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Abstract
Recent advances have led to the discovery of specific genetic variants that predict educational
attainment. We study how these variants, summarized as a linear index—known as a polygenic
score—are associated with human capital accumulation and labor market outcomes in the Health
and Retirement Study (HRS). We present two main sets of results. First, we find evidence that
the genetic factors measured by this score interact strongly with childhood socioeconomic status
in determining educational outcomes. In particular, although the polygenic score predicts higher
rates of college graduation on average, this relationship is substantially stronger for individuals who
grew up in households with higher socioeconomic status relative to those who grew up in poorer
households. Second, the polygenic score predicts labor earnings even after adjusting for completed
education, with larger returns in more recent decades. These patterns suggest that the genetic traits that
promote education might allow workers to better accommodate ongoing skill biased technological
change. Consistent with this interpretation, we find a positive association between the polygenic
score and nonroutine analytic tasks that have benefited from the introduction of new technologies.
Nonetheless, the college premium remains a dominant determinant of earnings differences at all
levels of the polygenic score. Given the role of childhood SES in predicting college attainment, this
raises concerns about wasted potential arising from limited household resources. (JEL: I20, J0, O3)
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1. Introduction

Economists generally accept that the skills rewarded in the labor market arise from
a combination of endowed abilities, economic environments, and endogenous human
capital investments. Endowments, environments, and investments almost certainly
interact in complicated ways, transforming the distribution of abilities drawn at birth
into a distribution of education, wages, and labor supply outcomes over the life-cycle.

Understanding this web of interactions and its implications for economic inequality
has been a long-standing project in labor economics (Mincer 1958; Becker and
Chiswick 1966; Griliches and Mason 1972). Selecting an appropriate policy response
to inequality requires an accurate diagnosis of its origins. Poor households possess
limited resources for human capital investment, which naturally suggests a role for
redistributive policies. However, disparities in endowments might also play a part.
If individuals with unfavorable endowments do not acquire more human capital for
reasons unrelated to resources (e.g., lower returns to these investments), then simply
relaxing resource constraints and expanding access to education may not substantially
reduce inequality. However, understanding the mapping between endowments,
investments, and economic outcomes is challenging: ability is notoriously difficult
to measure and typical proxies (such as IQ test scores) are subject to the critique that
they reflect earlier investments.

A common assumption is that genes and other biological factors at least partially
determine heterogeneity in ability across individuals (e.g., Todd and Wolpin 2003). In
this study we exploit recent advances in genetics to explore the relationship between
a genetic index, educational attainment, and labor market outcomes in the Health and
Retirement Study (HRS). Specifically, we utilize a polygenic score (a weighted sum of
individual genetic markers) constructed with the results from Lee et al. (2018) to predict
educational attainment.1 The markers most heavily weighted in this index are linked to
early brain development, as well as processes affecting neural communication (Okbay
et al. 2016; Lee et al. 2018). We interpret the polygenic score as summarizing a subset
of the genetic factors that influence traits relevant for human capital accumulation.2

Pairing this score with rich longitudinal data allows us to test propositions about
the role of individual endowments in shaping education and labor market outcomes.

1. Results reported in Okbay et al. (2016) and Lee et al. (2018) represent the cutting edge in behavioral
genetics relating specific genetic variants to education. We discuss these papers and the research leading up
to them in Section 2, where we provide further details on the genetic data used in this project. Additional
background information is in Online Appendix A.

2. We explicitly avoid describing the polygenic score as a measure of “ability”, since this term may
be too broad and may oversimplify the complexities of genetic endowments. We also want to avoid
conflating our interpretation of the polygenic score with the broader definition of “ability” as it is viewed
in labor economics. For example, in Human Capital, Becker (1975) defines ability as the collection of
all factors that determine persistent differences in economic outcomes given the same profile of human
capital investments. More formally Becker (1975) considers earnings, Y, as a function of “unskilled ability”
X, human capital investments, C, and the rate of return on investments, r: Y D X C rC (p. 62). In this
framework, ability consists of all factors that influence the pair (X, r). Such factors may include genetic
endowments, but are certainly not limited to genetic or other biological influences.
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Specifically, we examine whether childhood environments interact with genetic
endowments in determining educational outcomes, and whether these endowments
are associated with economic outcomes beyond their relationship with completed
schooling. In empirical labor economics, genetic factors and other endowments are
typically subsumed into an error term, averaged out with additive fixed-effects, or
relegated to a “black box” of permanent unobserved heterogeneity that must be
integrated out of econometric models (Lillard and Willis 1978).3 In such approaches the
structure of human capital endowments, together with the nature of their interactions
with the economic environment, is assumed rather than observed.4 This may be
appropriate if the goal is to reduce bias in estimation by controlling for omitted
factors. However, this approach is insufficient if our goal is to learn about the structure
of ability and resulting implications for policy.

A large literature uses test scores such as IQ or AFQT (Armed Forces Qualification
Test) as proxies for the cognitive abilities relevant for education and labor market
outcomes. However, investments and environmental factors (e.g., childhood poverty)
can significantly influence these proxies, making it difficult to interpret their variation
across individuals (Flynn 1987; Turkheimer et al. 2003; Todd and Wolpin 2007;
Mani et al. 2013).5 Among other things, this means that two individuals with similar
cognitive test scores but different childhood circumstances are unlikely to have started
with the same underlying human capital endowments. Reliance on these proxies may
therefore lead the analyst to misattribute observed disparities in economic outcomes
to differences in ability endowments rather than earlier investments. In turn, this
could lead to incorrect conclusions on the returns to human capital investments (e.g.,
public education, college subsidies, etc.). In contrast, even though the genetic index
we study is undoubtedly correlated with parental characteristics, its use is not subject
to the critique that it is the product of endogenous investments, since it is fixed at
conception.6

We present two main sets of results. First, we document the association between
the polygenic score and educational attainment, and demonstrate that this association
differs by childhood SES. Using the HRS data, we replicate the strong relationship
between the genetic score and educational attainment found in past studies (Okbay

3. This point suggests that the polygenic score should capture some of the information that is contained
in individual fixed effects. In results available in Online Appendix B, we show that this is the case, which
provides evidence for the link between previously unobserved heterogeneity and the information contained
in the polygenic score.

4. Considering again Becker’s formulation Y D X C rC, it is often assumed that unobserved ability enters
exclusively through “unskilled ability”. (X), so that a linear fixed effects model controls for ability.

5. Proxies for endowments measured among children or newborns are also subject to this type of critique
(Almond and Currie 2011).

6. As we explain throughout the paper, the genetic index is correlated with environments and investments,
since parents pass on their genes in addition to shaping environments and making investments. Nevertheless,
the fact that environments and investments do not change the genetic score offers an important exclusion
restriction. This point is fleshed out in greater detail in Section 3.6 and is formalized in a simple econometric
model provided in Online Appendix C.
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et al. 2016; Lee et al. 2018). A one-standard-deviation increase in the polygenic score
predicts between 0.59 and 0.84 additional years of education, whereas variation in the
score accounts for 3.4%–7.5% of the variation in years of schooling, depending on
the control set. After this replication exercise, we turn to new analyses enabled by the
availability of molecular genetic data for HRS respondents.7 A surprising descriptive
fact emerges in the relationship between the polygenic score and retrospective measures
of childhood SES. Although the polygenic score is positively correlated with childhood
SES, the distribution of the score is strikingly similar across SES groups. This
empirical pattern makes it possible to compare economic outcomes for a large set
of individuals with similar genetic scores, but different childhood SES. We find that
high childhood SES seems to reduce the association between genes and the probability
of completing high school, whereas increasing the genetic gradient in the propensity to
earn a college degree. These findings could reflect different patterns of substitutability
and complementarity between genes and family resources in producing early versus
later human capital outcomes. More broadly, these SES interactions underscore the
importance of examining gene–environment interactions to understand economic
inequality and the distributional consequences of interventions.

Understanding the role of endowments is particularly important in light of
the large earnings premium associated with a college degree and its growth over
the last several decades. Given substantial returns to schooling, we expect genetic
endowments for education to unconditionally predict earnings. However, the factors
that allow one to more easily acquire schooling may also permit greater economic
success, even conditional on a particular level of investment (better cognitive
endowments, greater persistence, etc.). This motivates our second set of new analyses
that test whether—and through what mechanisms—the genetic factors associated
with education independently predict better labor market outcomes. This question
is particularly relevant given the sizable interactions between childhood SES and
genetic endowments. Although it is certainly possible that individuals with favorable
endowments realize their full earnings potential even without a college degree, it
may also be the case that individuals with high polygenic scores are unable to fully
compensate for the lack of a college degree in the labor market. If so, disparities in
childhood SES may erect barriers to college completion and lead to the wastage of
economic talent.

Using administrative records that cover the lifecycle, we find a strong relationship
between the polygenic score and labor market earnings, even after controlling for
completed education. The returns to these genetic endowments appear to rise over
time, coinciding with the rise in income inequality after 1980. Accounting for degree

7. According to studies that compare identical and nonidentical twins to assess the role of genetic factors
in explaining behavior and outcomes, roughly 25%–40% of the variation in educational attainment can
be attributed to genetic factors. Such studies treat genetic factors as unobservable and decompose the
variance of education into genetic and environmental components. The incremental R2 of the EA score is
substantially below the fraction of variation explained by genes in these twin studies, suggesting that the
score either does not capture all genetic factors, or does so with a nontrivial amount of measurement error.
We elaborate on this issue in Section 2.
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and years of schooling, a one standard deviation increase in the score is associated with
a 4.8% increase in earnings after 1980. These results are consistent with recent literature
on income inequality showing not only an increase in the college premium, but also a
rise in the residual wage variance within educational groups (Lemieux 2006). We also
find a positive association between the score and the kinds of nonroutine job tasks that
benefited from computerization and the development of more advanced information
technologies (Autor, Levy, and Murnane 2003). This provides suggestive evidence that
the endowments linked to more educational attainment may allow individuals to either
better adapt to new technologies, or specialize in tasks that more strongly complement
these new technologies. Nonetheless, despite returns to these endowments for those
with and without a college degree, the average college premium remains large across
all values of the polygenic score. Poor childhood environments appear to squander
the human potential of individuals with favorable genetic endowments by preventing
access to increasingly lucrative educational pathways.

This paper adds to an emerging literature examining molecular genetic associations
with economic outcomes.8 However, to our knowledge, this is the first study to estimate
the returns to genetic factors associated with education using micro genetic data and
disaggregated measures of earnings and job tasks across cohorts. Our results therefore
offer two broad contributions that link the literature on behavioral genetics to the
economics literature on human capital, ability, and economic outcomes. First, our
results demonstrate that several core findings obtained with proxies of cognitive ability
continue to hold with a biological measure of endowments that predicts schooling and
is fixed at conception. Even if genetic data offered no other insights, this would
provide some evidence that test scores capture useful information on endowments,
and not just post-birth investments. A second contribution, however, consists of novel
results on the origin and function of heterogeneity in the earnings distribution. Our
results on the rising genetic earnings premium (controlling for education) implicate
genetic heterogeneity in a series of important and well-documented patterns in labor
economics. In particular, the same factors associated with greater human capital
accumulation also appear to be increasingly important for earnings during a period of
technological and structural change in the economy.

Our results also illustrate how genetic measures can be used to generate novel
insights about the importance of interactions between endowments and childhood
environments in the study of economic inequality. We provide some of the first evidence
using molecular genetic measures that people with favorable genetic endowments
may face barriers to exploiting their potential if they are born into poor families.9

This finding relates to a larger literature exploring similar interactions using different

8. For example, in a recent paper, Schmitz and Conley (2017) demonstrate that the effect of military
service on educational attainment is moderated by the same polygenic score considered here. In Section 2,
we discuss more papers in this line of research.

