Corrigendum: A logrank test-based method for sizing clinical trials with two co-primary time-to-event endpoints

(10.1093/biostatistics/kxs057)

TOMOYUKI SUGIMOTO*

Department of Mathematical Sciences, Hirosaki University Graduate School of Science and Technology, 3 Bunkyocho, Hirosaki, Aomori 036-8561, Japan tomoyuki@cc.hirosaki-u.ac.jp

TAKASHI SOZU

Department of Biostatistics, Kyoto University School of Public Heath, Kyoto 606-8501, Japan

TOSHIMITSU HAMASAKI

Department of Biomedical Statistics, Osaka University Graduate School of Medicine, Suita 565-0871, Japan

SCOTT R. EVANS

Department of Biostatistics, Harvard University School of Public Heath, Boston, MA 02115-6018, USA

In the article by Tomoyuki Sugimoto *et al.* ('A logrank Test-Based Method for Sizing Clinical Trials With Two Co-Primary Time-to-Event Endpoints'), there were errors on pages 409–421 of issue 14(3) of *Biostatistics*.

In Section 4.2 on p. 418, the article described "the total sample size is 928 commonly for the three copulas when $\rho=0$. When $\rho=0.3,0.5$, and 0.8, they are 928, 926, and 924 for the Clayton copula; 926, 922, and 920 for the Gumbel copula; and 926, 924, and 920 for the Frank copula." However, these numbers were calculated with the two hazard ratios $\psi_1=1.77$ and $\psi_2=1.39$, not $\psi_1^{-1}=1.77$ and $\psi_2^{-1}=1.39$. The corrected numbers are as follows:

ρ	Clayton	Gumbel	Frank
0.0	1220	1220	1220
0.3	1218	1210	1212
0.5	1216	1202	1204
0.8	1210	1188	1188

Also Figure 1 on p. 419 is corrected as below. The authors apologize for these errors.

^{*}To whom correspondence should be addressed.

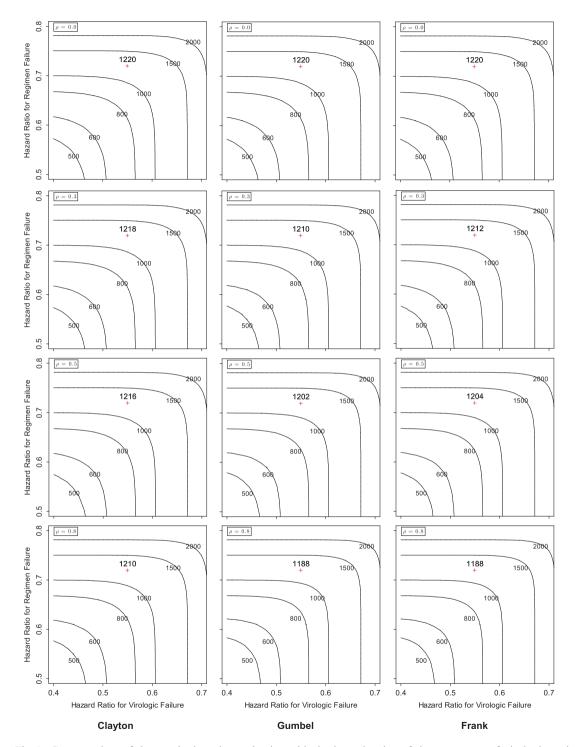


Fig. 1. Contour plots of the required total sample size with the hazard ratios of time-to-events of virologic and regimen failures, and correlation for the three copulas. The sample size was calculated to detect the joint reduction for both time-to-event outcomes with the overall power of 0.90 at the one-sided significance level of 0.0125, where $\rho = \rho^{(1)} = \rho^{(2)} = 0.0$, 0.3, 0.5 and 0.8; $S_1^{(1)}(96) = 0.75$ and $S_2^{(1)}(96) = 0.55$; $\tau_2 = 0$, and $\tau_f = 96$; $a^{(1)} = 0.5$.