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Abstract

Communication between the nervous and immune systems is required for the body to regulate 

physiological homeostasis. Beta-adrenergic receptors expressed on immune cells mediate the 

modulation of immune response by neural activity. Activation of Beta-adrenergic signaling results 

in suppression of anti-tumor immune response and limits the efficacy of cancer immunotherapy. 

Beta-adrenergic signaling is also involved in regulation of hematopoietic reconstitution, which is 

critical to Graft-versus-Tumor (GvT) effect and Graft-versus-Host disease (GvHD) following 

allogeneic hematopoietic cell transplantation (HCT). In this review, the function of Beta-

adrenergic signaling in mediating tumor immunosuppression will be highlighted. We will also 

discuss the implication of targeting Beta-adrenergic signaling to improve the efficacy of cancer 

immunotherapy including the GvT effect, and to diminish the adverse effects including GvHD.
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I. Introduction

Cancer immunotherapy is a new modality of therapies that exploit the immune system to 

recognize and destroy cancer. It is based on improved understanding of the intricate cellular 

and molecular mechanisms controlling immune responses and a growing explication of 

oncology including the discovery of mutation instigated neoantigens.1 Generally, cancer 

immunotherapy has been categorized as active immunotherapy, which boosts activation of 

the immune system to attack cancer cells, such as tumor vaccines2–3 and dendritic cell (DC) 

based-immunotherapy,4 and passive immunotherapy, which harnesses existing components 

of immune responses that include using monoclonal antibodies,5–7 cytokines,8 and adoptive 

transfer of T cells9–10 and natural killer (NK) cells11–12 to treat cancer patients. Most 

recently immune checkpoint inhibitors, which are monoclonal antibodies against the 

inhibitory signaling pathways of programmed cell death protein 1 (PD-1) and cytotoxic T 

lymphocytes antigen 4 (CTLA-4), have shown promising efficacy in clinical trials of a broad 
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range of solid and hematological cancers, and therefore led to FDA approvals for clinical use 

to treat a rapidly rising list of cancers.13–14 On the other hand, genetically engineered T 

lymphocytes that express chimeric antigen receptors (CARs) or T cell receptors (TCRs) 

have emerged as another effective approach of caner immunotherapy.15 In 2017, two of 

CAR-T cell therapies, marked as KYMRIAH and YESCARTA, have been approved by FDA 

for treatment of certain types of B-cell precursor acute lymphoblastic leukemia and certain 

types of large B-cell lymphoma and non-Hodgkin lymphoma. Furthermore, personalized 

therapeutic cancer vaccines have also been demonstrated as a potent treatment strategy for 

cancer patients recently.16–18 However, there are still limitations in these immunotherapies. 

Both CAR-T cell therapy and immune checkpoint blockade therapy are restricted to certain 

types of cancer and a small population of cancer patients.19–20 Resistance to immune 

checkpoint blockade and CD19-targeted CAR-T cell therapy was also found in cancer 

patients.21–22 Severe and even lethal adverse side effects have recently been reported in 

many patients treated with PD-1 and CTLA-4 blockade.23–24 For example, severe diarrhea, 

colitis, increased alanine aminotransferase levels, inflammation pneumonitis, and interstitial 

nephritis have been reported in patients with various type of cancer.25–27 Therefore, to 

improve the efficacy and safety of cancer immunotherapy, enormous and challenging 

research work still needs to be performed to further elucidate the complex mechanisms 

underlying the dysfunction of immune response to cancer, which includes 

immunosuppression in tumor microenvironment, host systemic immunosuppression, tumor 

heterogeneity including gene mutations and neoantigens in tumor cells.