9. Belsky et al. (2016) study a sample of New Zealanders and track outcomes from birth through the age
of 38. Their findings suggest that there may be a weaker association between genetic ability and lifetime
success for high-SES households. A benefit of our analysis is that, using a richer data set, we are able to
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measures of endowments, or using alternate methods to measure genetic contributions.
Leibowitz (1974) is an early example of research recognizing heterogeneity in returns
to ability measured by IQ. Further contributions have emphasized the consequences
of such interactions for inequality. Consistent with our findings, Guo and Stearns
(2002) use a twin-study design to provide evidence that resource-poor environments
imply lower returns to genetic endowments. Gene–environment interactions could also
explain why genetic influences on IQ are relatively strong for high-SES children, a
phenomenon known as the Scarr–Rowe Hypothesis (Scarr-Salapatek 1971; Nisbett
et al. 2012; Bates, Lewis, and Weiss 2013; Kirkpatrick, McGue, and Iacono 2015;
Tucker-Drob and Bates 2016). This would occur if returns to genetic endowments (as
measured by IQ) are stronger in resource-rich households, which is consistent with
our findings on gene–environment interactions and college education.10

Our results on gene–environment interactions are also linked to work on treatment
effect heterogeneity, which has emerged as an important topic in econometrics and
applied work. Heckman and Vytlacil (2005) develop econometric methods for the
case of heterogeneous treatment effects, either due to choices or responses. Many
studies document a range of heterogeneous responses to interventions related to labor,
including welfare reform (Bitler, Gelbach, and Hoynes 2006), information about
payoffs to education (Wiswall and Zafar 2015) and education subsidies (Todd and
Wolpin 2006). Related, Keane, Moffitt, and Runkle (1988) study how individual-level
heterogeneity affects responses to economic shocks, in their case labor supply decisions
over the business cycle. In our case, responses to technological shocks may in part be
explained by heterogeneity in genetic endowments.

The remainder of the paper is organized as follows. In Section 2, we discuss recent
developments in behavioral genetics (and their limits), focusing on techniques used
to establish links between genes and economic outcomes. In Section 3, we relate the
polygenic score to education and childhood SES. In Section 4, we discuss how the
polygenic score relates to labor market outcomes. Section 5 concludes.

2. Genetic Data and Their Limits

In this section, we provide some basic information about the molecular genetic data
we use in this study. We also discuss some problems, points of clarification and
interpretational difficulties. Online Appendix A provides additional detail.11

examine disaggregated measures of labor market success, including labor supply and earnings over the
entire life-cycle.

10. Relatedly, children with high polygenic scores are more likely to grow up in resource-rich
environments, meaning they enjoy higher returns to their genetic endowments compared to similarly
endowed children in poorer households. Coupled with assortative mating on IQ, inequality in IQ should
rise over time, which is a pattern that has been documented in Dickens and Flynn (2001).

11. We are grateful to Aysu Okbay for clarifying a number of questions on the description we provide in
this section. However, any erroneous statements are the sole responsibility of the authors.
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2.1. Genetic Data and Genome-Wide Association Studies

The human genome consists of approximately 3 billion nucleotide pairs spread out
over 23 chromosomes pairs. An individual possesses two copies of each chromosome,
inheriting one copy from each of its parents.12 The base pairs are the “rungs on the
ladder” of classic double-helix structure. Genes are subsequences of these base pairs
that often contain the instructions for synthesizing proteins. There are about 50,000
genes in the human genome. At the vast majority of base pair locations in the genome
(about 99%), there is no variation across individuals in the nucleotide. At the remaining
locations (less than 1%), the base pair may differ across individuals. Such locations
are referred to as single-nucleotide polymorphisms (SNPs, pronounced “snips”).

A major task of behavioral genetics involves determining which, if any, of these
SNPs are associated with behavioral outcomes. Genome-wide association studies
(GWAS) provide one tool for estimating these associations. Under the GWAS
methodology, researchers scan the entire genome for SNPs that are associated with
a particular phenotype (trait or outcome). Variation at a particular SNP is measured
by a count variable indicating how many copies of a particular base pair molecule an
individual possesses at that genetic location. These variables can take the values 0,
1, or 2 because an individual has two copies of each chromosome. The outcome of
interest is typically regressed on each observed SNP count (one at a time), while also
controlling for principal components of the full matrix of SNP data. As indicated by
Price et al. (2006) (and discussed at length in Benjamin et al. (2012) in the context of
economic outcomes) the principal components can correct for population stratification
and account for genetic differences across ethnic groups. The presence of these controls
limits the concern that gene-behavior associations reflect associations with specific
ethnic ancestry groups as opposed to specific biological pathways. In our subsequent
analysis we always control for population stratification using the first 10 principal
components of the full matrix of genetic data.13

Although GWAS studies have produced a number of credible and replicable
gene-outcome associations, GWAS results for educational attainment have only
emerged recently. After documenting the first genome-wide significant associations
for education (Rietveld et al. 2013), the Social Science and Genetics Association
Consortium extended their analysis to perform an educational attainment GWAS with
larger sample sizes, starting with Okbay et al. (2016) (N D 293,723), which discovered
74 SNPs with associations strong enough to be considered genome-wide significant.14

12. Most of the background information presented here on the human genome follows Beauchamp et al.
(2011) and Benjamin et al. (2012).

13. The use of 10 principal components is standard practice in the literature (Okbay et al. 2016). Omitting
the principal components, though not at all advisable as a general approach given concerns about population
stratification, does not affect our results in this paper, suggesting that other controls adequately capture the
type of stratification that might be more substantial or problematic in other data sets.

14. Many single-SNP associations from earlier genetic studies have failed to replicate. As discussed in
Hewitt (2012), this problem often emerged because earlier genetic studies were underpowered to detect



1358 Journal of the European Economic Association

The score we study in this paper is based on results from the most recent education
GWAS from this group, Lee et al. (2018), featuring a discovery sample of over 1.1
million people. Many of these SNPs were linked to biological processes known to be
involved in fetal brain development. Evidence presented in Okbay et al. (2016) and
Lee et al. (2018) heavily implicates cognitive mechanisms in the biological pathways
that link the score to educational attainment. Lee et al. (2018) find that some of
the significant SNPs tend to be expressed prenatally in brain tissues, whereas others
are expressed throughout the lifecycle. This second group of SNPs tend to be found
in genes that “encode proteins that carry out neurophysiological functions such as
neurotransmitter secretion, the activation of ion channels and metabotropic pathways,
and synaptic plasticity” (Lee et al. 2018, p. 1114).

GWAS results are often aggregated into polygenic scores for the purposes of
prediction and statistical analysis. These scores are linear combinations of individual
SNP count variables, weighted by their GWAS coefficients. Importantly, although HRS
data are used in the published results for Lee et al. (2018), the score used here has been
calculated on the basis of GWAS results without HRS data, ensuring that the score
does not mechanically predict educational outcomes. We refer to the score we use as
the EA score, where EA stands for “educational attainment”. Since this is the only
polygenic score we examine in this paper, we use the terms “EA score”, “polygenic
score”, and “genetic score” interchangeably.15

Existing work suggests that polygenic scores usefully summarize genetic
information contained by some of the SNPs associated with education. Most existing
studies work with earlier, less predictive polygenic scores based on the results of
Rietveld et al. (2013) and Okbay et al. (2016). Conley and Domingue (2016) find
evidence of changing patterns of assortative mating across cohorts on the basis of a
polygenic score for education, whereas Schmitz and Conley (2017) show that genetic
heterogeneity can moderate the impact of military service during the Vietnam War on
subsequent educational attainment. Closer to our work, Belsky et al. (2016) use the
polygenic score to predict childhood and adolescents developmental milestones and

reasonable association sizes, and because of failures to correct for multiple hypothesis testing. Given these
concerns, modern GWAS studies adopt strict conventions before considering a single-SNP association to
be “genome-wide significant”. A convention benchmark for genome-wide significance is a p-value that is
less than 5 � 10�8.

15. The polygenic score that we use is constructed using all of the SNPs that we observe, and not just
those that attain genome-wide significance. This follows the practice in Okbay et al. (2016) and Lee et al.
(2018). Polygenic scores based on all SNPs have performed better at predicting educational attainment in
holdout samples. The score is constructed with the LDpred method (using parameters outlined in Okbay,
Benjamin, and Visscher 2018), which is one way to deal with the possibility of “double-counting” given
correlations between individual SNPs (Vilhjálmsson et al. 2015; Ware et al. 2017). Although the weights
assigned to each SNP typically vary across methods, these weights are usually based on the strength of a
SNP’s association with the outcome of interest and the joint covariance matrix of the SNPs. In a series of
robustness checks presented in Online Appendix B we show that main results are qualitatively similar if we
use alternative scores, for example, earlier versions discovered on smaller samples, or by using different
methods to combine them. This is important as it suggests that our key results will not change qualitatively
as the field advances and more genes are discovered to be genome-wide significant.
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cognitive abilities. They examine a sample of 918 New Zealanders and show that a
similar polygenic score not only predicts education, but also an index of adult success
conditional on education. In relating genes predicting education to an aggregated
measure of success in the labor market, their study provides important cross-validation
to our own work, though with a different sample and a substantially different set of
outcomes and research questions. Finally, Barth, Papageorge, and Thom (2019) show
evidence that the EA score predicts wealth in part through financial decision-making
and probabilistic thinking.

2.2. Limitations and Interpretational Challenges

We discuss five important caveats and points of clarification regarding our use of the
polygenic score for education. First, the genetic variants used in the construction of
this genetic score are not located on sex chromosomes. For this reason, the distribution
of these variants should be identical across men and women. In our labor market
analysis, we focus on males to bypass considerable issues associated with selection into
employment. However, we examine both men and women when studying educational
investments, the goal being to restrict the sample only when there is a compelling
reason to do so. In Online Appendix B, we explore possible gender differences in how
the EA score relates to years of education. There are some specifications showing larger
coefficients on the EA score for men compared to women.16 An obvious direction for
future research would be to study gender differences in returns and, more generally,
how the genetic score interacts with female labor supply decisions and labor outcomes.

A second point is that the polygenic score we use was discovered on a sample of
individuals of European ancestry. It has been shown in earlier work that a polygenic
score discovered on one ethnic group is relatively less predictive if applied to other
ethnic groups. A striking example is a polygenic score for height discovered on a
sample of Europeans, which erroneously predicts that individuals of African ancestry
are on average substantially shorter than genetic Europeans (Martin et al. 2017). It
would therefore be misleading and irresponsible to use the EA score we use in this
paper to analyze individuals of non-European ancestry. Thus, we limit our sample to
individuals of European ancestry as categorized by the HRS. It should be noted that
with this restriction, the principal components of the genetic data help to account for
intra-European ethnic differences.

Third, we do not claim to estimate causal effects of particular genetic variants.
Any gene-outcome association that we observe in general reflects a combination of
a direct effect and an indirect effect operating through the environments that parents
make for their children.17 Parents with advantageous genetic endowments (some of

16. Given the argument that many gender differences could be socially constructed, Molina (2016)
suggests that gender can be seen as an environmental factor and that gender differences in coefficients
reflect gene-by-environment interactions.

17. A related identification problem is that parents can react to the genetic endowment of the child and
reinforce or compensate their investments. In the literature this is called a gene–environment correlation
(Plomin, DeFries, and Loehlin 1977).



1360 Journal of the European Economic Association

which they pass on to their children) are more likely to have the resources or capacity
to create better environments. Indeed, Kong et al. (2018) find that parental genotypes
that are not passed on to their children still predict children’s education, suggesting
the operation of this indirect channel.18 Even so, an individual’s genetic make-up
is not changed by human capital investments. In contrast, IQ and other cognitive
test scores are subject to the critique that they reflect environmental factors, such as
earlier human capital investments. Indeed, Bharadwaj, Løken, and Neilson (2013)
find that variation in health care received by newborns has an impact on academic
achievement years later.19 Genetic indices are not subject to this critique since they are
fixed at conception. As we elaborate in what follows (see Online Appendix C and the
discussion in Section 3.6), this feature of genetic endowments generates an important
exclusion restriction that can be used to correctly sign gene–environment interactions.
Moreover, there is strong evidence from a variety of studies showing that much of the
relationship between an earlier EA score and educational attainment remains, even
after controlling for family fixed effects with data on siblings (Rietveld et al. 2014;
Domingue et al. 2015).20 If the relationship between the score and education merely
reflected family environments, we would expect between-family variation to be much
more strongly predictive of outcomes. Finally, controlling for principal components
helps to alleviate the concern that we are merely capturing ethnic differences in social
norms surrounding education.

A fourth limitation concerns the variation in observed outcomes that is explained
by the polygenic score. Twin studies have established that roughly 25%–40% of
the variation in educational attainment can be attributed to genetic endowments,
suggesting that genes represent an important source of human capital endowments
(Branigan, McCallum, and Freese 2013).21 In our sample of HRS respondents, we
show that the polygenic score can explain up to 7.5% of the variation in educational
attainment, that is, roughly 19%–30% of the total variation that other methods suggest
is attributable to genes. This discrepancy is often referred to as the “missing heritability
problem” (Eichler et al. 2010; Zuk et al. 2012) and may arise from a variety of causes,
including limited power to detect rare variants or variants with small association sizes,
failure to account for genetic interactions, and genetic variation that is not captured
by SNP-level differences (e.g., copy-number polymorphic duplications). In practice,

18. See Koellinger and Harden (2018) for a further discussion of the implications of this finding.

19. Even birth weight, another proxy of innate endowments that has been used in prior literature, is not
immune to this critique as it reflects in utero investments, for example, mother’s smoking behavior (Lien
and Evans 2005), exposure to pollutants (Currie, Neidell, and Schmieder 2009), stress during pregnancy
(Camacho 2008; Currie and Rossin-Slater 2013) or mothers’ own health (Costa 1998). See also Aizer and
Currie (2014) for a recent discussion.

