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Introduction

Tobacco use is the single leading cause of preventable morbidity and 
mortality in the United States as well as one of the most costly health 
risk behaviors.(1–3) Most cigarette smokers want to quit smoking and 
more than half make a quit attempt every year, but less than 10% 
who attempt remain abstinent for at least 6  months.(4) Although 

evidence-based treatment for tobacco use greatly improves the likeli-

hood that smokers achieve abstinence, more than two-thirds of indi-

viduals relapse when provided even the most robust treatments.(4–6) 

Identifying for whom treatment is most effective will improve the 

overall success of our tobacco treatments and perhaps identify strat-

egies for improving current approaches.(7)
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Abstract

Aims: Most cigarette smokers want to quit smoking and more than half make an attempt every 
year, but less than 10% remain abstinent for at least 6 months. Evidence-based tobacco use treat-
ment improves the likelihood of quitting, but more than two-thirds of individuals relapse when 
provided even the most robust treatments. Identifying for whom treatment is effective will improve 
the success of our treatments and perhaps identify strategies for improving current approaches.
Methods: Two cohorts (training: N = 90, validation: N = 71) of cigarette smokers enrolled in group 
cognitive-behavioral therapy (CBT). Generalized estimating equations were used to identify base-
line predictors of outcome, as defined by breath carbon monoxide and urine cotinine. Significant 
measures were entered as candidate variables to predict quit status. The resulting decision trees 
were used to predict cessation outcomes in a validation cohort.
Results: In the training cohort, the decision trees significantly improved on chance classification of 
smoking status following treatment and at 6-month follow-up. The first split of all decision trees, 
which was delay discounting, significantly improved on chance classification rates in both the 
training and validation cohort. Delay discounting emerged as the single best predictor of group 
CBT treatment response with an average baseline discount rate of ln(k) = −7.1, correctly predicting 
smoking status of 80% of participants at posttreatment and 81% of participants at follow-up.
Conclusions: This study provides a first step toward personalized care for smoking cessation 
though future work is needed to identify individuals that are likely to be successful in treatments 
beyond group CBT.
Implications:  This study provides a first step toward personalized care for smoking cessation. Using 
a novel machine-learning approach, baseline measures of clinical and executive functioning are 
used to predict smoking cessation outcomes following group CBT. A decision point is recommended 
for the single best predictor of treatment outcomes, delay discounting, to inform future research or 
clinical practice in an effort to better allocate patients to treatments that are likely to work.
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Proposals to improve smokers’ success at quitting include 
increasing the number of people who attempt, the frequency of quit 
attempts, and enhancing the effectiveness of current treatments.(8–10) 
Identifying factors that predict success will contribute to patient-
centered treatment recommendations, treatment tailoring, and new 
therapeutic strategies designed to develop and support relevant clin-
ical characteristics in preparation for or during treatment. Previous 
work has identified important factors for quitting tobacco that in-
clude both relatively stable characteristics, such as age of smoking 
initiation and degree of nicotine dependence, as well as factors that 
are more amenable to change, such as stress reactivity and rate of 
discounting the future.(11,12)

Generalized estimating equations (GEEs) are often used to iden-
tify predictors of treatment outcomes, whereas machine learning 
is a novel approach to explore predictors of treatment outcomes. 
Machine learning has been effectively applied in the addiction field 
to distinguish between smokers and nonsmokers,(13) individuals 
with and without substance use disorders,(14) and between individu-
als with different substance use disorders.(15) Connor et al.(16) used 
machine learning to predict outcomes following treatment for alco-
hol use and were able to accurately predict treatment outcomes 
for 77% of patients using decision trees. The advantage of using 
machine learning is that this method provides discrete decision rules 
to predict treatment outcomes and can provide clinically useful cut-
off scores. This is the first study, to the best of our knowledge, to 
use GEE to inform a classification-based machine-learning approach 
(ie, classification and regression trees [CART]) to predict treatment 
outcomes among cohorts of cigarette smokers.

