2B2 for binding to KD tis-
sues, we preincubated KD peptide with the antibodies prior to 
immunohistochemistry. We found that KD peptide blocked binding 
of the antibodies to intracytoplasmic inclusion bodies in KD ciliated 
bronchial epithelium (Figure 5B and 5D), demonstrating that an 
epitope of this peptide sequence is a specific target of the antibodies. 
Incubation with the scrambled peptide did not block the binding 
(Figure 5A and 5C). These results demonstrate that a protein with 
an epitope highly similar to KD peptide is present in the inclusion 
bodies.

Human protein array analyses and immunohistochemistry studies of  

monoclonal antibodies KD4-2H4 and KD6-2B2 do not yield a human protein 

as the target of the antibodies.

To determine whether KD4-2H4 and KD6-2B2 recognize a 
human antigen, we performed human protein array analysis. 
The array covers approximately 80% of the canonical proteome. 

The only human protein that showed reactivity with both anti-
bodies on this array was integral membrane protein 2B (ITM2B). 
This reactivity could be explained by a partially shared epi-
tope between KD peptide and the ITM2B protein (-ALYQ-I-). 
Immunohistochemistry of KD lung with polyclonal anti-ITM2B 
revealed a different pattern of staining of bronchial epithelium 
compared with KD4-2H4 and KD6-2B2, and anti-ITM2B did 
not block the binding of the antibodies to inclusion bodies in KD 
ciliated bronchial epithelium (Supplementary Figure 2). These 
results strongly suggest that ITM2B is not the antigen in inclu-
sion bodies in KD ciliated bronchial epithelium specifically tar-
geted by these KD monoclonal antibodies. These results do not 
exclude a potential human antigen as the target of KD; however, 
the clinical and epidemiologic features of the illness do not sup-
port this explanation of disease pathogenesis [40].

KD Peptide Is Recognized by Sera From KD Patients

To determine if sera from KD patients recognize KD pep-
tide, we performed western blot analyses for IgG antibody 
using GST-KD peptide multimer fusion protein and GST 

Table 2.  Genetic Characteristics of KD mAb That Recognize KD Peptide

mAb Heavy Chain CDR3 Length, aa
No. of Mutations  

From Germline, aa Light Chain KD Patient
Original 
Isotype

Binding to 
KD Inclusion 

Bodies

4-2H4 IGHV3-74/JH2 14 4 IGLV2-14/JL3 4 IgG Strong

6-1A10 IGHV3-33/JH4 20 11 IGLV1-44/JL3 6 IgA Strong

6-2B2 IGHV3-33/JH3 12 15 IGKV1-5/JK1 6 IgA Strong

8-1B10a IGHV3-72/JH3 12 3 IGKV1-6/JK4 8 IgA Weak

8-1D4a IGHV3-72/JH3 12 1 IGKV1-6/JK4 8 IgA Weak

Abbreviations: aa, amino acid; CDR3, complementarity-determining region 3; IgA, immunoglobulin A; IgG, immunoglobulin G; KD, Kawasaki disease; mAb, monoclonal antibody.
aClonally related plasmablasts from KD patient 8.
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as the antigens. We screened KD and control patient sera 
at a dilution of 1:5000 in phosphate buffered saline, which 
reduced background from nonspecific binding. A  mi-
nority of sera (both KD and control) exhibited nonspecific 
binding (reactivity with GST alone) and were excluded 
from the study.

Sera from 5/8 KD patients who presented on days 8–28 after 
fever, prior to receiving intravenous immunoglobulin (IVIG) 
therapy, had IgG antibody to the KD peptide epitope (Figure 6 
and Supplementary Table 5). Sera from KD patient 12, obtained 
on day 11 after fever onset when a giant coronary artery aneu-
rysm was diagnosed and before IVIG therapy, was seropositive 
in serial dilutions as high as 1:50 000.