20. In a recent contribution, Ronda et al. (2019) use Danish data to examine within-sibling-pair differences
in the EA score and educational outcomes. They find that controlling for mother’s education, which we
do in our analyses, eliminates differences in within-sibling versus between-family coefficients on the EA
score by 70%.

21. Taubman (1976) is an early contribution using data on twins, who have similar or identical genotypes,
to assess the amount of variation in earnings attributable to genes.
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the missing heritability problem means that it is difficult to use the polygenic score
to draw conclusions about the relative importance of genetic endowments versus
environments in generating economic outcomes. This is a drawback of analyses using
polygenic scores relative to twin-study methods.22 On the other hand, observed genetic
variants allow us to more directly estimate the size and directions of gene–environment
interactions (e.g., differences in gene-education gradients by childhood SES), and
explicitly identify the variants involved in such interactions.

Fifth, there are interpretational challenges in using the polygenic score in economic
analysis. The polygenic score is a linear index of the genetic variants that predict
educational attainment. As discussed in the Introduction, we interpret the polygenic
score as measuring a subset of genetically endowed abilities relevant for educational
attainment, such as a facility with learning or acquiring new skills. We purposefully
refrain from describing the polygenic score as ability or as a measure of cognitive
ability, which is likely to be misleading and too simplistic. One reason is that the
polygenic score is a single aggregate measure, which is at odds with widespread
evidence that ability is best thought of as multi-dimensional with different returns
depending on the economic outcome in question. In particular, there are distinct
cognitive abilities associated with human capital accumulation and labor market
success (e.g., attention, language, visuospatial skills, motor skills, executive function
and memory) each possessing different associations with economic outcomes (Willis
and Rosen 1979; Heckman 1995; Cawley et al. 1997).23 In addition, socio-emotional
skills (sometimes known as noncognitive or “soft” skills) play crucial roles in education
and labor outcomes (Heckman and Rubinstein 2001).24 Thus, it would make little sense
to categorize an individual with a high polygenic score as “high ability” or to equate
the polygenic score with cognitive ability.25 Second, it is not clear how genes generate
economic outcomes, either on their own or through interactions with the environment.
As discussed, pathway analyses suggest that the genes most heavily weighted in the
EA score are implicated in the development of brain tissue and in processes related
to neural communication. Although this strongly suggests that cognitive processes are
involved, we lack a comprehensive understanding of the biological pathways at play.

22. Related, given that the polygenic score is a noisy measure of the full set of genetic endowments
related to education, it would be misleading to draw conclusions about necessary or sufficient scores for
economic outcomes, for example, whether above a certain threshold individuals are guaranteed to attain a
college degree.

23. On multidimensionality, Willis and Rosen (1979) emphasize manual skill, which they distinguish
from academic skill.

24. Later contributions to this literature include Kautz et al. (2014) and Humphries and Kosse (2017).

25. In Online Appendix D, we show that a measure of cognition that is available for HRS respondents is
positively associated with the EA score, but only weakly so (with a correlation coefficient of roughly 0.23).
Moreover, the EA score predicts education and earnings even after we control for the cognitive test score,
suggesting that the EA score captures additional factors relevant to educational attainment. However, the
comparison of the EA score with the cognitive test score in the HRS is difficult to interpret since the latter
is meant to capture cognitive decline. A more useful exercise would be to compare the EA score with
scores from tests designed to measure cognition, such as the AFQT, which is not available in the HRS.



1362 Journal of the European Economic Association

The EA score almost surely includes factors related to skills that are directly related to
cognition and facilitate schooling, but may (or may not) be productive in other contexts,
such as the labor market.26 That said, one of the benefits of examining the EA score
in a rich data set such as the HRS is that it allows us to examine relationships between
the EA score and several critical economic variables. Doing so provides valuable
insights into how these genetic variants function over the lifecycle, which offers clues
on mechanisms underlying their relationship to human capital accumulation.

3. Genes, Education, and Childhood SES

3.1. The HRS Sample and the Genetic Score

The HRS is a longitudinal panel study that follows over 20,000 Americans at least
50 years of age, as well as their spouses. Surveys began in 1992 and occur every two
years. The HRS collected genetic samples from 18,994 individuals over the course of
four waves (2006, 2008, 2010, 2012). Our analytic sample only includes individuals
genotyped in 2006 and 2008.27 Individuals in the genotyped sample tend to be born
in younger birth cohorts, since survival until at least 2006 is required for inclusion.
Moreover, women and individuals with more education were more likely to agree to
the collection of genetic data.

Our main analysis sample includes all genetically European individuals born before
1965 with nonmissing genetic and education data. For reasons outlined in Section 2,
we restrict the sample to respondents of European ancestry since the polygenic score we
use here was discovered in a sample of consisting solely of genetic Europeans.28 The
resulting sample includes 8,537 individuals. Table 1 provides some basic descriptives
on demographic and educational variables. The mean level of educational attainment
is about 13 years, with 13% of the sample failing to graduate from high school or
obtain a GED and about 25% of the sample earning at least a four year college degree.
Roughly 42% of the sample is male.

26. Indeed, Papageorge, Ronda, and Zheng (2017) provide evidence that a socioemotional skill known
as externalizing behavior and linked to aggression predicts higher wages despite being associated with
lower educational attainment. If it has a genetic basis, it would enter negatively into the polygenic score
despite its value on the labor market, further underscoring the need to interpret the polygenic score as a
measure of genetic factors that influence some skills associated with educational attainment, but not as a
broad measure of “ability”.

27. Although genetic data for the 2010 and 2012 waves are available, the polygenic score based on the
results of Lee et al. (2018) and the LDpred method has only been constructed for the respondents genotyped
in 2006 and 2008. In Online Appendix B, we provide further detail and show that our main results continue
to hold if we use a less predictive score constructed with a different methodology for individuals from all
four available waves.

28. As part of the genetic data release, the HRS classifies certain individuals as being of European descent
based on their genetic ancestry. Polygenic scores have been publicly released for 12,090 individuals from
the 2006, 2008, 2010, and 2012 waves who have been identified as having genetic European ancestry.
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TABLE 1. Summary statistics—HRS sample.

Variable Mean Std. N Variable Mean Std. N

Male 0.417 0.493 8537 Father’s Income 28.588 10.348 6773
Birth Year: Family SES (Childhood)

<1930 0.227 0.419 8537 Well Off 0.067 0.25 8537
1930–1934 0.152 0.359 8537 Average 0.645 0.478 8537
1935–1939 0.183 0.387 8537 Poor 0.273 0.446 8537
1940–1944 0.161 0.367 8537 Varied 0.013 0.114 8537
1945–1949 0.126 0.332 8537 Missing 0.001 0.034 8537
1950–1954 0.151 0.358 8537 Refused 0.000 0.019 8537

Degree: Family Moved (Childhood)
Education (years) 13.161 2.538 8537 Yes 0.180 0.384 8537

None 0.129 0.335 8512 No 0.816 0.387 8537
GED 0.045 0.207 8512 Missing 0.004 0.062 8537
High School 0.529 0.499 8512 Refused 0.000 0.015 8537
College (2 year) 0.05 0.219 8512 Fam. Asked for Help (Childhood)
College (4 year) 0.147 0.354 8512 Yes 0.134 0.341 8537
Masters 0.077 0.267 8512 No 0.851 0.356 8537
Advanced 0.023 0.148 8512 Missing 0.015 0.12 8537

Redo Grade 0.14 0.347 8166 Refused 0.000 0.015 8537
Parents’ Educ. (years) Father Lost Job (Childhood)

Father 10.229 3.593 6711 Yes 0.204 0.403 8537
Mother 10.672 3.017 6993 No 0.728 0.445 8537

SSA Earnings (96,721 person-year obs.) Never Worked 0.006 0.075 8537
Mean 59,180 Never There 0.056 0.229 8537
Std. Dev. 32,851 Missing 0.007 0.084 8537
25th percentile 34,173 Refused 0.000 0.015 8537
50th percentile 55,295 Health as Child
75th percentile 75,005 Excellent 0.545 0.498 8537
Num. Respondents 3,140 Very Good 0.256 0.436 8537

Good 0.143 0.35 8537
Fair 0.044 0.206 8537
Poor 0.012 0.108 8537
Missing 0 0.015 8537

Notes: Summary statistics for the primary analytic sample, which consists of 8,537 individuals from the HRS.
The sample is limited to individuals of European ancestry genotyped in the 2006 and 2008 waves. The earning
data consist of 96,721 person-year observations for 3,140 men from our sample with nonmissing earnings data
from the Social Security Administration Master Earnings File (MEF). These summary statistics are calculated
without sampling weights. Missing values for the socioeconomic status variables include the responses “Don’t
Know”, as well as cases where a response was not ascertained or the question was not asked.

Table 1 also provides descriptive statistics on parental education, as well as a
series of categorical variables describing health and various aspects of the SES of the
respondent during childhood. These measures include a self-reported five-point scale
for health during childhood, a variable indicating the SES of the respondent’s family
(Well off, Average, or Poor), as well variables indicating whether the respondent’s
family suffered various negative economic shocks (moving due to hardship, asking
other families for help, or experiencing an extended period of paternal unemployment
or economic inactivity). We also construct a father’s income variable. To do this, we
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first obtain HRS survey responses on the usual occupation of the respondent’s father
(when the respondent was age 16). This father occupation variable is then matched
with average labor income data from the 1960 census for prime-age male workers to
construct an occupation-specific income variable.29

We measure earned income using records from the Master Earnings File (MEF) of
the Social Security Administration (SSA) that have been linked to the HRS.30 The MEF
data span the period 1951–2013 and combine reports from employers with Internal
Revenue Service (IRS) documents such as W-2 forms to provide a sum of “regular
wages and salaries, tips, self-employment income, and deferred compensation” (Olsen
and Hudson 2009). The earnings records are top-coded at the maximum income subject
to Social Security taxes in each year. When possible, we adjust for this by replacing
top-coded amounts with the average level of earnings that exceed the top-code for each
year based on the Current Population Survey (CPS).31 As indicated in Table 1, the
median real income for a person-year in our sample is $55,295, whereas the 25th and
75th percentiles are $34,173 and $75,005, respectively. Figure 1 plots average earnings
for each age in our sample separately for individuals with and without a college degree.
The data follow a familiar hump-shaped pattern, with earnings starting at low levels
early in life, reaching a peak around age 50 for less educated individuals and closer to
age 60 for more educated individuals. For less educated individuals, earnings decline
as individuals age and reduce their labor supply later in life.32

Turning to genetic data, Figure 2 presents a plot of the (kernel-smoothed) density
of the EA score variable in our sample. Values of the score have been demeaned and
rescaled to measure standard deviations relative to the mean. Figure 2 suggests that
the distribution of the EA score appears to be approximately normally distributed and
symmetric.33

Unless otherwise noted, all regressions include a full set of dummy variables for
birth year, a male dummy, and interactions between the birth year and male dummies.
Our basic control set also includes the first 10 principal components of the full matrix
of genetic data. As noted in Section 2, these variables help to control for possible strat-
ification of the score by ethnic ancestry group differences that exist among the broad

29. These retrospective childhood SES measures are discussed in greater detail in Section 3.3. We use
the IPUMS release of the 1960 U.S. Census data (Ruggles et al. 2018) to estimate the average income for
each father’s occupation group.

30. These data are found in the Respondent Cross-Year Summary Earnings file of the HRS.

31. We use the IPUMS release of the CPS data for the years 1962–2013 (Ruggles et al. 2018). Although
the SSA data offer rich administrative records over the life-cycle, they are top-coded based on the taxable
maximum for Social Security taxes in each year. This top-coded amount has changed over time, as
described in Olsen and Hudson (2009). Online Appendix B provides additional details on top-coding and
our correction for top-coding.

32. In Online Appendix B, we replicate a subset of our analyses using HRS income data. Because the HRS
data contain only contemporaneous self-reported income, we cannot use them to estimate specifications
related to lifetime income, which we are able to do with the SSA data. However, the HRS income data are
less aggressively top-coded than the SSA data, which provides one possible advantage. The consistency of
results across data sets suggests that top-coding patterns are not a significant driver of our main results.