This study aims to identify clinical and psychosocial charac-
teristics that predict long-term abstinence from smoking in two 
treatment-seeking cohorts of low-income smokers treated with 
multicomponent cognitive-behavioral therapy (CBT) for tobacco 
dependence in a parent study focused on the behavioral economics 
of relapse. An extensive assessment battery was collected at baseline 
and smokers were followed for 6 months after treatment. Consistent 
with prior work (e.g. Sheffer et al.11 ), GEEs were used to determine 
characteristics that predicted abstinence in the training cohort.These 
characteristics were then applied to a machine-learning framework 
to classify smokers as treatment responders (abstinent) or treat-
ment nonresponders (relapsed). The resulting decision tree was then 
applied to the second independent cohort, the validation cohort, to 
determine if the same predictive structure would successfully classify 
responders in an independent sample.

Methods

Participants
This is a secondary data analysis of two cohorts of smokers who 
received group CBT for smoking cessation.(11,12) To participate, indi-
viduals in both cohorts needed to be 18 years or older, smoke 16 cig-
arettes or more per day, meet Diagnostic and Statistical Manual of 
Mental Disorders, Fourth Edition, criteria for nicotine dependence, 
be not pregnant or lactating, be not using medications for smoking 
cessation, be free of psychiatric diagnoses that would likely interfere 
with participation in assessments or treatment, drinking 19 or less 
alcohol drinks per week, have no immediate plans to move out of 
the area, provide a carbon monoxide (CO) breath sample of 15 parts 
per million (ppm) or more (indicative of current cigarette smoking 
status), and have a negative urine drug screen (including amphet-
amine, benzodiazepine, cannabis, cocaine, opioids, and methadone). 

Data were included in initial analyses if participants completed at 
least one session of treatment and included two separate cohorts, 
a training cohort (N = 90) that was used to identify predictors and 
grow decision trees, and a validation cohort, which was used to test 
the out-of-sample predictive efficacy of the resulting decision trees 
(N = 71).

Procedure
This secondary data analysis study was approved by the Virginia 
Tech Institutional Review Board. The parent study was approved 
by the institutional review board at the University of Arkansas 
for Medical Sciences. In both cohorts, participants completed two 
3-hour baseline assessment batteries. Participants smoked one cig-
arette before each pretreatment assessment session to standardize 
time since last cigarette and avoid withdrawal effects on cognitive 
and psychological measures. At the start of treatment, baseline CO 
and urine cotinine (COT) levels were collected to confirm current 
smoking status.

Tobacco Treatment
Participants received an evidence-based, intensive, manual-driven 
CBT for tobacco dependence consistent with the recommendations 
of the Public Health Service Clinical Practice Guideline(17,18) delivered 
by certified Tobacco Treatment Specialists. The treatment consisted 
of six 60-minute closed-group treatment sessions. The quit date 
was the day of the third treatment session. This manual has been 
used previously in a variety of research and clinical settings(19–21) and 
described in detail by Sheffer et al.(11) Consistent with the goals of 
the parent study, the training cohort was provided with 8 weeks of 
transdermal nicotine patches (4 weeks of 21 mg, 2 weeks of 14 mg, 
and 2 weeks of 7 mg nicotine patches). The validation cohort was 
treated without nicotine patches. In the parent study, we examined 
the behavioral economics of relapse after treatment with and with-
out nicotine patches. Treatment without nicotine patches in this low-
income, highly dependent sample of smokers resulted in very low 
abstinence rates. Patches were added to the second cohort to increase 
the proportion of participants who achieved long-term abstinence in 
the parent study.

Baseline Measures
Standard demographic and clinical characteristics were collected 
at baseline among both cohorts of participants. Clinical, executive 
function, and impulsivity measures were also collected during base-
line assessment sessions. These measures are provided in Table 1 and 
described in the Supplementary Materials.

