
ABSTRACT 

Knee injuries such as ACL tears commonly occur and there is a high re-injury rate after primary ACL 
reconstruction with figures estimated at 25%-33%. Clinicians often use hip strengthening as a key compo-
nent of knee rehabilitation. Evidence suggests that adopting a “regional” or “proximal” approach to rehabili-
tation can increase hip strength, but motor control often remains unchanged, particularly during more 
complex tasks such as running and jumping. It has been previously suggested that the current approach to 
“regional/proximal” rehabilitation is too basic and is constrained by a reductionist philosophy. This clinical 
commentary provides the clinician a framework for optimizing knee rehabilitation, underpinned by a 
more global approach. Although this approach remains hip-focused, it can be easily adapted to modify 
exercise complexity and key loading variables (speed, direction, flight), which will help the clinician to 
better replicate the sport specific demands on the knee.
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THE PROBLEM
The annual incidence of anterior cruciate ligament 
injuries is approximately 120,000 in the United 
States, and slowly increasing, especially amongst 
female athletes.1 Primary ACL reconstruction is 
the predominant surgical treatment of choice,2 but 
only two thirds of individuals return to their prein-
jury level of sports participation.3 Furthermore, re-
injury rates following primary ACL reconstruction 
are estimated at 25%-33%;4 with the return-to-play 
rate reducing to 50% after revision surgery. Despite 
an exponential increase in research over the past 20 
years, ACL injury rates remain unchanged, placing 
a significant burden on public health with annual 
costs averaging $1billion.1 This begs the question – 
Are current ACL prevention and rehabilitation pro-
grams sufficient for the athletic patient? 

Authors have previously suggested that the current 
approach to “regional / proximal” knee rehabilita-
tion is constrained by a reductionist philosophy, 
which overlooks the “global complexity” of move-
ment patterns throughout the entire kinetic chain.5 
In effect, most contemporary knee rehabilitation 
and prevention programs incorporate regional or 
“proximal” exercises that target the hip region.6 
While these exercises increase local hip strength,6 
hip focused exercise programs do not meaningfully 
change regional lower limb kinematics, particularly 
during higher speed dynamic tasks such as running7 
and landing.8 Recently researchers have reported 
that greater medial knee displacement during land-
ing is a primary risk factor for ACL injury.9 Conse-
quently, the best therapeutic exercise approach for 
controlling aberrant kinematics, such as uncon-
trolled dynamic knee valgus, remains unclear. 

The clinical suggestion offered in this commentary 
is a framework for improving knee rehabilitation and 
reducing ACL injury incidence and reinjury rates. It 
uses a global approach to highlight key principles 
and exercise variables, currently missing from popu-
lar ACL prevention and rehabilitation programs. The 
framework is underpinned by the following prin-
ciples: 1) hip arthrokinematics must be addressed; 
2) use of the trunk as a lever for resistance; 3) the 
incorporation of a flight phase to replicate ground 
reaction forces. Although the primary focus is on the 
knee, it is anticipated that this framework is relevant 

to end stage rehabilitation and return to sport exer-
cise prescription for other lower extremity injuries.

THE SOLUTION

Hip Arthrokinematics
The exercise shown in Figure 1 is commonly pre-
scribed to address dynamic knee valgus.7,10,11 This 
exercise is an example of a basic ‘ball under socket’ 
exercise, where the femur is the moving lever, and 
resistive forces are delivered at the knee, along the 
frontal plane. However, when athletes undertake 
multi-directional loading in a weight-bearing posi-
tion, hip arthrokinematics are ‘socket over ball’, as 
it is the pelvic acetabulum moving over the femur. 
‘Socket over ball’ movements have a distinct arthro-
kinematic pattern,12,13 whereby the pelvis moves in 
a triplanar motion (anterior tilt, contralateral pel-
vic drop and a forward rotation) over a fixed femur 

Figure 1. Dynamic knee valgus control exercise utilizing a 
bottom-up approach. The band tethered around the knee 
restricts the athlete’s ability to leave the ground and delivers 
the resistance in one specifi c plane only.
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(Figure 2).14 This coordinated interplay between the 
pelvis and femur, is similar to the scapulohumeral 
rhythm noted in the shoulder.15 Therefore, the ‘socket 
over ball’ exercises shown in Figures 3a and 3b rep-
resent an important progression from Figure  1, as 
they recreate the distinct hip arthrokinematics that 

occur during single leg loading, and maximally chal-
lenge pelvifemoral coordination. There is evidence 
that altering the position of the pelvis during exer-
cise, influences trunk muscle activation16,17 and that 
trunk muscle activation increases EMG activity of 
the hip musculature.18 This demonstrates the inti-
mate relationship between the trunk, pelvis and hip 
musculature, but future EMG studies of the specific 
exercises presented in this paper are warranted.

The ‘Proximal’ Trunk
M any existing ACL prevention and rehabilitation 
programs broadly define ‘proximal’ control as any 
movement above the knee.19 This interpretation of 
‘proximal’ is too vague and often overlooks the mean-
ingful relationship between the hip and the trunk. 
Knee rehabilitation programs must progress to incor-
porate proprioceptive challenges and perturbations 
involving the trunk,20 while specifically integrating 
the hip. Recent evidence supports the hypothesis 
that impaired trunk control contributes to injuries of 
the spine, and to segments of the kinetic chain, such 
as the knee.20 Primarily, increasing trunk stability 

Figure 2. Schematic representation of acetabulo-femoral 
movements in red (“socket over ball”) whereas the pelvis is 
moving on a fi xed femur and femoral-acetabular movements 
in yellow (“ball under socket”) illustrating how the femur is 
moving under a fi xed or stable pelvis.