33. In a formal �2 test of normality based on skewness and kurtosis, we fail to reject the null hypothesis
that the EA score is normally distributed in our sample with p-value D 0.2647.
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FIGURE 1. Age-earning profiles by education group. Nonparametric (lowess) estimation relating
age to earnings separately for those with and without a college degree.

category of individuals of European descent. To account for nonrandom selection into
the genetic sample, all regressions are weighted using sampling weights that have been
adjusted by the inverse probability of inclusion into the genetic sample given observ-
ables. Details on the construction of these weights are found in Online Appendix E.34

3.2. The Polygenic Score and Education

We start by replicating the basic relationship between the EA score and educational
attainment found in earlier studies (Rietveld et al. 2014; Okbay et al. 2016; Lee et al.
2018). Table 2 presents estimates from regressions of years of schooling on the EA
score and different control sets. The specification in column (1) only includes the score
and our basic controls. A one standard deviation increase in the EA score is associated
with 0.844 more years of schooling. Note that the incremental R2 associated with the
genetic score in this regression is 0.075, indicating that variation in the score accounts
for a large fraction of the variance in educational attainment.

As discussed in Section 2, the EA score could measure biological factors that
enhance an individual’s ability to acquire new skills or reduce the effort costs of
learning. However, the score–education relationship could also reflect correlations

34. When appropriate, we also include a cubic polynomial of the polygenic score. This is motivated
by the model we develop in Online Appendix C, which is used to examine consequences of endogenous
parental investments and measurement error and which guides our interpretation of estimates.
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FIGURE 2. Distribution of the EA score.

between genetic factors and environments that promote education. For example, the
genetic factors driving the score might affect parenting skills that encourage more
schooling for one’s children, even if these factors do not affect a child’s ability to learn
or acquire skill. Since the genotypes of individuals are necessarily correlated with the
genotypes of their birth parents, such a scenario could generate a relationship between
an individual’s EA score and their educational attainment that works purely through
environmental factors. To account for such factors, we would ideally like to control
for parental genotypes, since the genotype of a child is randomly assigned conditional
on parental genes. Although we do not observe parental genes for respondents in the
HRS, we can observe parental education, the phenotype most closely associated with
these parental endowments.

In column (2) of Table 2, we again regress years of schooling on the EA score but
now add separate measures for father’s education and mother’s education to our control
set.35 The inclusion of parental education helps to adjust for the portion of the gene-
education gradient that is driven by higher investments from more educated parents
who also pass their genetic material onto their children.36 As expected, both parental
education measures are positively and significantly related to a respondent’s years of
schooling. However, even after controlling for parental education, the EA score still
exhibits a strong association with educational attainment, with an estimated coefficient

35. As seen in Table 1, parental education is missing for a nontrivial number of individuals. We partially
address this issue by adding separate dummy variables indicating missing values of father’s and mother’s
education.

36. Again, this is consistent with the results from Kong et al. (2018), who find that parental SNPs that
are not passed on to children still predict their educational outcomes.
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TABLE 2. Polygenic score and educational attainment.

(1) (2) (3) (4) (5)

EA Score 0.844��� 0.614��� 0.610��� 0.589��� 0.587���
(0.046) (0.043) (0.043) (0.045) (0.032)

Father Educ. 0.147��� 0.144��� 0.107��� 0.109���
(0.013) (0.013) (0.016) (0.013)

Mother Educ. 0.172��� 0.170��� 0.149��� 0.150���
(0.016) (0.016) (0.016) (0.015)

Child Health: Very Good �0.141 �0.100 �0.128�
(0.126) (0.116) (0.070)

Child Health: Good �0.259�� �0.190 �0.422���
(0.127) (0.123) (0.090)

Child Health: Fair �0.197 �0.114 �0.407���
(0.168) (0.175) (0.145)

Child Health: Poor �0.651 �0.549 �0.853
(0.579) (0.572) (0.573)

Child Health: Missing 1.561��� 1.054 1.995
(0.415) (1.159) (1.243)

Obs. 8537 8537 8537 8537 8537
R2 0.253 0.361 0.363 0.380 0.515

Child SES Measures N N N Y Y
Child Region N N N N Y
Religion N N N N Y

Incr. R2, EA score 0.075 0.038 0.037 0.034 0.034

Notes: Regressions relating educational attainment (years) to the EA score. All regressions include a full set of
dummy variables for birth year, a male dummy, and a full set of interactions between the birth year and gender
dummies. All specifications include the first 10 principal components of the full matrix of genetic data as controls.
Some specifications include controls for parental education, childhood health, childhood SES measures, region
during childhood and religion, as indicated. The last row reports the incremental R2 of the EA Score. �, ��, and
���indicate statistical significance at the 10, 5 and 1 percent levels, respectively.

of 0.614. The incremental R2 associated with the EA score falls, but remains substantial
at about 0.038. Within-family analyses in Lee et al. (2018) estimate that the associations
between individual SNPs and educational attainment are, on average, approximately
40% smaller after accounting for family effects. In our sample, controlling for parental
education reduces the estimated coefficient on the polygenic score by more than
25%, which accounts for a substantial fraction of the gene–environment correlation
suggested by past within-family estimates. In all subsequent analyses, we control for
parental education unless otherwise noted.

In column (3), we again regress years of education on the EA score, but now
add a set of categorical variables reflecting self-reported health during childhood. An
extensive existing literature links childhood health to SES and labor market outcomes
later in life (see Currie 2009 for a review). Indeed, we find that lower self-reported
health levels (relative to the Excellent reference category) exhibit a significant negative
association with educational attainment. It is worth noting that these health variables
have a combined incremental R2 of about 0.008 in this specification without the EA
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score (0.002 when parental education is included), which is substantially smaller than
the incremental R2 associated with the EA score itself.37 In column (4), we add a battery
of controls measuring SES during childhood. These include dummies for whether or
not the individual’s family moved due to financial stress, whether the family ever
asked another family for financial help, whether or not the individual’s father was ever
unemployed for a significant time, and a measure for the average income of the father’s
occupation in the 1960 census. Adding these controls does not significantly reduce
the coefficient estimate on the EA score. In column (5), we show that our estimates
are robust to the addition of dummies for the region of birth and an individual’s
religious affiliation. Comparing columns (1) and (5), the entire battery of childhood
socioeconomic and health controls boosts R2 by about 0.262. The incremental R2 of
0.034 associated with the EA score is nontrivial by comparison.38

Table 3 considers the relationship between the EA score and dummy variables
indicating different types of highest earned degree (No Degree, Two-Year College,
College, or Graduate (MA or Professional Degree)). The EA score is significantly
negatively associated with having no degree and having a two-year degree, but
positively associated with having a college degree or a graduate degree. Additionally,
the genetic score not only predicts educational attainment, but also educational
performance. Column (5) presents coefficient estimates from a specification in which
the dependent variable is an indicator for whether the individual reported having
to repeat a grade of schooling. The results suggest that the EA score is significantly
negatively associated with the probability of repeating a grade. A one standard deviation
increase in the genetic score is associated with a 4.1 percentage point reduction in the

37. In results available from the authors, we experiment with specifications adding a series of more
specific controls related to health during childhood. These recall questions may be less prone to
measurement error than questions about self-rated health. Additional variables include indicators for
measles, mumps, chicken pox, school absences, sight problems, parental smoking, asthma, diabetes,
respiratory problems, speech problems, allergies, heart conditions, ear problems, epilepsy, migraines,
stomach problems, blood conditions, depression, drug use, psychological conditions, concussions,
disabilities, childhood smoking, learning disabilities, and other problems. When these are added to a
basic regression explaining years of education (i.e., column (1) in Table 2 but excluding the EA score),
they and the self-reported health scale variables have a combined incremental R2 of 0.079 (0.037 when
parental education controls are added). Even when we control for these variables, we find that results on
the relationship between EA score and educational attainment are consistent with the results in Table 2. For
example, adding all of these childhood health dummies to the specification in the last column of Table 2
yields a point estimate of 0.523 for the coefficient on the EA score, which is within the 99% confidence
interval of the estimate without these added controls (just outside of the 95% confidence interval).

38. It should be noted that many of these SES measures may be highly correlated with parental education.
Thus the change in R2 across specifications is not necessarily a good measure of the relative importance of
each new set of controls, since their relationship with education may already be reflected in the relationship
between parental education and own education (Gelbach 2016). However, the aim here is not to demonstrate
the relative importance of each set of controls. Rather, we are concerned with the range of explanatory
power of the polygenic score as we control for additional measures of childhood circumstances. If we
include the maximal set of SES controls but exclude parental education (a modified version of column (5)
in Table 2), this yields an R2 of 0.470. Compared to the result in column (1), this suggests an incremental
R2 of 0.217 for all SES controls when ignoring parental education. In this specification the EA score has
an incremental R2 of 0.051. Much of the explanatory power of our SES variables is being picked up by
parental education. Nevertheless, the incremental predictive power of the EA score is substantial in any of
these comparisons.
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TABLE 3. Polygenic score and categorical education outcomes.

Dep var. No degree Two-year coll. College Graduate Redo grade
(1) (2) (3) (4) (5)

Panel A:
EA Score �0.068��� �0.008�� 0.069��� 0.063��� �0.041���

(0.005) (0.004) (0.005) (0.004) (0.005)

Obs. 8512 8512 8512 8512 8166
R2 0.201 0.046 0.082 0.094 0.085

Panel B:
EA Score �0.050��� �0.010��� 0.051��� 0.050��� �0.030���

(0.005) (0.004) (0.005) (0.004) (0.005)
Father Educ. �0.008��� �0.000 0.013��� 0.011��� �0.008���

(0.002) (0.001) (0.002) (0.002) (0.002)
Mother Educ. �0.016��� 0.004�� 0.014��� 0.008��� �0.008���

(0.002) (0.002) (0.002) (0.002) (0.002)

Obs. 8512 8512 8512 8512 8166
R2 0.251 0.050 0.120 0.122 0.098

Notes: Regressions relating educational attainment categories or the probability of repeating a grade to the EA
score. Specifications in panel A do not include parental education. Specifications in panel B include parental
education. All regressions include a full set of dummy variables for birth year, a male dummy, and a full set of
interactions between the birth year and gender dummies. Additionally, every specification includes the first 10
principle components of the full matrix of genetic data. ��, and ���indicate statistical significance at the 10, 5
and 1 percent levels, respectively.

risk of ever failing a grade. Panel B of Table 3 shows that these relationships hold even
when we control for parental education.39

Taken together, the results in Tables 2 and 3 provide support for two propositions.
First, the genetic variation captured in the EA score is strongly associated with
educational attainment along nearly every margin. Compared to other observables,
the EA score accounts for a large fraction of the variation in educational attainment.
Second, this relationship does not appear to be driven mostly by childhood
environmental factors, at least those that are measurable in the HRS. After controlling
for parental education, the inclusion of several controls for different aspects of
childhood SES does little to attenuate the relationship between the EA score and
completed education. We now take a closer look at the relationship between childhood
SES and the EA score.

3.3. The Polygenic Score and Childhood SES

One aim of our subsequent analysis is to better understand how genes and the
environment interact. To that end, we examine the educational outcomes of individuals

39. Belsky et al. (2016) demonstrate that genetic endowments linked to completed education are
associated with learning outcomes during early childhood. Using a polygenic score from an earlier GWAS,
they find evidence that children with higher scores began talking earlier and, by age 7, were stronger
readers.
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with similar scores, but different childhood circumstances. Although the HRS
surveys individuals at older ages, it contains a set of retrospective questions in
the Demographics file that can be used to construct variables related to the SES
of an individual’s household during childhood. Here, we introduce four childhood
SES measures in the HRS constructed from these retrospective questions. All of the
measures we construct are binary variables that take the value 1 for high childhood
SES and 0 otherwise. The four variables we construct are

1. Father’s income: Based on respondent-provided information about father’s usual
occupation, we use income data from the 1960 census to impute an annual
salary/work income for each father. We calculate the median for this father’s income
variable and classify individuals whose fathers earned above median incomes as
experiencing high SES during childhood. The father’s occupation measures come
from the Industry and Occupation Data, which contain more detailed occupation
codes than the items that are publicly available from HRS.

2. Family well off: High SES indicates respondents who reported that their family was
“pretty well off financially” or “average” from birth to age 16. Low SES indicates
respondents who reported that their family was “poor”.