Outcome Assessment
Abstinence was assessed with 7-day point prevalence abstinence 
and biochemically confirmed at the end of the six CBT sessions and 
6 months after the quit date with exhaled CO and urine COT lev-
els. Participants were considered abstinent in this per protocol ana-
lysis if they provided a CO level of 8 ppm or less using a Bedfont 
Smokerlyzer (Bedfont Scientific Ltd, Kent, England)(22) and/or a urine 
COT concentration of less than 100 ng/mL, or less using NicAlert 
Urine COT strips.(23) NicAlert strips are used for semiquantitative 
determination of COT in urine. As per the pharmaceutical package 
insert, the cutoff concentration for the NicAlert test is level 2, esti-
mated to be 30–100 ng/mL. Because the training cohort continued 
to use nicotine patches for 2 weeks after the end of treatment, COT 
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level was not used as the primary indicator of abstinence at the end 
of treatment for the training cohort.

Data Analysis
Descriptive statistics (means, SDs, medians, interquartile ranges) 
were used to characterize participants. Demographic differences 
between the two cohorts and CO and COT outcome response rates 
within the two cohorts were assessed with two-sample tests of sig-
nificance (t tests, Mann–Whitney tests, and chi-square tests where 
appropriate).

GEE with an exchangeable correlation structure were used to 
filter candidate measures to include in the machine-learning algo-
rithm (see Table 2 for baseline measures). GEE models are well 
suited for analyses of addiction treatment data as it allows for longi-
tudinal data with correlations among observations within individual 
participants and makes group-level inferences about results instead 
of individual-level inferences provided by mixed model designs.(24) 
GEE incorporates all outcome data points into one model, corrects 
standard errors of estimates using the working correlation structure, 

and incorporates the effects of time. GEE handles missing data by 
simply entering the data point as missing; however, at least one 
outcome data point was necessary in order for a participant to be 
included in these analyses. Each measure was entered individually 
alongside time in a GEE model that included all assessment data 
points of CO or COT measures at baseline, posttreatment, and 
6-month follow-up.(25) The feature selection threshold for identify-
ing seed predictor variables that may be useful as a predictive al-
gorithm of treatment outcome used an a priori cutoff of p < .10.  
The geepack package(26) in R(27) was used for fitting GEE models.

Selected measures for predicting smoking cessation from the 
GEE analysis were included in the machine-learning CART ana-
lysis. Decision trees were grown using the training sample and 
were then evaluated in an independent validation dataset. Separate 
decision trees were grown for posttreatment and 6 month follow-
up timepoints and for each bioverification method (CO and COT). 
Participants were included in each tree if they had completed the 
specific timepoint-measurement combination.

CART is a machine-learning technique that uses recursive par-
titioning to segregate candidate variables through a decision tree 

Table 1. Demographic Characteristics of Each Cohort

Training cohort Validation cohort

Age (y), mean (SD)a 46.55 (12.69) 51.71 (11.71)
Years of education, mean (SD) 13.43 (1.98) 13.27 (1.75)
Annual income, median (25th–75th quartile) 25 100 (14 050–41 500) 18 000 (11 197–26 750)
Sex (male), % 53.77 59.30

aSignificant difference between cohorts.

Table 2. The Training Cohort Baseline Measures and Characteristics

Category Measure Mean (SD) Median (interquartile range)

Clinical measures Fagerström Test for Nicotine Dependence 
(FTND)

5.99 (1.92) 6 (5–7)

Motivation 8.72 (1.49) 9 (8–10)
Self-efficacy 7.6 (2.21) 8 (7–10)
Perceived Stress Scale 32.4 (5.93) 32 (28–36)
Positive and Negative Affect Scales (PANAS) Positive Affect Scale 33 (8.23) 33 (28–40)

Negative Affect Scale 17 (7.15) 14 (11–21)
Executive function 

and impulsivity 
measures

Barratt Impulsiveness Scale Motor Impulsiveness 15.1 (3.39) 15 (13–17)
Cognitive Impulsiveness 9.77 (2.92) 9 (8–12)
Nonplanning Impulsiveness 22.7 (4.88) 23 (19–26)

Delay Discounting Task −5.51 (3.72) −5.15 (−7.37 to −2.89)
Eysenck Impulsiveness Scale Impulsiveness 7.27 (4.59) 6 (4–10)

Venturesomeness 7.15 (3.88) 7 (4–10)
Empathy 12.8 (2.98) 13 (11–15)