The regulation of immunity by nervous system has been identified in various conditions 

including inflammatory and autoimmune diseases.28–32 Activated neurons release 

neurotransmitters and other regulatory molecules, which engage corresponding receptors, 

including adrenergic receptors expressed on macrophages, dendritic cells, T cells and other 

immune cells, and facilitate neural regulation of immune responses.33–35 In the tumor 

context, nervous system is also involved in the tumor microenvironment.36–37 In addition to 

directly promoting tumor cell growth, invasion and tumor angiogenesis,38–39 neuronal input 

also mediates immunosuppression in the tumor microenvironment.36, 40 Furthermore, 

sympathetic nervous system (SNS) is also involved in regulation of hematopoiesis.41 Here, 

we summarize the mechanistic insights in the suppressive role of Beta-adrenergic signaling 

in immune response to cancer and highlight the implication of Beta-adrenergic signaling 

blockade in the improvement of cancer immunotherapy. The function of Beta-adrenergic 

signaling in GvT effect and GvHD will also be discussed.

II. Beta-adrenergic signaling in tumor immunosuppression

Several studies have shown that sympathetic nervous system (SNS) activation, which 

stimulates Beta-adrenergic signaling, is able to regulate cancer cell metastasis and tumor 

growth by recruiting macrophages into tumor parenchyma.42 In a restraint mouse model, 

chronic stress was able to enhance mammary adenocarcinoma cell metastasis to distant 

tissues including lung and lymph node but had a negligible effect on the growth of the 

primary tumor.42 The stress-enhanced metastasis was not depending on T lymphocytes, but 

mediated by promoting infiltration of macrophages, which could induce expression of 

prometastatic gene such as Tgfb, Arg1 and Csf1, in primary tumor microenvironment.42 The 
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Beta-adrenergic antagonist propranolol was able to largely abrogate the stress-induced 

increase of macrophage infiltration, suggesting that Beta-adrenergic signaling is involved in 

stress-mediated promotion of tumor metastasis. In another restraint stress mouse model, 

activation of Beta-adrenergic signaling led to ovarian carcinoma growth by promoting 

monocytes and macrophages infiltration into tumor tissue. These myeloid cells were 

recruited by stress-enhanced production of monocyte chemotactic protein 1 from ovarian 

cancer cells.43 A study analyzing tumors from socially isolated patients demonstrated 

upregulated expression of genes involved in M2 macrophage polarization and epithelial-

mesenchymal transition (EMT) as well as increased density of lymphatic vessels.44 

Activation of CREB (cAMP response element-binding protein) family transcription factors, 

which mediate the gene regulatory effects of Beta-adrenergic signaling, was also shown by a 

TELiS promoter-based bioinformatics analyses.44 Bioinformatics analysis of Beta-

adrenergic signaling stimulated macrophages showed a transcriptome that locates on the M2 

side of the M1-M2 spectrum, but not fit entirely into any pre-defined category of M1 or M2 

spectrum.45 Beta2-adrenergic receptor activation by social isolation-induced stress also 

promoted 4T1 breast cancer progression by upregulating macrophage number and enhancing 

the M2 polarization in the tumor microenvironment.46 Given the critical role of 

macrophages in remodeling tumor microenvironment and facilitating angiogenesis and 

extracellular matrix breakdown to enhance primary tumor progression and tumor metastasis,
47–49 blockade of macrophage infiltration into tumor microenvironment implies an important 

strategy for improving cancer immunotherapy.

Beta-adrenergic signaling was also demonstrated to mediate the suppression of anti-tumor 

immune response. In murine studies, a striking decrease of tumor formation, growth, and 

metastasis in B16-F10, 4T1, CT26 and pan02 tumor models was observed in mice housed at 

thermoneutral temperature compared to mildly cold temperature that stimulates Beta2-

adrenergic signaling. The enhanced control of tumor growth was dependent on the increased 

numbers of antigen-specific CD8+ T cells and effector phenotype of the CD8+ T cells in the 

tumor microenvironment and a significant reduction of immunosuppressive myeloid-derive 

suppressive cells (MDSCs) and regulatory T cells in the spleen.50 Chronic cold induced a 

stress response that caused tumor immunosuppression mediated by Beta2-adrenergic 

signaling in host immune cells.51 Using physiologic, pharmacologic and genetic blockade of 