3. Move or help: The HRS asks separate questions about whether a respondent’s
family ever had to move residences or ask relatives for help due to financial reasons.
Since these events are similar (capturing an extraordinary household response), we
combine them into a single variable. This combination increases variation in this
measure since moving or asking for help are each less frequent events.40 High SES
indicates respondents whose family never had to move or ask relatives for help for
financial reasons. Low SES indicates respondents whose families did either move
or ask relatives for help.

4. Father’s employment: High SES indicates respondents whose father never
experienced a significant unemployment spell (“several months or more”). Low
SES indicates respondents whose father did experience a significant unemployment
spell, or those whose fathers were dead or never lived with them. Notice that this
variable incorporates information on family structure since it takes the value 0 if
the child is raised without a father.41

These SES variables have several shortcomings. For one, they are retrospective,
which may lead to nonrandom measurement or reporting error. For example, an
individual’s SES during adulthood could affect how they recall or report childhood
circumstances. Alternatively, perceptive individuals may be more aware of their
parents’ financial difficulties during childhood. If so, then any of these variables may
capture unobserved skills that also lead to better economic outcomes. Moreover, the

40. About 18% of respondent families reported having to move, and about 14% reported asking for help.
When combined, about 25% had to take at least one of these actions.

41. All results using this variable are robust to treating cases where the father is dead or never lived
nearby as missing.
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variables we use to proxy childhood SES are not exhaustive, as they do not reflect
other factors affecting the level of resources available to the respondent (e.g., number
of children in the household). Potential measurement problems motivate the use of
several SES variables, which allows us to assess whether empirical patterns are robust
across measures. Moreover, though the variable “Father’s income” is based on average
income data, it is unlikely to be subject to the same types of reporting error as the
other variables, since the occupation question does not require an individual to make
a normative judgment about their family’s economic situation in childhood.

Despite possible measurement and reporting issues, we show that the SES variables
exhibit consistent relationships with both educational attainment and the polygenic
score. The first row of panel A of Table 4 reports the proportion of individuals classified
as high SES using each of the four measures of childhood environments. For the three
variables available directly in the HRS, between 72% and 75% of respondents report
a high-SES environment, whereas the corresponding number for the imputed father’s
income variable is 51%. We explore the relationship between the polygenic score and
childhood environments in two ways. First, for each SES variable, panel A reports the
average fraction of respondents growing up in a high-SES environment by quartiles of
the EA score distribution. For example, about 70% of individuals in the first EA quartile
report that their family was either “pretty well off financially” or “average” until age
16. This fraction rises to 76% for individuals in the fourth quartile—a difference of
6 percentage points that is highly statistically significant. For all four SES variables, we
find that the fraction of high-SES respondents generally rises with higher EA quartiles,
and that we can reject the null hypothesis of zero difference in this fraction between
the fourth and first quartiles of the EA score. The largest interquartile difference in
high-SES incidence appears for the father’s income variable (14 percentage points).
Table 4 also presents the difference in average EA score for individuals classified
as high versus low SES. Again, the largest difference appears for the father’s
income: individuals with a father who earned above-median occupational income
have genetic scores that are on average higher by a little under one-fifth of a standard
deviation.

Despite these strong gradients, much of the relationship between our SES measures
and the EA score disappears after controlling for parental education. Table 4 reports
interquartile differences in high SES indicators that have been residualized on our basic
control set and measures of parental education. We find substantially less difference in
SES environments across EA quartile groups. For the “Family well off” measure and
the “Father’s employment” measure, the interquartile difference becomes insignificant
or only marginally significant. For the “Father’s income” and “Move or help” variables,
controlling for parental education attenuates the interquartile differences by at least
50%. If the polygenic score exhibits similarly modest correlations with unobserved
environments or investments conditional on parental education, these results provide
some reason to believe that associations between the EA score and human capital
outcomes are not primarily driven by gene–environment correlations. This is similar
to the point made by Altonji, Elder, and Taber (2005), who study labor market returns
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TABLE 4. Childhood SES measures and education.

SES measure: Father inc. Fam. well off Never move or ask. Father emp.
(1) (2) (3) (4)

Panel A: EA Score and Four Measures of High Family SES
Full Sample Average 0.510 0.721 0.746 0.741

EA Score Quartile 1: 0.432 0.699 0.716 0.713
EA Score Quartile 2: 0.487 0.705 0.741 0.751
EA Score Quartile 3: 0.540 0.719 0.749 0.717
EA Score Quartile 4: 0.572 0.761 0.776 0.780

Q4–Q1 0.139 0.061 0.060 0.067
p-value <0.001 0.014 0.015 0.002

Q4–Q1 (Residuals) 0.064 0.004 0.030 0.037
p-value 0.007 0.833 0.174 0.072

� EA Score for
High versus Low SES 0.196 0.122 0.143 0.104
p-value <0.0001 <0.0001 <0.0001 <0.0001

Panel B: Dep. Var—Education
High SES 0.708��� 0.592��� 0.363�� 0.092

(0.127) (0.129) (0.153) (0.123)
EA Score 0.597��� 0.610��� 0.609��� 0.613���

(0.047) (0.043) (0.045) (0.043)

Obs. 6773 8412 8385 8427
R2 0.398 0.370 0.364 0.361

Notes: Specifications relating four measures of childhood SES to education and EA score. Panel A shows how
the EA score relates to family SES. The first row shows the proportion in the sample indicating high SES for
each measure among those who report the measure. The following rows show the proportion indicating high
SES for each measure within each EA score quartile. We also report p-values for differences between the first
and fourth quartiles. We also repeat this exercise after residualizing the SES measures on our basic controls and
parental education measures. For the residualized measures, we only report differences between the first and
fourth quartiles of the EA score distribution, along with the associated p-values for these differences. Panel B
contains coefficients on measures of high SES and EA score in regressions explaining educational attainment
(years). Regressions also include a full set of dummy variables for birth year, a male dummy and a full set of
interactions between the birth year and gender dummies. Additionally, every specification includes the first 10
principle components of the full matrix of genetic data, and controls for parental education. ��, and ���indicate
statistical significance at the 10, 5 and 1 percent levels, respectively.

to Catholic schooling.42 Following this logic, adjusting for parental education bolsters
the argument that differences in childhood circumstances for individuals with similar
EA scores can be treated as conditionally exogenous.

Although there are systematic relationships between the EA score and our SES
measures, these mean differences appear to be modest compared to differences based
on parental education or the respondent’s own educational attainment. Not only are

42. The concern is that higher wages among individuals with Catholic schooling might be selected on
unobservables so that estimated returns are spurious. They argue that if the two groups are similar on
observables, they are unlikely to be so selected on unobservables as to undermine estimated returns.
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FIGURE 3. EA score distribution by own and maternal education.

the mean EA scores similar across SES groups, but the distribution of the EA score is
nearly identical across SES groups. As a point of reference, panel A of Figure 3 plots
the distribution of the EA score separately for individuals who did and did not complete
a college degree, whereas panel B does the same based on mother’s education (less
than 12 years vs. 12 or more). Unsurprisingly, there is a substantial rightward shift in
the distribution based on completing college (mean difference of 0.67), and a smaller
but substantial rightward shift based on high mother’s education (mean difference of
0.29). By contrast, Figure 4 plots the distribution of the EA score separately for high-
SES and low-SES groups based on each of our four measures. In each case, we can
reject the null hypothesis that the distributions are identical, but the differences in the
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FIGURE 4. EA score distribution by family SES.

distributions appear smaller than those based on own or parental education.43 Indeed,
the distributions across SES groups are largely overlapping. This overlap is important
for subsequent analyses that test for interactions between the EA score and childhood
SES and thus compare educational outcomes for individuals with similar scores, but
different childhood environments. Performing such an analysis would be problematic
if these distributions displayed little overlap since interactions would be identified from
comparisons of individuals in the tails of each distribution (e.g., comparing high-SES
individuals with unusually low EA scores against low-SES individuals with unusually
high EA scores). As we can see from Figure 4, the comparison of similarly scored
individuals from different SES backgrounds can be made across the distribution of the
EA score. Lack of this degree of overlap is why we do not treat parental income as an
additional SES measure, but instead use it as a control variable.

Panel B of Table 4 demonstrates that each of the SES measures are relevant
predictors of educational attainment, with the exception of the Father’s employment

43. For each measure of childhood SES, the results of a Kolmogorov–Smirnov test suggest that we can
reject the null hypothesis that the distributions of the EA score are equal for high and low SES groups with
p-value < 0.01 in all cases.
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variable. Controlling for the EA score, our basic controls, and parental education,
we find that individuals born into high-SES households are expected to complete
between 0.09 and 0.71 additional years of schooling, depending on the SES measure.
Although controlling for parental education accounts for nearly all of the gene-SES
gradient, these SES measures still contain explanatory power for education even after
we condition on both parental education and the polygenic score.

In summary, Figures 2–4 along with Table 4 provide support for three propositions.
First, both genetic endowments and childhood socioeconomic status appear to
play important roles in driving educational attainment. Second, although our SES
measures are certainly correlated with an individual’s polygenic score, it appears
that controlling for parental education accounts for much of the gene–environment
correlation that is relevant for human capital outcomes. Third, the distribution of the
polygenic score is largely similar across SES groups, which suggests we can make
meaningful comparisons of individuals with similar scores, but different childhood
SES.

3.4. Childhood SES and the Gene-Education Gradient

A large literature explores the extent to which conditions during childhood affect
completed education and later-life outcomes (Black, Devereux, and Salvanes
2005; Cunha and Heckman 2007). Of particular importance for policymakers is
understanding whether changes in these conditions (e.g., increased investments in
school quality) exert different influences on human capital accumulation for children
with different ability endowments or accumulated skills. For example, as argued
by Cunha and Heckman (2007), investments in the skills of older children from
disadvantaged backgrounds might be economically inefficient if complementarities
between investments and accumulated skills are sufficiently strong. Here we explore a
related question—whether the effects of childhood SES on human capital accumulation
differ based on levels of the endowments measured by the EA score. Our results
highlight an important sign change in the interaction between childhood SES and
the polygenic score in equations predicting educational attainment. We find that the
relationship between the polygenic score and high school completion is weaker among
individuals from high-SES backgrounds, whereas the relationship between the score
and college completion is stronger for these individuals. Environments that promote
human capital thus appear to be substitutes for genetic endowments in preventing
extremely low education levels, but may complement these endowments in producing
more advanced outcomes.

Figure 5 offers some motivating evidence of interactions between family SES and
genetic endowments. We focus on our most predictive SES measure (Father’s income)
and assign each individual to a quartile of the EA score distribution and a quartile of
the father’s income distribution, generating 16 possible combinations of SES and EA
quartile groupings. Panel A plots average rates of high school completion for each
quartile combination, whereas panel B reports the same exercise for rates of college
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FIGURE 5. Educational attainment by father’s income and EA score. Bars are plotted with 95%
confidence intervals.



Papageorge and Thom Genes, Education, and Labor Market Outcomes 1377

completion.44 For each quartile of father’s income, higher EA quartiles are associated
with a higher probability of attaining a high school degree. Moreover, within each EA
score quartile, higher levels of father’s income predict uniformly higher probabilities of
completing high school, with sharper gradients for the first two EA score quartiles. In
the lowest EA quartile, graduation probability ranges from approximately 58%–84%,
whereas in the highest it ranges from approximately 81%–96%. Genetic endowments
predict educational attainment, but childhood environments (as measured by father’s
income) also matter, especially so for individuals with lower EA scores.45

Panel B of Figure 5 repeats this exercise for rates of obtaining a college degree. As
with high school completion, higher EA scores are associated with higher probabilities
of college graduation for each quartile of father’s income. Moreover, within each EA
score quartile, father’s income predicts college graduation, especially strongly so for
the top quartile. Both genetic endowments and father’s income predict higher rates of
college completion. However, the differences in completion rates between above and
below median income groups are much higher for individuals with high EA scores.46

One particularly striking fact that emerges from Figure 5 is that childhood SES may
overwhelm genetic endowments in predicting educational attainment. In particular,
panel B of Figure 5 shows that the college completion rate in the group formed by
the lowest EA score quartile and the highest father’s income quartile exceeds the
corresponding fraction for individuals from the highest EA score quartile and the
lowest father’s income quartile, although this difference is not statistically significant.