Frontal Systems Behavior Scales Executive Dysfunction 55.5 (13.5) 54 (47–63)
Apathy 27.8 (7.44) 26 (22–32)
Disinhibition 55.7 (16.1) 53 (45–63)
Total 56.8 (15.7) 54 (47–64)

MicroCog (MC) Attention/Mental Control 98.5 (13.2) 103 (91–108)
Memory 105 (15.2) 107 (95–116)
Spatial Processing 100 (15.3) 104 (93–110)
Reasoning/Calculation 104 (11.6) 106 (99–111)
Reaction Time 94.2 (14.9) 95 (85–108)
Information Processing Accuracy 89.9 (15.7) 107 (99–117)
Information Processing Speed 107 (12.6) 91 (79–102)
Cognitive Functioning 114 (80.7) 111 (96–123)
Cognitive Proficiency 96.4 (14.3) 96 (87–107)

Rotter’s Locus of Control Scale 8.95 (3.83) 9 (6–12)
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composed of progressive binary splits. Every value of the candidate 
measures is considered as a potential split and the optimal split is 
selected based on the impurity criterion, that is, the reduction in the 
residual sum of squares that results from a binary split of the data at 
that singular tree node. The same variables can occur in a tree mul-
tiple times if it provides the lowest impurity criterion compared to 
the other candidate variables and splits. Missing values are ignored 
when considering a split and the probability and impurity values are 
calculated from the nonmissing values of that variable. Each parent 
node in a decision tree produces two child nodes, which in turn can 
become parent nodes producing more child nodes to increase overall 
tree fit. CART is a nonparametric approach that can handle numer-
ical data that are highly skewed or multimodal, ordinal, and categor-
ical predictors and is well suited for application to clinical decision 
making. In contrast to multivariate logistic regression that considers 
all parameters at once when making predictions, CART is uniquely 
suited to generate clinical decision tools because it provides a deci-
sion tree with specific parameters and cutoffs for each clinical choice.

The rpart package(28) in R was used to analyze the grown deci-
sion trees using the GEE–selected baseline measures in the training 
dataset. Nodes in the tree were constrained to have a minimum size 
of 15 participants in parent nodes in efforts to minimize overfitting. 
CART analyses have been criticized for overfitting the training data, 
thus performing well in the training dataset but having limited utility 
outside of the sample dataset. To protect against this, 10-fold cross-
validation was used to assess the predictive ability of the tree while 
minimizing the likelihood of overfitting. The predictive performance 
of these models was further evaluated using an independent valid-
ation dataset. The validation dataset was used to determine how the 
classification trees performed when applied to participant data that 
were not used to construct the trees. Correct classification rates, sen-
sitivity (accurately identifying smokers), and specificity (accurately 
identifying quitters) were calculated for the complete tree and the 
first split of each tree to determine the accuracy of the full tree as 
well as the accuracy of the single best predictor. Whole tree and first 
split correct prediction rates were similarly computed for the valid-
ation cohort. Chi-square tests were used to evaluate if decision tree 
performance exceed a random assignment (flip of a coin) of smoking 
status for both the full tree and first split classifications in the train-
ing and validation samples.

Results

Sample Characteristics
Demographics of each of the cohorts are presented in Table  1. 
Significant differences between cohorts were observed for age  
(p < .01). No significant differences were detected between education 
(p = .6), income (p = .2), and sex (p = .3). CBT treatment adherence 
was high with a median of six sessions (interquartile range: 4–6) 
attended in the training cohort and five sessions (interquartile range: 
4–6) attended in validation cohort. In the training cohort, CO was 
collected in 66 and COT in 65 of the 90 participants (73.3% and 
72.2%, respectively) at the posttreatment assessment, and CO and 
COT were collected in 48 of the participants (53.3%) at the 6-month 
follow-up session. In the validation cohort, CO was collected in 42 
and COT in 36 of the 71 participants (59.2% and 50.7%, respec-
tively) at posttreatment, and CO was collected in 24 and COT in 
22 of participants (33.8% and 31.0%, respectively) at the 6-month 
follow-up session. A  significantly higher proportion of CO data 
was collected in the training cohort than the validation cohort at 

6-month follow-up (χ2 = 3, df = 1, p = .02). Similarly, a significantly 
higher proportion of COT data was collected in the training cohort 
than the validation cohort at posttreatment and 6-month follow-up 
assessments (χ2 = 7, df = 1, p < .01 for both). No significant differ-
ence was detected between the proportion of participants with CO 
collected in the training and validation cohorts at the posttreatment 
assessment (χ2 = 3, df = 1, p = .08, NS).