Beta2-adrenergic signaling, the authors demonstrated that reduction of Beta2-adrenergic 

signaling facilitated an increased frequency of effector CD8+ T cells and an elevated effector 

ratio of CD8+ T cells to CD4+ regulatory T cells, and a decreased frequency of PD-1 

expressing CD8+ T cells in the B16 tumor microenvironment.52 The accumulation of 

MDSCs in the spleen of 4T1 tumor-bearing mice was also decreased by blockade of Beta2-

adrenergic signaling.52 In a B-cell lymphoma mouse model, chronic elevated Beta-

adrenergic signaling resulted in less effective control of lymphoma growth, which was 

mediated by the reduced proliferation, decreased production of IFN-γ and cytotoxic 

capacity of antigen-specific CD8+ T cells.53 The suppressive effect on anti-lymphoma 

response by chronic Beta-adrenergic signaling was shown to be selective to T cells and 

independent of innate lymphocyte response to an experimental NKT cell-targeting vaccine.
53 In a triple negative breast cancer mouse model, social isolation-induced stress promoted 

4T1 tumor progression and caused a reduction of survival in tumor-bearing mice, which was 
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mediated by reducing CD8+ and CD3+CD69+ T cells in the spleen.54 Acute and chronic 

restraint stress also increased the gene expression of granzyme B, a serine protease in 

cytotoxic T cells and NK cells and CXCL 10, a T cell chemoattractant, in the tumor 

microenvironment, which were reduced by propranolol, a Beta-adrenergic receptor 

antagonist.54 Beta-adrenergic signaling was involved in suppression of antitumor cytotoxic 

T cell generation by inhibiting Tumor necrosis factor-α (TNF-α) gene expression.55 

Recently, a study demonstrated that Beta-adrenergic signaling inhibited CD8+ T cells 

activation by suppressing the required metabolic reprogramming.56 Activation of the reward 

system, which is the dopaminergic neurons in the ventral tegmental area that constitutes a 

key neuronal network mediating positive emotions, expectations and motivation,57 improved 

the control of B16 melanoma and Lewis lung carcinoma growth in mice, manifested by 

reduced noradrenergic input to the bone marrow, attenuated the immunosuppressive effect of 

MDSCs and enhanced Granzyme B expression by CD8+ T cells in the tumor.58 Similar to 

the effect of the decreased noradrenergic input, treatment with propranolol, a Beta-

adrenergic receptor antagonist, delayed primary tumor growth and development of 

metastasis in a murine melanoma model, which was mediated by suppressing the infiltration 

of myeloid cells and prompting cytotoxic lymphocytes including NK and CD8+ T cells into 

the primary and metastatic tumor.59

The function of Beta1 and Beta3-adrenergic signaling in immunity still need to be 

investigated. There are very few reports reveal the role of Beta1 and Beta3-adrenergic 

receptors in modulating immune response. The Beta1-adrenergic receptor was demonstrated 

mediating acute cold/restraint stress inhibition of host resistance to Listeria monocytogenes 

by modifying T cells activation or subsequent T cell function involved in adaptive 

immunity60 and by suppressing cellular immune response.61

Chronic restraint stress was also able to impair antitumor T cell response, which was 

mediated by thyroid hormones instead of noradrenaline and corticosterone.62 Fluoxetine, an 

anti-depressant for cancer patients, was shown to inhibit lymphoma growth by modulating 

antitumor immunity, specifically by enhancing mitogen-induced T-cell proliferation and 

expression of Tumor Necrosis Factor-α (TNF-α) and Interferon-γ (IFN-γ).63–64 These 

studies imply other mechanisms, working in parallel to or in concert with Beta-adrenergic 

signaling, are also involved in the stress-induced suppression of antitumor immunity.