To more formally examine whether SES moderates the relationship between the
genetic score and educational attainment, we broaden our analysis to include all four
SES measures and estimate regressions of the form

DegreeAtLeastji D Xiˇ0 C ˇSESHighSESi C ˇScoreEAScorei

CˇScore2EAScore2
i C ˇScore3EAScore3

i

CˇInt HighSES � EAScorei C "i ; (1)

where DegreeAtLeastji indicates whether individual i completed at least degree j,
with j 2 fGED; High School; Two Yr: College; College; Gradg. Here Xi contains our
standard controls (a full set of birth year dummies, a male dummy, interactions between
the birth year and male dummies, and the principle components from the full matrix of
genetic data) along with the parental education controls. Note that we include a cubic
in the EA score, since otherwise the HighSES � EAScorei interaction could reflect

44. This analysis is similar to the one in Belley and Lochner (2007), who study how parental income
predicts educational attainment for individuals with similar cognitive test scores.

45. Given that polygenic scores are not well suited to decompose the variance of a trait into genetic and
environmental components, these results must be interpreted with caution. It is possible that an updated
score could change the relative importance of the EA score versus father’s income in predicting educational
attainment.

46. Similar patterns emerge if we study college completion, but limit attention to individuals who
graduated high school. These results are generated by the replication materials accompanying this paper.
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FIGURE 6. Coefficient on the interaction between EA score and high SES for different schooling
categories with 95% confidence intervals.

nonlinearities in the relationship between education and the EA score. To further
control for population stratification, we also interact the principle components with
HighSES i and include them as additional controls.47 Figure 6 plots point estimates
of ˇInt and 95% confidence intervals for different measures of SES and for different
degree measures j. Each panel presents estimates for a different SES measure.48 The
striking pattern that emerges is that there tends to be a significant negative interaction
between SES and the score for completing at least low levels of education (high school
equivalent or high school), but there tends to be a significant positive interaction for
more advanced degrees (at least college or graduate school). To our knowledge, this
pattern has not been shown in previous literature.49

47. Throughout the paper, in specifications where we interact the EA score with some other moderating
variable, we also include interactions between the principle components and the moderating variable.

48. Regression results for this exercise, for the full sample and then separately for men and women, are
found in Online Appendix B.

49. If we use education controls as an additional measure of SES that we interact with the polygenic
score in regressions explaining educational attainment, we obtain the same patterns as we do with the
SES measures considered here. Higher parental education is associated with a steeper genetic gradient for
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FIGURE 7. Nonparametric (local polynomial) estimation relating the probability of high school
degree or more to EA score for high versus low SES for different measures of childhood SES. In
each panel, the outcome variable is the residual from OLS regression of an indicator for completing
a high school degree or more onto a set of controls and the regressor is EA score. Shaded areas depict
95% confidence intervals.

Moreover, the linear interactions presented in Figure 6 do not appear to be driven
by outliers or by very specific ranges of the EA score. The continuous nature of the
interaction is apparent from nonparametric (local polynomial) regressions describing
the relationship between educational outcomes and the EA score for different SES
groups, which are presented in Figures 7 and 8. To construct each panel of Figure 7,
we regress an indicator for having at least a high school degree on a basic set of
regressors: the genetic principal components, birth year dummies, a male dummy,
interactions between birth year and male dummies, and controls for parental education.
We then plot local polynomial regression estimates of the relationship between the EA
score and these residuals separately for high- and low-SES groups. In the panels of
Figure 8, we do the same, but the education outcome indicator is college degree or

college completion and above and with a less steep gradient for lower educational outcomes. As explained
earlier, we do not present this as a main result given evidence that the distributions of the polygenic score
differ substantially by mother’s education, which suggests comparisons are more difficult to defend.



1380 Journal of the European Economic Association

FIGURE 8. Nonparametric (local polynomial) estimation relating the probability of completing a
college degree or more to EA score for high versus low SES for different measures of childhood
SES. In each panel, the outcome variable is the residual from OLS regression of an indicator for
completing a college degree or higher onto a set of controls and the regressor is EA score. Shaded
areas depict 95% confidence intervals.

more. According to Figure 7, a higher polygenic score predicts higher education for
both SES groups. However, the relationship is stronger for individuals who grew up in
low-SES households. In contrast, Figure 8 shows that for higher educational attainment
(college degree or more), the positive relationship is stronger for children who grew
up in households with more resources.

3.5. Interpretation and Discussion of Mechanisms

The patterns in Figures 6–8 are consistent with human capital production functions
that allow the roles of family resources and the EA score to be distinct for different
outcomes at different stages of child development. Specifically, early investments
in human capital (proxied by childhood family SES) may substitute for genetic
endowments in preventing very low levels of educational attainment. However, these
same investments could complement genetic endowments in generating higher levels
of educational attainment such as college completion. It is worth mentioning that
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our findings on higher degrees are in line with a large literature showing that ability
and investments are complements (Becker and Tomes 1986; Cunha and Heckman
2007; Aizer and Cunha 2012), as well as the literature emphasizing the importance of
gene–environment interactions in producing economic outcomes. However, the idea
that genetic endowments and investments might be substitutes along some dimensions
merits further exploration.

Our results suggest that some features of high-SES environments are particularly
helpful in preventing low-score children from dropping out of high school, and in
promoting college completion among high-score children. In order for these results to
have clear policy implications, it is important to understand which specific features of
these environments matter for these interactions, and whether they can be manipulated
by policy. For example, if father’s income matters because it allows families to
afford better schooling (or reside in areas with better schools), then our results might
suggest that cash transfers to poor families, or investments in better quality public
schooling might be particularly useful in enabling the success of high-endowment
children trapped in poor environments. However, father’s income could be serving as
a proxy for other casual features of the environment (e.g., parenting style) that operate
independently from school quality. Without exogenous or isolated variation in these
features of the environment, it becomes difficult to draw firm conclusions about the
policy-relevant mechanisms that drive these interactions.

An existing literature offers some evidence on the importance of different features
of high-SES environments. For example, Belley and Lochner (2007) report stronger
interactions over time between AFQT scores and family income in explaining
educational attainment, which suggests that borrowing constraints play an increasingly
important role as tuition costs rise. As they point out, stronger interactions between
family income and AFQT scores are difficult to reconcile with a “consumption value”
of education, which has also been suggested as a way to explain a positive relationship
between family SES and college degrees. However, credit constraints are only one
possible way that family SES could alter the returns to genetic factors.50 Interactions
may also reflect physical shocks in utero or during childhood, for example, due to
parental smoking. Environmental factors such as early-life stress could also induce
changes in how genes are expressed (how they function in producing proteins), which
is one example of an epigenetic phenomenon.51

The HRS contains only limited information on intermediate outcomes and specific
human capital investments made by parents, so it is difficult to draw sharper conclusions
about the role of household environments in our sample. However, the Life History
file contains retrospective items that on the number of books in the respondent’s

50. Cohort differences are also discussed in Galindo-Rueda and Vignoles (2005), who show that the
importance of ability in explaining college degree attainment declines over time, presumably because
lower-ability people are more likely to be able to pay for college in comparison to earlier cohorts. See also
Lovenheim and Reynolds (2011) on changes by ability and income in post-secondary choices.

51. For example, Nestler (2012) discusses research showing that early-life conditions faced by mice can
induce epigenetic effects that impact their behaviors and vulnerability to stress later in life.
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household as a child, as well as whether or not the respondent went to preschool.
Existing research suggests both of these investments are linked to human capital
accumulation and skill formation.52 Additionally, the Life History file also contains a
question on the number of people who lived in a respondent’s household at age 10. The
number of people in the household is relevant because it contains information on the
number of children and other dependents in the household with claims on household
resources. As noted in the literature on the quantity–quality tradeoff in fertility, poorer
households may find it optimal to have more children and choose to invest less intensely
in their human capital (Becker 1960; Hotz, Klerman, and Willis 1997). In results in
Online Appendix B, we show that books, preschool attendance, and a lower number of
individuals in the household are all associated with increased educational attainment.
These measures are positively correlated with our SES measures, even after controlling
for parental education. For example, regression evidence suggests that after controlling
for parental education, individuals with above-median father’s income are more likely
to have at least one full bookcase in the household (difference of 0.059), are more
likely to have attended preschool (difference of 0.049), and are less likely to have
more than five people living in the household (difference of 0.067). This provides
suggestive evidence that higher SES households complement higher polygenic scores
through the kinds of early childhood investments that have been highlighted in existing
research. However, this evidence is merely suggestive; without exogenous variation
and more complete data on rearing environments and early childhood outcomes (e.g.,
performance at school), we cannot rule out the possibility that these measures are
simply acting as proxies for different causal mechanisms (e.g., low income and binding
credit constraints at college enrollment age).

3.6. Robustness and Sensitivity

Our estimates of interactions between the polygenic score and family SES are
consistent with different roles for family resources depending on the level of
education, which would suggest restrictions on the production function for human
capital.53 However, we cannot rule out other accounts related to measurement error
or correlations between environmental factors and advantageous parental genetic
endowments. For example, it could be the case that actual investment levels (which we
proxy with SES) are a positive function of both observed SES and the child’s genetic
endowment.54 If this is true, then SES will increasingly underestimate investment as
the child’s genetic endowment grows.

52. The number of books in a household has been used in earlier literature examining the production of
cognition to proxy for parental investments in their children (see, e.g., Cunha and Heckman 2008).

53. In related work, Todd and Wolpin (2003) suggest that typical approaches to estimating the production
of cognition may be overly restrictive. Our findings are related since they suggest that ability and investments
interact in complex ways (that possibly vary by schooling level) to generate educational outcomes.

54. Investments could rise with the child’s genetic endowment because parents target resources, or
because children with high endowments also have parents with high endowments who provide more
resources.
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To help guide our interpretation of estimates, in Online Appendix C we develop
a simple econometric model that incorporates several features of our setting,
including: (i) using family SES to measure human capital investments introduces
measurement error; (ii) investments in children are potentially affected by children’s
genetic endowments; (iii) these investments can also be affected by parents’ genetic
endowments, for example, if parents’ genes lead to higher parental education, wealth
or income; and (iv) children’s genetic endowments are a function of their parents’
genetic endowments.55 Using the model, we show that, under a reasonable set of
assumptions, such a scenario will result in bias in the magnitude but not the sign of
gene-investment interaction effects that we estimate. Therefore, the sign change in the
estimated interaction between genes and investments in low versus high educational
outcomes is key. It is not a necessary condition for differences in the interaction effect,
but it is a sufficient condition for the existence of such differences. We also show in
Online Appendix C that we cannot guarantee the identification of the interaction sign
if we use a more traditional measure of ability such as IQ or cognitive test scores,
which may be directly affected by investments. In other words, a key benefit of using
genetic data to infer how genetic endowments interact with human capital investments
is that genetic endowments are fixed and therefore not simultaneously affected by
investments, even if they are correlated with them. It is also noteworthy that our
pattern of interactions is robust across a number of distinct measures of SES with
different patterns of correlation with the EA score. This suggests that the interactions
we find do not primarily reflect correlation between parental genetic endowments and
environments.56

Other factors might threaten identification of the interaction term. An omitted third
factor could affect education, but exhibit a different relationship with EA score for each
SES group. One possibility is that our binary childhood SES measures mask differences
in how household resources rise with genetic endowments. Another possibility is that
there are additional genetic factors driving education that relate to the polygenic
score in different ways across SES groups. In both cases, we have not identified
true complementarities, but instead have captured omitted factors. Finally, there may
also be classification error that differs by group if, for example, individuals with
lower polygenic scores are more likely to misclassify their childhood SES. The ideal
experiment to test for these effects would involve a random assignment of resources

55. As mentioned earlier when we discuss our standard control set, the model motivates why we allow
for heteroskedastic error terms and include a polynomial in the polygenic score for all specifications, which
helps to control for measurement error.

56. Another possibility is that the interactions that we estimate arise from nonlinearities in the human
capital production function. Suppose that the genetic score is related to education in a nonlinear fashion,
and that SES is correlated with the genetic score. Then we could estimate significant score–SES interactions
that have nothing to do with differences in the production function across SES groups. That is, an interaction
between the score and observed SES may simply reflect an underlying nonlinear relationship between the
score and education. As discussed earlier, we control for nonlinearities through a cubic in the EA score for
all specifications examining the interaction between the EA score and childhood SES to explain educational
attainment. We thank Jonathan Beauchamp for pointing out this possibility.
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that can be manipulated by policy (e.g., household income) to individuals with different
genetic scores.