Outcome Response Rate
In the training cohort, 65.1% of participants were abstinent based 
on CO and 24.6% of participants were abstinent based on COT 
at posttreatment. The decreased abstinence rates observed in COT 
compared to CO at the end of treatment are likely due to the con-
tinued use of the nicotine patch by the training cohort for 2 weeks 
after they completed the CBT sessions. Quit rates of 43.8% and 
27.1% for CO and COT, respectively, were detected at the 6-month 
follow-up. Significant differences between CO- and COT-verified ab-
stinence rates were detected directly following treatment (χ2 = 20.13, 
df = 1, p < .001). No significant differences between CO- and COT-
verified abstinence were detected at 6-month follow-up in the train-
ing cohort (χ2 = 2.23, df = 1, p = .13).

In the validation cohort, the biologically verified quit rates at 
posttreatment assessment were 21.4% and 27.8% and the quit rates 
at 6-month follow-up were 25.0% and 22.7% for CO and COT, re-
spectively. No significant differences in CO and COT quit rates were 
observed at the posttreatment for 6-month follow-up assessments in 
the validation cohort (χ2 = 0.15, df = 1, p = .70; χ2 < 0.001, df = 1, 
p = 1, respectively).

Generalized Estimating Equations
In all GEE models, time was a significant predictor so it will not be 
reported separately. The measures that met the feature selection 
threshold for predictive efficacy of either CO– or COT-verified abstin-
ence are listed in Table 3. Of note, the Delay Discounting Task and 
Rotter’s Locus of Control Scale were significantly predictive of both 
CO and COT outcomes.

Decision Trees
The selected candidate measures were entered into the machine-learn-
ing algorithm to grow decision trees to predict CO and COT abstin-
ence using the training dataset. This resulted in four decision trees 
obtained for two outcomes measures (ie, CO and COT) obtained 
at two timepoints (i.e. posttreatment and 6-month follow-up): post-
treatment CO- and COT-verified abstinence in addition to 6-month 

Table 3: Significant Results (p < .10) From the Generalized 
Estimating Equations Analysis Applied to the Training Cohort

Chi-square p

CO Delay Discounting Task 5.83 .016
Eysenck Empathy Total 5.30 .021
MC Memory 3.40 .065
Rotter’s Locus of Control Scale 3.38 .066

COT MC Information Processing Speed 4.72 .030
Rotter’s Locus of Control Scale 4.52 .034
Delay Discounting Task 4.16 .041
FTND 3.50 .061
PANAS 3.49 .062
MC Reasoning/Calculation 3.21 .073

CO = carbon monoxide, COT = cotinine, FTND = Fagerström Test for Nicotine 
Dependence, MC = MicroCog, PANAS = Positive and Negative Affect Scale.
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follow-up CO- and COT-verified abstinence (see Figure 1). The first 
split in all four decision trees was the Delay Discounting Task, which 
provided the lowest impurity criterion. Thus, the Delay Discounting 
Task provides the most predictive power for identifying smoking 
abstinence. Across the four decision trees, the average classification 
accuracy using the first split alone was 69.53%. The full trees with 
the additional measures (see Table 3) on average correctly classified 
81.88% of cases, an increased classification accuracy of 12.35% 
above using rate of delay discounting alone. The classification rates 
of the individual trees are shown in Table 4.