III. Blockade of Beta-adrenergic signaling in cancer immunotherapy

Given the critical role of Beta-adrenergic signaling in suppressing antitumor immune 

response and regulating immune cells in the tumor microenvironment, blockade of the Beta-

adrenergic signaling has broad implication for improving cancer immunotherapy. Indeed, 

pan-Beta-adrenergic receptor blocker propranolol was able to reverse the 

immunosuppression caused by cold induced stress, resulting in increased antitumor effector 

T cells and improved anti-PD-1 efficacy.52 A retrospective analysis showed that Beta-

adrenergic blocker improved overall survival of metastatic melanoma patients who received 

immunotherapy (IL-2, anti-CTLA4, or anti-PD1).65 This enhanced immunotherapy was 

further reinforced in a preclinical murine melanoma model showing that Beta-adrenergic 

blocker combined with anti-PD-1 blockade led to a better control of melanoma growth.65
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Blockade of Beta-adrenergic signaling was also shown to reduce the immunosuppression 

caused by surgical excision of primary tumor and may improve immunotherapy when 

combined with surgery.66 Catecholamine and prostaglandin, which are produced abundantly 

by tumor cells and stromal cells in the tumor microenvironment and host physiologic 

systems due to tissue trauma of surgery and perioperative stress, are involved in promoting 

cancer metastasis following tumor surgical resection by suppressing cellular immune 

response, increasing prometastatic cytokines and inducing inflammation. Therefore, 

pharmacologic inhibition of Beta-adrenergic receptor signaling and/or prostaglandin 

synthesis is able to reduce the prometastatic and immunosuppressive effects of tumor 

surgery and physiologic stress in clinical trials and preclinical studies.67 NK cells play an 

important anti-metastasis role that was suppressed by activation of Beta-adrenergic signaling 

in animal tumor models,68–73 whereas this function was able to be recovered by Beta-

adrenergic antagonist.74–75 Recently, administration of the Beta-adrenergic antagonist 

propranolol and the COX-2 inhibitor etodolac led to multiple favorable effects in a phase-2 

randomized trial of breast cancer patients.76–77 In addition to reducing epithelial-

mesenchymal transition (EMT) and decreasing the activity of proinflammatory and 

prometastatic transcription factors (GATA-1, GATA-2 and STAT-3) and Ki-67 in tumor cells, 

Beta-adrenergic antagonist treatment suppressed monocytes while promoted B cells 

infiltrating into the tumor, abrogated postoperative mobilization of CD16− ‘classical’ 

monocytes and enhanced CD11a expression on circulating NK cells.76–77 In animal studies, 

adrenergic nerve input was also shown to control lymphocyte egress from lymph nodes 

(LNs), but not entry to, through Beta2-adrenergic receptor.78–79 The retention of 

lymphocytes in LNs was mediated by physical interaction between Beta2-adrenergic 

receptors and chemokine receptors CCR7 and CXCR4, and consequently inhibited antigen-

primed T cell migration into peripheral tissues in an experimental autoimmune 

encephalomyelitis mouse model78 and enhanced humoral immune response in the LNs.79 

Therefore, using Beta2-adrenergic blockade to enhance lymphocyte mobilization has 

substantial significance because infiltration of effector immune cells into tumor 

microenvironment is critical for improving cancer immunotherapy inlcluding CAT-T cell 

therapy80–82 and immune checkpoint blockade therapy.83–84

IV. Beta-adrenergic signaling in Graft-vs-Tumor effect and Graft-vs-Host 

disease

Allogeneic hematopoietic cell transplantation (HCT) is a potentially curative adoptive 

immunotherapy for a variety of hematologic malignancies.85 Allogenic HCT is a 

complicated treatment because of its incorporation of major elements of immunology, 

oncology, radiobiology and infectious disease. A successfully allogeneic HCT largely 

depends on GvT effect, which is typically attributed to donor T cells and also likely involves 

a complex interaction of multiple cell types and cytokines.86–87 However, the GvT effect is 

closely connected with GvHD, which is caused by the mismatched major and minor 

histocompatibility antigens expressed between host and donor.88–89

Recently, several studies demonstrated that Beta-adrenergic signaling is involved in the GvT 

effect and GvHD. In a mouse allogeneic HCT study, host Beta2-adrenergic signaling was 
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shown to inhibit GvT activity by suppressing donor T cell reconstitution.90 Blockade of 