Although we cannot rule out the threats to identification rooted in selection on
unobservables, the distributions of the polygenic score by SES group plotted in
Figure 4, in particular the substantial overlap, help to allay some concerns. The
reasoning is similar to that in Altonji, Elder, and Taber (2005). The plots demonstrate
that when we divide the sample by childhood SES, the resulting groups are quite
similar with regard to an important and relevant observed source of heterogeneity.
Similar polygenic scores across groups provide some support for the assumption that
individuals are similar on unobserved factors as well, that is, that estimated differences
in returns to genetic endowments by childhood SES are not the result of selection on
unobservables.57

We also acknowledge that our conclusions here are based on a fairly large number
of specifications that span four different SES measures and five different educational
outcomes. This raises the possibility that our results could be false positives that
emerge from multiple hypothesis testing. In Online Appendix E, we adjust the
p-values associated with our main hypothesis tests to account for multiple comparisons.
We continue to have strong statistical evidence for multiple SES–EA score interactions
even after applying these corrections.

4. Genes and Labor Outcomes

Results from the previous section suggest that low-SES environments reduce the
returns to genetic endowments by lowering the probability of college attendance. This
is particularly important in light of the substantial rise in the earnings premium for a
college degree over the last several decades. However, earnings depend not only on
completed education, but also on the returns to endowments conditional on education.
High-score individuals who are shut out of college due to childhood poverty might still
receive an earnings premium if the genetic endowments measured by the EA score are
also associated with skills valued in the labor market. This motivates an analysis of the
relationship between the score and earnings conditional on education.

The questions we ask here are related to a longstanding literature on the returns
to ability. At least since Becker and Chiswick (1966), labor economists have been
concerned with ability bias in estimating the relationship between schooling and
various economic outcomes. If the unobserved factors that promote education also
independently predict labor market success, then estimates of the return to schooling
will be biased upward. This concern not only raises an econometric point; it also poses

57. In results available from the authors, we assess robustness if we restrict attention to individuals who
are not in the tails, that is, if we rerun regressions dropping individuals with EA scores in the top or bottom
5%. We continue to find positive and significant interactions between SES and the EA score in predicting
college completion. However, we note that with this restriction many of the interaction terms become
insignificant in the specifications predicting high school completion.
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fundamental questions about the structure of heterogeneity in labor market decisions
and outcomes. How and to what extent do the characteristics or traits that promote
education also affect earnings over the life-cycle? Observing the EA score thus also
allows us to make some progress on this larger question, demonstrating how previously
unobserved factors might not only drive education, but also several other outcomes
conditional on education.

4.1. The EA Score and Earnings

We begin by describing the relationship between the EA score and earnings over the
life-cycle. Panel A of Figure 9 plots the relationship between age and the unconditional
average earnings of men in our sample separately by terciles of the EA score. Each
tercile group exhibits a classic concave age-earnings profile, with earnings rising until
approximately age 55, then falling afterward. At every age, earnings are higher for
individuals in higher EA terciles. To explore whether this pattern also holds conditional
on education, we next regress earnings on controls for own and parental education and
plot the residuals separately by EA tercile.58 Residual earnings diverge considerably
as respondents age, and for most ages in the range 40–60 we can reject the null
hypothesis that residual earnings are equal across the top and bottom terciles. Together
both panels suggest that the EA score predicts higher earnings, this gradient is not fully
explained by educational attainment, and it becomes larger as individuals age. We note
that this pattern of divergence would not be fully captured by a standard fixed effects
model, since fixed effects do not change over time by construction. This illustrates
how observable measures, such as the EA score, can help us to better understand
the structure of heterogeneity in labor outcomes. These patterns are also consistent
with findings of Altonji and Pierret (2001), who demonstrate that measures of labor
market ability that are presumably difficult to observe, like the AFQT, become better
predictors of wages as individuals age and accumulate more experience.59

Table 5 presents more formal estimates of the relationship between the EA score and
log earnings. Here we restrict the sample to all person-year observations for men aged
25–64 with at least $10,000 of annual earnings.60 Standard errors are clustered at the
person level. Panel A contains our baseline specification, which regresses log earnings

58. Specifically, we include our standard controls, years of father’s and mother’s education separately,
dummies for missing values of father’s and mother’s education, years of own education, and separate
dummies for each possible completed degree.

59. Altonji and Pierret (2001) attribute this empirical pattern to the dynamics of employer learning. Early
in an individual’s work history, firms make wage offers conditional on easily observable characteristics
such as educational attainment that are useful but are not sufficient to describe a worker’s true productivity.
Measures like the AFQT might better capture the worker characteristics that are relevant for productivity,
but firms typically have a hard time observing these proxies. However, as workers age and accumulate
experience, employers learn more about worker characteristics. Consequently, as workers age, the
correlation between wages and these proxies for hard-to-observe ability should increase.

60. The threshold of $10,000 is arbitrary, but this is chosen to restrict the sample as much as possible to
full time workers and exclude those who are marginally attached the labor force.
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FIGURE 9. The EA score and life-cycle income. Panel A plots the nonparametric (lowess)
relationship between age and earnings levels by EA tercile. Panel B plots mean residual log earnings
for each age by EA score tercile. Shaded areas depict 95% confidence intervals around these means
for the top and bottom terciles.

on the EA score and a controls set that consists of the principal components, as well as
dummy variables for age, year, and birth year. As seen in column (1) of panel A, without
any controls for own education a one standard deviation increase in the EA score is
associated with an increase in log earnings of 0.079. In column (2) we add controls
for own education (years of schooling and a full set of degree dummy variables) and
parental education. Controlling for education and parental background, we estimate
a coefficient on the EA score of 0.032, which remains highly significant. Thus far,
we have assumed that the returns to the EA score would be the same regardless of an
individual’s level of education. However, returns to the EA score might plausibly differ
based on an individual’s level of completed schooling. For example, we might expect
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TABLE 5. Polygenic score and earnings.

Panel A: Log Earnings:
Basic specifications (1) (2) (3) (4)

EA Score 0.079��� 0.032��� 0.025�� 0.041���
(0.009) (0.009) (0.010) (0.011)

EA Score � College 0.016
(0.020)

Obs. 96721 96721 96510 57469
R2 0.143 0.189 0.192 0.150
Age Group 25–64 25–64 25–64 40–64
Period All Years All Years All Years All Years
Educ. Controls N Y Y Y
Parent Controls N Y Y Y

Panel B: Log Earnings:
By time and cohorts (1) (2) (3) (4) (5)

EA Score �0.010 0.009 0.018�� 0.026��� 0.011
(0.007) (0.007) (0.008) (0.008) (0.008)

EA Score � Post 1980 0.077��� 0.039��� 0.043���
(0.013) (0.013) (0.010)

EA Score � BY > 1942 0.031� 0.009 �0.010
(0.019) (0.019) (0.019)

College � Post 1980 0.276��� 0.256���
(0.031) (0.024)

College � BY > 1942 0.152��� 0.041
(0.045) (0.044)

Obs. 96721 96510 96721 96510 96510
R2 0.194 0.204 0.192 0.196 0.206
Ed. Groups All All All All All
Period All Years All Years All Years All Years All Years
Educ. Controls Y Y Y Y Y
Parent Controls Y Y Y Y Y

Notes: Regressions relating the EA score to log earnings. In the first three columns of panel A, we restrict
the sample to earnings records for men between the ages of 25 and 64 over the years 1951–2013. We further
restrict the sample to person-years in which the respondent earned more than $10,000 in real 2010 dollars. In
column (4), the sample is narrowed to cover person-years in which respondents are aged between 40 and 64.
The specifications in panel B cover ages 25–64 and years 1951–2013. The dependent variable is the log of real
earnings. All regressions include the first 10 principle components of the full matrix of genetic data along with
a full set of dummy variables for birth year, calendar year, and age. As noted in the table, some specifications
include controls for parental education (years of paternal and maternal education and dummies indicating missing
values for each) and own education (years of schooling and a full set of completed degree dummies). Standard
errors in all specifications are clustered at the person level. �, ��, and ���indicate statistical significance at the
10, 5 and 1 percent levels, respectively.

there to be larger returns to genetic endowments if formal education is a productive
complement with ability in generating productive skills. Consequently, we explore
whether there is any interaction between the genetic score and having at least a college
degree. The results in column (3) do not allow us to reject the null hypothesis that
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there is no additional return for those with a college degree.61 However, we do note in
robustness exercises that there appears to be a larger return for college graduates when
we consider self-reported wages in the HRS as the dependent variable.62 Importantly,
we find no evidence that high-EA score individuals without a college degree experience
sufficient returns on their endowments to compensate for the lack of a degree. Finally,
in column (4) we restrict the sample to individuals aged 40–64 and re-estimate our
basic specification from column (2). We find a larger association between the EA
score and earnings conditional on education for this older sample (0.041 vs. 0.032),
consistent with the pattern suggested by panel B of Figure 9.

In panel B, we examine whether the association between the score and earnings has
evolved over time or across cohort groups. This is motivated by the large literature in
labor economics demonstrating a rise in the return to skill and an increase in residual
income inequality over the last several decades (Lemieux 2006; Autor, Katz, and
Kearney 2008; Acemoglu and Autor 2011; Lochner and Shin 2014). In column (1), we
interact the score with an indicator for years after 1980, when massive technological
changes emerged in the work place, such as the advent of computers. We find that
the coefficient on the EA score goes to zero whereas the interaction between the
EA score and post-1980 is large and significant (0.077).63 However, it could be that
the higher returns to the EA score after 1980 simply reflect the post-1980 increases
in the college wage premium. In column (2), we include a college degree dummy
interacted with the post-1980 dummy to account for this. Indeed, we find an increase
of 0.276 in the log-earnings premium associated with a college degree after 1980.
Adding this interaction causes a reduction in the coefficient on the EA score post-1980
interaction to 0.039, but it remains highly statistically significant. Results using the
post-1980 dummy could reflect either a time or cohort interaction, since the correlation
coefficient between year of birth and calendar year in our earnings sample is over 0.60.
In column (3), we instead interact the genetic score with an indicator for being born
after 1942 (median birth year in the wage sample). The coefficient on the interaction is
close to zero. In column (4), we add an interaction between college and education being
born after 1942 to the specification in column (3) and find a substantial interaction
between post-1942 birth cohorts and having a college degree (0.152), but a small
and insignificant interaction between the EA score and post-1942 birth cohorts. In
column (5), we include all interaction terms from the specifications in columns (2) and

61. To control for possible population stratification, we also include interaction terms between the
principal components and the indicator for a college degree.

62. In Online Appendix B, we also show that there appear to be substantially larger wage returns to the
EA score for individuals with a college degree. This difference is statistically significant when estimating
an a wage equation using self-reported wage data from the HRS. When we restrict the SSA earnings data
to match the years and ages of the HRS sample, we find point estimates that suggest a larger return to the
EA score among college graduates, although the difference in returns between those with and without a
college degree is not statistically significant.

63. To control for population stratification, we always include interactions between the principle
components and the “Year > 1980” and “Birth Year > 1942” indicators whenever these binary variables
are interacted with the EA score in panel B of Table 5.
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(4). We only find statistically significant interactions between the EA score and post-
1980 years, and between having a college degree and post-1980 years. This suggests
that something about the labor market changed after 1980 to alter the returns that
individuals experienced to the characteristics summarized by the EA score, regardless
of their birth cohort.64

One limitation of the SSA data is that they do not contain information on hours
worked, preventing an analysis of wages. This raises the possibility that our results
on earnings could be driven by differences in labor supply instead of changes in
productivity. Indeed, in Online Appendix B, we find that men with higher values of
the EA score are more likely to work, and are less likely to retire in a given year. Here
the self-reported earnings data in the HRS are useful, even though they are limited to
observations on older men after 1990. In Online Appendix B, we find that the EA score
exhibits similar associations with both the log of self-reported earnings and the log of
self-reported wages in the HRS, suggesting that our earnings results are unlikely to be
driven by labor supply differences.

Our earnings results suggest two key points. First, the EA score measures individual
traits or characteristics that earn a premium in the labor market, above and beyond
completed schooling. Second, this additional return to the EA score appears to have
grown over time, and after 1980 in particular. This timing is significant because a large
literature documents not only a rise in the returns to schooling beyond this point, but a
rise in the returns to observable measures typically associated with labor market ability.
Murnane, Willett, and Levy (1995) find that the returns to cognitive skills (measured
by math test scores) were larger in the 1980s compared to the 1970s for young workers.
Similarly, Gould (2002) provides evidence of a rise in the returns to intelligence based
on evidence from cognitive tests scores.65

4.2. Genes, Job Tasks and Skill-Biased Technological Change

The empirical patterns demonstrated in the previous section are consistent with
the ongoing rise in the returns to skill. This phenomenon is often explained by
the complementarity between certain skills or abilities and the introduction of new
technologies during this time period (Acemoglu 1998). Some individuals may have a
greater capacity for learning how to use new technologies, either because of genetic
endowments or because of past human capital investments. Such individuals may find
it easier to adapt to technological shocks and use them to enhance their productivity
in the workplace. If the EA score captures such an ability to learn new skills,

64. One potential confounding factor is the sharp drop in the extent of top-coding patterns in the SSA
data that occurred in the late 1970s and early 1980s. As described in Online Appendix B, the divergence
in earnings between EA terciles appears to happen continuously after 1980 at a time when the top-coding
scheme was relatively stable. This suggests that the post-1980 rise in the association between the EA score
and earnings is unlikely to be solely due to changes in top-coding.