Because clinical and epidemiologic features of KD strongly 
suggest a ubiquitous infectious agent, the most appropriate 
control group for serologic studies is infants at 5–9 months 
of age without KD, an age when passive maternal antibody 
would have abated and a low likelihood of prior infection 
from a ubiquitous agent would be expected. These results 
showed that sera from 0/17 infant controls had IgG antibody 
to the KD peptide epitope (Figure  6 and Supplementary 
Table 6) compared with 5/8 KD sera at ≥ day 8 of illness 
(P < .01).

We hypothesized that IVIG would contain antibody to the 
epitope, because adult donors whose blood is used to prepare 
this product would likely already have experienced infection 
with a ubiquitous agent, and the IVIG product and lot that we 
tested gave indeterminate results, because it appeared to react 
to GST alone as well as to the GST-KD peptide fusion protein.

Sera from 1/9 febrile control children ages 7  months to 
10 years had IgG antibody to the epitope identified; the positive 
result was in a 5-year-old child (Supplementary Table 6). IgG 
antibody was identified in 1/11 KD patients who presented on 
day 4–5 of fever (Supplementary Table 5), at which time we hy-
pothesized that an IgG response to the triggering antigen might 
not yet have developed. Sera from KD patient 30 was positive 
for IgG antibody at day 4 after fever onset. The parents of this 
child reported that the child was ill with neck stiffness, abdom-
inal pain, photophobia, and arthralgias 10 days before admis-
sion, although they had only recognized fever for the preceding 
4 days. Upon admission, the child was recognized to have all 
clinical features of KD. This raises the possibility that the dura-
tion of KD was longer than 1 week at admission.

Pretreatment sera at or before day 5 of illness, when 
IgG antibody might not yet have developed in response to 
the KD agent, was available from only 1 of the 11 patients 

Preincubation with scrambled peptide Preincubation with KD peptide

A B

C D

KD4-2H4

KD6-2B2

Figure 5.  KD peptide blocks binding of KD monoclonal antibodies to KD ICI in ciliated bronchial epithelium of KD patient A. A, ICI are identified in KD patient A using an-
tibody KD4-2H4 preincubated with scrambled peptide (arrows). B, ICI staining is blocked when antibody KD4-2H4 is preincubated with KD peptide. C, ICI are identified in KD 
patient A using antibody KD6-2B2 preincubated with scrambled peptide (arrows). D, ICI staining is blocked when antibody KD6-2B2 is preincubated with KD peptide. A–D, 
×20. Abbreviations: ICI, intracytoplasmic inclusion bodies; KD, Kawasaki disease.
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whose plasmablasts were studied. Sera from day 3 of illness 
in KD patient 4, whose day 8 of illness IgG plasmablast-
derived antibody KD4-2H4 recognized the protein epitope, 
was negative by western blot assay, suggesting development 
of antibody to this epitope between days 3 and 8 of illness 
(Supplementary Table 5).

When considered together, these serologic assay results sup-
port the likelihood that a KD triggering agent contains the KD 
peptide sequence.

Additional detailed results are available in the Supplementary 
Material.

DISCUSSION

Here, we identified a peptide that is recognized by antibodies 
that develop during acute KD, both those encoded by the 
plasmablast response to the disease and those identified in KD 
sera after the first week of illness but before administration of 
IVIG. This is the first discovery of a specific antigen recognized 
by the immune response to KD. Our report demonstrates that 
preparing antibodies from plasmablast responses to acute in-
flammatory diseases of unknown etiology can be useful in 
identifying the inciting antigens.