To assess the generalizability of the constructed decision trees, 
the four decision trees were fit to the validation cohort. The first split 
classification accuracy was 6.88% higher in the validation dataset 
(76.40%) than the training dataset (69.53%). A reduction in classi-
fication accuracy of 13.08% was observed when using the full tree 
(63.33%) as opposed to the first split (76.40%) to classify smok-
ing outcomes in the validation dataset. The average full tree correct 
classification rate in the validation dataset (63.33%) had a reduced 
classification accuracy of 18.55% compared to the training dataset 
(81.88%). One possible reasons for the reduction in correct clas-
sification from the training to the validation cohorts may be that 
the trees are overfit to the training dataset and thus do not perform 
as well in the out-of-training-sample validation dataset. Another 
possible reason for the reduction in correct classification may be 

biological and psychological differences between the two cohorts, 
for example cohort differences in age or the methodological differ-
ence between the training and validation cohorts, namely the contri-
bution of nicotine patch use to treatment outcomes in the training 
dataset, may influence the predictive accuracy of the trees. However, 
the improved correct classification rates observed using only the first 
split of the validation dataset suggested that using the first split alone 
may reduce overfitting compared to using the full tree. In addition 
to classification accuracy, the sensitivity and specificity of each tree 
is shown in Figure 2.

The accuracy of each decision tree was compared to a random 
classifier that predicted smoking cessation with probability of .5. The 
full decision trees and first splits of each decision tree in the train-
ing cohort all showed statistically significant improvements over a 
random classification (ps < .001). Only two of the full decision trees 
(posttreatment CO and 6-month follow-up COT) showed a signifi-
cant improvement over a random classification in the validation co-
hort (p < .02), whereas all four of the first splits in the validation 
cohort significantly improved on random classification (ps < .05).

Delay discounting was the first split in all four decision trees and 
the classification accuracy was higher using the first split than the 
entire trees in the validation dataset. The rate of delay discounting 
at the first split averaged across the four decision trees, ln(k) = −7.1, 
may provide an estimate for an initial cutoff point for determining 

Figure 1. Decision trees using the training cohort outcomes (CO or Cotinine) at posttreatment and 6-month follow-up assessment timepoints. CO = carbon 
monoxide, Delay Discounting = Delay Discounting Task, LOC = Rotter’s Locus of Control Scale, Empathy = Eysenck Empathy Subscale, Memory = MicroCog (MC) 
Memory Subscale, MC Information Speed = MC Information Processing Speed, Negative Affect = Positive and Negative Affect Scale (PANAS).
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treatment response such that those with lower rates of discounting 
are likely to respond to group CBT for smoking cessation. In the cur-
rent out-of-sample training cohort, this cutpoint correctly predicted 
smoking status at posttreatment in 80% of participants (82% based 
on CO and 78% based on COT) and correctly predicted smoking 
status at follow-up in 81% of participants (80% based on CO and 
82% based on COT).

Discussion

This is the first study to use decision trees to predict treatment out-
comes of group CBT for tobacco use disorders. The decision trees 
ubiquitously identified delay discounting rate as the first split for 
identifying treatment responders versus nonresponders. This finding 
is consistent with previous work showing that delay discounting is 
predictive of treatment outcomes in adolescent marijuana users,(29) 
cocaine users,(30) and cigarette smokers.(31,32) Across the four trees, an 
average rate of discounting of ln(k) = −7.1 is suggested as a prelim-
inary cutoff in this population where lower rates of discounting are 
predictive of treatment response. Importantly, the decision trees also 
provided sensitivity and specificity that improves on chance predic-
tion of treatment outcomes. In particular when using the first split 
alone, all four decision trees provided significantly improved correct 

classification in the independent validation dataset. These findings 
are discussed in more detail in the following paragraphs.

Decision trees have far-reaching applications in the clinical sci-
ences with the opportunity to improve treatment selection and out-
comes. The decision trees reported here (see Figure 1) illustrate the 
ability of the predictive measures to classify individuals as treatment 
responders (quitters) or nonresponders (smokers). The full decision 
trees correctly classified 81.3% of the training dataset. To assess for 
overfitting and to measure clinical utility, this treatment-outcome 
prediction tool was applied to other patients than those on which 
it was developed. Importantly, the validation dataset received the 
same psychotherapeutic treatment but was not provided with the 
nicotine patch. Using the independent validation dataset, the first 
split classification accuracy outperformed the full tree classification 
accuracy. The first split of each tree, which was delay discounting in 
all instances, on average correctly classified 74.3% of participants in 
the validation dataset. In contrast, the average full tree fit for the val-
idation dataset was 63.9% or a reduction in classification accuracy 
of more than 17% compared to the average full tree classification 
accuracy in the training dataset and a 10% reduction in accuracy 
compared to the first split in the validation dataset. In addition, the 
rate of classification at the first split was significantly better than 
chance classification in all four decision trees, supporting the use of 