65. Further contributions to this literature include Juhn, Murphy, and Pierce (1993), Taber (2001), and
Tobias (2003).
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then the rising return to genetic endowments may be a consequence of skill-biased
technological change (SBTC). This suggests an interesting extension to the idea of
gene–environment interactions, which are often thought of as pertaining to household
environments or other investments made in human capital. Our results suggest that
another environmental factor is the state of technology, which can unexpectedly shift
over time, making some genetic endowments more or less productive in ways that are
difficult to anticipate and plan for.

To examine whether SBTC can help to explain wage returns to ability across birth
cohorts, we next consider how the EA score relates to job tasks. The literature on SBTC
has implicated computerization as an important driver of rising returns to cognitive
skills. In a review of the literature Katz and Autor (1999) discuss many reasons why
increased access to computers shifts the demand for skilled labor. For example, it
could be the case that skilled workers are “more flexible and facilitate the adoption of
new technologies so that all technological change increases the relative demand for
more-skilled labor” (p. 1535). Alternately, more skilled workers might be able to work
more creatively with available information.

In an influential study, Autor, Levy, and Murnane (2003) link computerization and
SBTC to the tasks that workers perform on the job. Specifically, Autor, Levy, and
Murnane (2003) argue that computerization should substitute for the labor of workers
with jobs that involve repetitive tasks that follow explicit rules or patterns (routine
tasks). Conversely, computerization should complement the labor of workers who
carry out nonroutine tasks that involve “problem-solving and complex communication
activities”. Autor, Levy, and Murnane (2003) use the Department of Labor’s Dictionary
of Occupational Titles to measure the intensity of five relevant tasks types: (i)
nonroutine analytic (use of math); (ii) nonroutine interactive (direction, control and
planning); (iii) routine cognitive (set limits, standards and tolerances); (iv) routine
manual tasks (finger dexterity); and (v) nonroutine manual (eye, hand, and foot
coordination). Examining patterns within education, occupation, and industry groups,
Autor, Levy, and Murnane (2003) indeed find that computerization has been associated
with a rise in nonroutine cognitive tasks, and a reduction in routine cognitive and routine
manual tasks.

Data from Autor, Levy, and Murnane (2003) provide measures of how intensely
every Census occupation uses the five job tasks listed previously.66 Although the
public release of the HRS contains masked aggregated occupation codes, we use the
detailed occupation codes available in the restricted Industry and Occupation Data
file. Since a given task intensity has no natural interpretation, we standardize each
intensity to have a mean of zero and a standard deviation of one. Table 6 presents
estimates of the relationship between the genetic score and the task intensity for
the occupation. The specification here includes all person-year observations for men

66. Data on the task intensities associated with each occupation can be found on David Autor’s website:
http://economics.mit.edu/faculty/dautor/data/autlevmurn03. The Autor, Levy, and Murnane (2003) task
intensity measurements that we use are based on the 1991 Dictionary of Occupational Titles associated
with male workers.

http://economics.mit.edu/faculty/dautor/data/autlevmurn03
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TABLE 6. Polygenic score and standardized job tasks.

Dep var. Nonroutine Nonroutine Routine Routine Nonroutine
analytic interactive cognitive manual manual

(1) (2) (3) (4) (5)

Panel A:
EA Score 0.248��� 0.185��� �0.080��� �0.147��� �0.021

(0.024) (0.022) (0.023) (0.022) (0.025)

Obs. 9948 9948 9948 9948 9948
R2 0.104 0.068 0.028 0.052 0.032
Educ. Controls N N N N N

Panel B:
EA Score 0.073��� 0.055�� 0.021 �0.009 0.026

(0.023) (0.022) (0.023) (0.022) (0.026)

Obs. 9948 9948 9948 9948 9948
R2 0.286 0.173 0.094 0.160 0.048
Educ. Controls Y Y Y Y Y

Notes: Regressions relating EA score to job tasks. In both panels, the dependent variable is job task intensity, as
constructed by Autor, Levy, and Murnane (2003). We standardize each task measure by subtracting its mean and
dividing by its standard deviation within our sample. All regressions include the first 10 principle components of
the full matrix of genetic data, as well as a full set of dummies for birth year, calendar year and age. Specifications in
panel B include controls for parental education (years of paternal and maternal education and dummies indicating
missing values for each) and own education (years of schooling and a full set of completed degree dummies). In
all columns the sample is restricted to men between the ages of 50 and 64. Standard errors are clustered at the
person level. ��, and ���indicate statistical significance at the 10, 5 and 1 percent levels, respectively.

between the ages of 50–64 with nonmissing occupation data. Panel A regresses the job
task intensities on the principal components, and a full set of age, year, and birth year
dummies. Importantly, we do not include controls for parental or own education in these
specifications.

The results in panel A suggest that the EA score is positively associated with both
nonroutine analytic and interactive tasks, and negatively associated with routine tasks.
We find no evidence of an association with nonroutine manual tasks. These results
are consistent with the proposition that the EA score is associated with job tasks that
were complemented by computerization. However, the associations in panel A may
reflect the associations between completed schooling and occupation. In panel B, we
repeat the specifications in panel A but now control for parental and own education.
After controlling for education, we still find a positive association between the EA
score and the nonroutine analytic tasks. A one-standard-deviation increase in the EA
score is associated with a 0.073 standard deviation increase in nonroutine analytic
task intensity, and a 0.055 standard deviation increase in nonroutine interactive task
intensity. We find no statistically significant associations between the EA score and
other task intensities after controlling for education.

Given the results present in Table 6, we explore whether we observe a similar
relationship between the EA score and nonroutine analytic tasks across education
groups. In particular, Figure 10, plots the EA score against the standardized nonroutine
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FIGURE 10. The EA score and math task (nonroutine analytic). Nonparametric (lowess) estimation
relating nonroutine analytic task intensity to the EA score separately for those with and without a
college degree.

analytic task intensity for respondents with and without a college degree. For either
education group, individuals with higher scores are more likely to be in occupations
where they perform more sophisticated tasks. This may help explain patterns shown
in Figure 9, which shows that higher scores predict higher earnings after adjusting for
education. However, these figures also highlight one source of the college premium.
Across the entire EA score distribution, individuals without a college degree are
predicted to have a lower average intensity of this task than individuals with a college
degree.

The results presented in this section add some nuance to our conclusions regarding
genetic endowments and earnings. The gene-earning gradient only appears after 1980
in the SSA data. This pattern appears quite consistent with complementarities between
technological change and genetic proclivity for learning. This account is bolstered
by the positive association between the score and nonroutine cognitive job tasks.
Yet, although individuals with high polygenic scores and across education groups
profit from new technologies, the college premium remains massive. Importantly, the
genetic gradients in both earnings and job tasks are roughly similar for individuals with
and without a college degree. This suggests that high-EA individuals without a college
degree do not find ways to easily sort into jobs with tasks that heavily complement
new technologies. Genetic endowments do not compensate for a lack of a college
degree in the labor market. Coupled with our earlier finding that college completion
for individuals with similar scores depends in large part on childhood SES (e.g., father’s
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income), results in this section suggest that there may be unrealized human potential
in the economy.67

5. Discussion

Recent breakthroughs in behavioral genetics—most notably the research presented in
Rietveld et al. (2013), Okbay et al. (2016), and Lee et al. (2018)—allow researchers to
observe genetic endowments that robustly explain educational attainment. Using HRS
data, we show that up to 7.4% of the variation in educational attainment is explained by
the genetic index presented in Lee et al. (2018) (the EA score). Childhood SES appears
to moderate the relationship between this index and various levels of educational
attainment—particularly obtaining a college degree. The endowments measured by this
index also predict earnings, job tasks, and labor supply later in life. Finally, we provide
novel evidence that the wage premium associated with the genetic index has risen over
time. We argue that structural changes in the economy, and skill biased technological
change in particular, may have contributed to a rise in the genetic gradient.

An important caveat to our results is that the genetic endowments measured by the
EA score are not exogenously assigned. Individuals with higher values of the EA score
necessarily have birth parents with high values of the EA score, making it difficult
to determine how much of the associations we estimate arise from the biological
traits linked to these genetic markers, or to the positive environments provided by
their parents. Nevertheless, results from previous studies using within-family designs
suggest that the majority of the associations used to construct the score remain even
after controlling for family fixed effects. Controlling for parental education seems to
account for much of this gene–environment correlation. Nevertheless, the associations
we report conditional on education might still reflect unmeasured investments or other
features of the environment that are not observed in the HRS data.

Our results suggest several interesting avenues for future research. Observed
genetic heterogeneity could be incorporated into structural models that are often
devised for use in ex ante policy evaluation. Such models could be used to explore
long-run dynamics, such as intergenerational mobility, or to better understand how
education policy can reduce inequality. The structure of heterogeneity assumed in
these models is often tremendously important in driving predictions about labor

67. In Online Appendix B, we conduct a similar analysis to the one used to generate Figure 5, relating
quartiles of father’s income and of the EA score to the average annual earnings in adulthood. The aim
is to assess whether education differences predicted by interactions between the EA score and father’s
income shown in Figure 5 translate to earnings differences. We find that earnings for individuals in the
lowest EA score quartile but the highest father’s income quartile have average annual earnings that are
similar to individuals in the lowest father’s income quartile and the highest EA score quartile. We also find
some inconclusive results on how the SES-earning gradient changes across EA score quartiles. Examining
differences in average earnings between the fourth and second quartiles of father’s income suggests that the
SES-earning gradient is substantially higher for individuals in the top three EA score quartiles compared
to the bottom quartile. However, there is no clear pattern when examining differences in average earnings
between the fourth and first quartiles of father’s income.
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market dynamics. For example, in a seminal contribution to the field, Keane and
Wolpin (1997) suggest that 70% of the variability in the career paths of young men
is driven by heterogeneity in unobserved factors (at age 16). When building these
kinds of models, researchers face a large number of choices about how to model
heterogeneity—from picking which parameters to make random, to determining the
structure of correlation between unobservables. The results presented here may offer
some restrictions on the structure of heterogeneity in these models. For example, our
estimates offer some empirical benchmarks on how the unobservable genetic factors
that drive education relate to wages and wealth, conditional on education. Our findings
also point to possible differences in the education production function for high school
versus college completion.

Another extension of the literature would seek to combine the polygenic score
studied here with more exogenous measures of childhood SES. We believe that
plausible assumptions allow us to at least sign the interaction between genetic
endowments and childhood SES, even though these may be simultaneously determined
by parental genes. Nevertheless, more robust inferences could be made with access
to randomly assigned childhood circumstances or investments. Indeed, in any ex post
evaluation of an existing policy, the genetic score can be used to detect the presence
of heterogeneous effects by genetic endowments.

Another important task is to better understand the mechanisms that link the
polygenic score studied here and economic outcomes. In ongoing work, we try to
understand the relationship between the score, beliefs formation and the ways in which
people make health and financial decisions. If the genetic underpinnings of education
function through their impact on how people process new information, then this might
offer clues as to how policies could be designed to better maximize the potential of
individuals with disparate ability endowments. Such insights might ultimately guide
the design of school curricula or the content of interventions such as job-training
programs.

More broadly, a recurring theme in our empirical results is that individuals with
similar abilities, but born into different socioeconomic circumstances, face diverging
economic outcomes. These findings suggest an important role for policies that invest
in poor children and, more generally, provide some support that such investments
could mitigate inefficiently low investments in human capital (Heckman and Masterov
2007). Our findings on wasted potential complement mounting evidence from a
variety of fields suggesting the misallocation or squandering of human resources.
Researchers have reached this conclusion in different ways. For example, Hsieh et al.
(2019) show evidence that innate talent, especially among blacks and women, is likely
misallocated across occupations, and highlight the implications of misallocation for
economic growth in the United States. In another study, Chetty, Henden, and Katz
(2016) demonstrate that randomly assigned vouchers that move children from high-
poverty to less-poor neighborhoods can improve labor market performance in the long
run. This suggests that policy-relevant factors affect how well a child with a given set
of endowments will eventually perform.
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