Beta2-adrenergic signaling was able to induce increased CD11c+ DC development and 

render DC more immunogenic, thereby improving donor T cell reconstitution.90 The 

improved reconstitution of T cells, including CD8+, CD4+, and CD4+Foxp3+ regulatory T 

cells led to an enhanced GvT effect without increasing GvHD. In another study, GvHD was 

suppressed by cold temperature-induced stress through Beta2-adrenergic signaling.91 Host-

derived, but not donor T cell-derived, Beta2-adrenergic receptor signaling is essential for 

inhibiting GvHD.91 Through MLR-based in vitro T cell activation and tumor cell-killing 

experiments, it was demonstrated that Beta2-adrenergic receptor signaling deficiency in DCs 

enhances the alloreactive CD8+ T cell response in the tumor setting. However, the other 

study showed that Beta2-adrenergic receptor inhibition exacerbated GvHD induced by total 

T cells, in which CD4+ T cells presumably play a dominant role. Overall, these two studies 

may appear to contradict each other. However, these findings suggest that Beta2-adrenergic 

signaling plays more complicated and differential roles in GvT and GvHD involving CD4+ 

versus CD8+ T cell responses and possibly other immune cells including DCs and MDSCs. 

Further studies will be required to delineate the underlying mechanisms.

After performing total body irradiation and allogeneic HCT, the recovery of hematopoietic 

homeostasis is critical to the generation of GvT and GvHD. Hematopoietic stem cells 

(HSCs) are the only cell type in the bone marrow (BM) that is able to differentiate to all 

blood cell lineages, and their behavior is tightly regulated by the HSC niche in the BM 

microenvironment.92–93 The function and regenerative capacity of HSC can be diminished 

by the damaging effects of radiation injury or chemotherapy, and their recovery to 

homeostasis is highly dependent on the BM microenvironment.94–95 Neural regulation of 

hematopoiesis has been reported recently.41 The sympathetic nervous system is a critical 

regulatory component of the BM microenvironment, and sympathetic nerve fibers and neural 

crest-derived cells serve as major niche constituents and are essential to maintain HSC 

homeostasis and restore normal function from stress.96–97 Sympathetic neuronal activation 

was revealed to promote HSC proliferation by modulating Beta-adrenergic signaling. 

Starting from the observation of increased leukocytes, including neutrophils, monocytes and 

lymphocytes in patient blood, the authors further found that chronic variable stress activated 

proliferation of primitive hematopoietic progenitors, and led to decreased CXCL12 levels 

through Beta3-adrenergic signaling in BM niche cells, which was signaled by surplus 

noradrenaline released from nerve fibers.98 Most recently, myeloid cell numbers in blood of 

diabetic patients were shown strongly correlated with concentration of norepinephrine in the 

plasma.99 Consistent with the observation in diabetic patients, myeloid cell number was 

increased in blood and spleen of experimental diabetic mice, in which proliferation and 

differentiation of splenic granulocyte macrophage progenitors (GMPs) are activated by 

sympathetic neuronal activity through Beta2-adrenergic receptors expressed on the splenic 

granulocyte macrophage progenitors (GMPs).99 Beta-adrenergic signaling also plays an 

important role in modulating mobilization of HSCs from BM. In UDP-galactose ceramide 

galactosyltransferase-deficient mice, which exhibit aberrant nerve conduction, hematopoietic 

stem and progenitor cell (HSPC) egress from BM was significantly decreased when induced 

by granulocyte colony-stimulating factor (G-CSF).96 Specifically, Beta2-adrenergic receptor 

signaling is required for granulocyte colony-stimulating factor (G-CSF)-induced HSPC 
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mobilization, osteoblast suppression and bone CXCL12 downregulation.96 Further study 

also showed that cooperation of Beta2- and Beta3-adrenergic receptor signaling is essential 

for granulocyte colony-stimulating factor (G-CSF)-induced HSPC egress from BM.100 The 

recruitment of leukocytes to tissues under homeostasis exhibited circadian oscillation, which 

is orchestrated by molecular clock via adrenergic nerves.101 Beta2- and Beta3-adrenergic 

signaling is impaired in sympathetic denervation that causes decreased expression of HSC-

regulating genes in osteoblasts,93, 95 which is an important HSPC niche and mediator of 