Figure 3. Single leg squat progression utilizing the trunk as the lever for triaxial resistance. The resistance is on a downward 
angle moving across three planes of motion specifi cally targeting the hip.
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These findings suggest ‘proximal’ control should 
combine the movements of the trunk and hip to cre-
ate a blended program offering both hip strengthen-
ing and proximal trunk control simultaneously,5 this 
would be supported by evidence that reported ACL 
prevention programs that included both strength and 
proximal control exercises demonstrated the great-
est prophylactic effects.28 Interestingly, it has also 
been reported that utilizing a multimodal approach 
and a varied combination of exercises may protect 
the knee during athletic movements.28 

Many of these concepts are applied in Figures 3a 
and 3b, where external resistance is applied around 
the proximal trunk creating a longer lever and allow-
ing forces to be applied over multiple joints. As non-
contact ACL injury typically involves multiplanar 
mechanisms,29 it is important that the direction of 
external resistance is such that it creates a spiral 
force (about the vertical longitudinal axis /Z-axis), 
which further challenges the athlete to control 
medial lower extremity collapse in this position. 
The nature and direction of the external forces also 

enhances stiffness throughout the kinetic linkage 
and therefore plays a key role in controlling dynamic 
knee valgus. Prospective research shows that female 
collegiate athletes with poor neuromuscular control 
of the trunk (based on active proprioceptive reposi-
tioning) are at greater risk of knee injury.21 

In effect, the trunk is a key proximal lever, and its 
triplanar position directly affects lower extrem-
ity function and potentially the acetabular pelvic 
position on the femur. For example, counter rota-
tion of the trunk on the pelvis (the trunk rotat-
ing about the vertical z-axis, as seen in Figures 4a 
and 4b), increases tension in the entire musculo-
skeletal system (analogous to wringing out a wet 
towel) ultimately limiting end range motion at the 
hip joint.22,23 Similar concepts have been extrapo-
lated to common active movements such as the 
throwing mechanics with pitchers,24 and recent fas-
cial research,22,25 further supports the concept that 
“kinetic chains” are not just conceptual pathways, 
but are physical entities dictating viscoelastic ten-
sion in the body.14,23,26,27 

Figure 4. ingle leg jumps with triaxial resistance at the proximal trunk. The resistance is moved proximally allowing the 
trunk to become the lever for the exercise. The resistance induces a spin about the longitudinal z-axis which makes the athlete 
accommodate for these spiraling forces as she lands.
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injury during landing,38 clinicians need to be sensi-
tive of both peripheral and central mechanisms of 
fatigue and integrate endurance based sport specific 
landing tasks.39,40

The diagram in Figure 5 conceptualizes and pres-
ents a summary of key subcomponents of thera-
peutic knee exercise inclusive of the components 
described above. The relevance (size) of each sub-
component (circle) depends on the specific needs 
of an athlete and the demands of their sport. The 
framework is predicated on the philosophy that the 
subcomponents in Fig. 5 can eventually be inte-
grated into a singular training method. By allowing 
all these variables to interact simultaneously (i.e. 
the center of the Venn), in an attempt to recreate the 
athletic demands involved with single limb loading, 
providing the greatest potential to optimize higher 
speed athletic movements. The authors acknowl-
edge that other more distal factors, such as foot bio-
mechanics, can contribute to lower limb injury.41,42 
While this commentary is not meant to minimize 

helps to maximize the contribution from the poste-
rior chain, particularly engaging the gluteus maxi-
mus. The fiber orientation of the gluteus maximus 
coupled with its expansive tendinous attachments 
across the pelvic crest and sacrum, proximally to 
the humerus (via the thoracolumbar fascia) and dis-
tally to the tibia (via the iliotibial tract),30 mean that 
this posterior muscular chain is optimally placed to 
eccentrically control internal rotation and adduction 
of the femur, anterior pelvic rotation and contralat-
eral pelvic drop (relative hip adduction of the stance 
limb) at ground contact, highlighting the mechanical 
contributions of the gluteus medius and maximus 
and their role in the prevention of ACL injuries.31 

Flight, Speed and Endurance
A recent meta-analysis reported that the impact 
phase of a ballistic task has been correlated to hip 
weakness and increased dynamic knee valgus32 and 
medial knee displacement,9 both of which have 
been reported as risk factors for ACL injury.33,34 
Thus, it is imperative that lower extremity preven-
tion and rehabilitation programs include task spe-
cific exercises including the repetitive attenuation 
of ground reaction forces while landing from a flight 
phase. Knee rehabilitation or prevention exercises 
that anchor the resistance at the lower extremity 
(e.g. Figure 1), will limit the athlete’s ability to leave 
the ground and enter a flight phase. In contrast, 
Figures 4a and 4b anchor the external resistance at 
the shoulders facilitating a more global collabora-
tive response between the femur, pelvis, and trunk. 
Utilizing the trunk as a lever also allows the clini-
cian to apply varying angles of resistance through-
out the movement. For example, once the subject 
has left the ground, the band can be used to apply 
a rotatory force, directed around the longitudinal 
Z-axis (Fig. 4b). Upon landing, the hip musculature 
is challenged to activate immediately in order to 
control triaxial rotary collapse.35,36 There is further 
evidence that athletes recovering from ACL injury 
commonly suffer prolonged deficits in their rate 
of force development, despite demonstrating near 
normal strength.37 Training the flight phase in this 
triplanar manner repetitively can address the endur-
ance component of the program. As neuromuscular 
fatigue is also responsible for biomechanical altera-
tions that may increase the risk of a noncontact ACL 

Figure 5. Venn Diagram: Multifactorial representation of 
the modifi able components of a hip focused therapeutic 
exercise program.
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