Many lines of evidence support a ubiquitous viral agent as the 
cause of KD in genetically susceptible children. These include the 
young age group affected [41], well-documented epidemics of 

illness [2, 42–44], the self-limited nature of the clinical illness [3], 
the lack of clinical response to antibiotic therapy [3, 45], the high 
prevalence of the condition in Japan, where 1 in 65 children de-
velop KD by the age of 5 [41] (a prevalence rate similar to that 
of many ubiquitous viral infections), the upregulation of inter-
feron response genes in KD lung and coronary arteries [36, 46], 
the identification of virus-like particles in close proximity to KD 
inclusion bodies in ciliated bronchial epithelium [36], and the 
prominent IgA immune response suggesting a mucosal portal of 
entry of the putative ubiquitous causative agent [27, 29, 33, 47].

Whether the protein epitope identified in this study derives 
from a previously unidentified virus remains to be determined. 
Although monoclonal antibody KD4-2H4 recognized related 
peptides of hepacivirus C NS4A, amino acid substitution array 
yielded optimized KD peptide, whose epitope is not present in 
any known hepaciviruses. Moreover, we have performed high-
throughput RNA sequencing of many KD tissues, sera, and 
throat samples that has not yielded sequences with homology 
to flaviviruses ([46], data not shown). These results do not 
exclude a new hepacivirus as the source of the epitope but a 
nonhepacivirus source must also be considered. We are pres-
ently using genomic and proteomic approaches to determine 
the gene sequence from which the immunogenic epitope iden-
tified in this study arises. We hypothesize that the source is an 
RNA virus whose genome is present at very low quantity in KD 
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Figure 6.  Western blot analysis of sera for reactivity to KD peptide fusion protein. For each blot, lane 1 contains GST alone, lane 2 contains GST-KD peptide fusion protein 
(GST-3X), and lane 3 contains human IgG as a positive control. Blots were stripped and polyclonal anti-GST antibody was applied to ensure that the GST fusion proteins were 
present; each serum sample was tested 2–5 times and a representative blot is shown. Molecular weight of IgG HC is 50 kD, GST-3X is approximately 35 kD, and GST alone 
is approximately 26 kD (arrows). Abbreviations: FC, febrile control; GST, glutathione sulfur transferase; IC, infant control; IgG HC, immunoglobulin G heavy chain; IVIG, intra-
venous immunoglobulin; KD, Kawasaki disease; M, All Blue Standard (Biorad).

http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiaa066#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiaa066#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiaa066#supplementary-data


166  •  jid  2020:222  (1 July)  •  Rowley et al

clinical samples, such as blood at the time of clinical presenta-
tion, and in the target tissues of fatal cases by the time of death 
occurring weeks to years after illness onset. We are working 
to identify the targets of KD monoclonal antibodies that bind 
intracytoplasmic inclusion bodies but do not bind to KD pep-
tide, because these antibodies may bind other epitopes of the 
putative viral agent. We are also developing more sensitive as-
says for multiple antibody isotypes using fusion proteins that do 
not contain the GST tag that could facilitate KD diagnosis and 
could be evaluated in worldwide multicenter studies.

This study is limited by its investigation of the plasmablast re-
sponse to KD in a single US center over a 16-month period from 
2017 to 2018. However, KD monoclonal antibodies prepared in 
this study react with tissue samples from KD children from other 
geographic areas of the United States and Japan who died during 
different decades, and sera from KD children in Chicago from the 
1980s, 1990s, and 2000s react with the identified protein epitope, 
suggesting that the results may be applicable to additional KD 
patients in other locations and over other time periods. Further 
multicenter collaborative studies are needed to investigate the rel-
evance of these findings to KD patients around the world. Despite 
these limitations, we believe our results provide an exciting direc-
tion for etiologic studies of KD and the development of much-
needed serologic tests. Identification of the etiology of KD is a 
pediatric research priority that will enable diagnostic test develop-
ment, improved therapy, and ultimately prevention of this serious 
worldwide childhood illness.

Supplementary Data

Supplementary materials are available at The Journal of Infectious 
Diseases online. Consisting of data provided by the authors to 
benefit the reader, the posted materials are not copyedited and 
are the sole responsibility of the authors, so questions or com-
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