Table 4: Decision Tree Characteristics

Tree characteristics
Training cohort correct 
classification rate (%)

Validation cohort correct 
classification rate (%)

Timepoint Predicting First split First split point First split Full tree First split Full tree

Posttreatment CO Delay Discounting −6.80 52.40 79.40 73.80 47.62
COT Delay Discounting −6.50 76.40 81.80 66.70 63.90

6-month follow-up CO Delay Discounting −8.20 70.20 87.20 75.00 62.50
COT Delay Discounting −7.00 79.10 79.10 81.80 81.80

CO = carbon monoxide; COT = cotinine.

Figure 2. Sensitivity, specificity, and correct classification of full tree and first split in the training and validation cohorts.
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the first split alone for making predictions of smoking outcomes for 
new patients entering into group CBT regardless if nicotine patches 
are provided as part of treatment.

Delay discounting rate was the first split in all four decision trees 
indicating that it provides the single best classification of treatment 
outcomes regardless of biochemical verification measure or time-
point. This finding adds to prior work identifying ways to use delay 
discounting to inform clinical practice and is consistent with sug-
gestions that it be considered a marker of addiction processes.(33) 
Delay discounting is predictive of treatment outcomes in a variety 
of substance-using populations.(29–32) Moreover, similar machine-
learning methods to those used in this article have identified delay 
discounting as a powerful measure to predict current stimulant and 
alcohol dependence from controls.(15,34)

This study goes beyond prior work to establish an estimated rate 
of delay discounting (ln[k]  =  –7.1) to use either to select partici-
pants for group CBT or to identify participants for additional inter-
ventions to improve the rate of delay discounting. As participants 
with higher discount rates were less likely to respond to treatment, 
decreasing discounting may improve treatment response. Two inter-
ventions, episodic future thinking(35,36) and repetitive transcranial 
magnetic stimulation,(37) have shown recent promise for improving 
rates of discounting in cigarette smokers. Adaptively assigning par-
ticipants with discount rates above the discount rate cutoff for these 
adjunctive treatments may translate to increased smoking cessation 
following group CBT.

One limitation of this study is that the prediction of treat-
ment responders is only as good as the set of parameters available. 
Although the assessment battery was quite extensive, if different sub-
scales or individual items from the included measures were entered 
as candidates in the classification trees or if different variables were 
measured in the baseline battery then they may have outperformed 
those assessed and included here. In addition, as nicotine patches 
were provided to participants in the training but not the validation 
cohort, this design difference may have negatively influenced the fit 
of the trees in the validation cohort. This possibility is supported by 
the reduction in correct classification using the full trees to classify 
participants in the validation dataset. The case may be that if the de-
cision trees grown here were applied to individuals that received both 
group CBT and nicotine patches like those in the training dataset 
then concerns about overfitting using the full trees may be alleviated.

This study is an early step in developing a tool to identify ef-
fective treatment regimens for cigarette smokers interested in ces-
sation. Future work to identify predictive algorithms of treatment 
response for other smoking cessation interventions will help to 
elucidate characteristics that help to differentially select between 
treatment options. A  tool of this sort will increase successful quit 
attempts by allocating people to treatments where they are likely 
to respond or provide a means to identify those individuals who 
would benefit from adjunctive, preparatory treatment prior to tar-
geted smoking cessation interventions. Finally, implementation of 
predictive algorithms for patient treatment allocation may benefit 
patients by helping them to get treatment that works sooner and 
consequently have the added benefit of reducing treatment provider 
burden by reducing the proportion of treatment seekers that do not 
respond to a given treatment.
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Supplementary data are available at Nicotine and Tobacco Research 
online.
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