HSPC mobilization.102

V. Conclusion

Effective immunotherapy is not only dependent on activating antitumor immune response, 

but also needs to reverse tumor-induced immunosuppression. Beta-adrenergic receptors 

expressed on immune cells engage with neurotransmitters released by sympathetic nervous 

system and mediate immunosuppression in the tumor microenvironment by recruiting 

tumor-associated macrophage and dampening cytotoxic T cells and NK cells (Fig. 1). 

Therefore, blockade of the Beta-adrenergic signaling implies a promising strategy to 

improve current immunotherapy.

Given the limitation of current immunotherapies, combination immunotherapy or 

combination therapy between immunotherapy and chemotherapy, surgical therapy or 

radiotherapy, would be considered prospective treatment strategies for cancer patients in the 

near future.103–105 Immunotherapy combining with hematopoietic cell transplantation 

(HCT) also potentially provides synergistic effect for treating cancer patients.106–108 

Physical and psychosocial stress caused by these treatment strategies is involved in 

promoting tumor progression and reducing life quality and overall survival of cancer 

patients.109–112 Beta-adrenergic signaling is one of the suppressive mechanisms induced by 

stress (Fig. 1). Tumor cells expressing Beta-adrenergic receptors are also able to be 

regulated by activated neural system and thereby increase tumorigenesis, angiogenesis, 

proliferation and metastasis.113 Indeed, some cancer patients are shown to benefit from 

taking the Beta-blocker propranolol.114–117 Propranolol has also been shown as beneficial 

for treating multiple myeloma patients during HCT.118 However, the complete mechanisms 

underlying the suppressive function of Beta-adrenergic signaling still need to be fully 

understood. As discussed in this review, combination immunotherapy with Beta-adrenergic 

signaling blockade would be promising treatment strategy for cancer patients.

Acknowledgments

This work attempts to summarize most studies of the beta-adrenergic signaling relevant to cancer immunology and 
immunotherapy. However, we apologize for not being able to be comprehensive in including all publications on this 
topic due to limitation of space. This work was supported by NIH Grant R21 CA202358 (to XC).

Abbreviations:

GvHD Graft-versus-Host disease

GvT Graft-versus-Tumor

Wang and Cao Page 7

Crit Rev Immunol. Author manuscript; available in PMC 2020 June 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



HCT Hematopoietic cell transplantation

PD-1 Programmed cell death protein 1
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MDSCs Immunosuppressive myeloid-derive suppressive cells

NK Natural killer cell

DC Dendritic cell
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Figure 1. 
The complex role of Beta-adrenergic signaling in immunosuppression in tumor 

microenvironment and hematopoiesis. Stress caused by surgery and irradiation can activate 

sympathetic nervous system (SNS) and induce production of neurotransmitters including 

norepinephrine and epinephrine. These neurotransmitters engage Beta-adrenergic receptors 

expressed on various innate and adaptive immune cells and may differentially regulate their 

function. Beta-adrenergic signaling can also stimulate hematopoietic stem cells (HSCs) and 

granulocyte macrophage progenitors (GMPs) and promote their proliferation in bone 

marrow and spleen, respectively. The neurotransmitters can enter the tumor 

microenvironment and induce immunosuppressive cells including macrophages, FoxP3+ T 

cells and myeloid-derived suppressive cells (MDSCs) to suppress the function of cytotoxic 

CD8+ T cells and natural killer (NK) cells. Beta-adrenergic signaling may also be 

manipulated to improve the Graft-versus-Tumor effect (GvT) and inhibit Graft-versus Host 

Disease (GvHD) via modulating T cell reconstitution and dendritic cell (DC) function 

during allogeneic hematopoietic cell transplantation.
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