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Abstract

We present a physiologically-based pharmacokinetic modeling platform capable of simulating the 

biodistribution of different therapeutic agents, including cells, their interactions within the immune 

system, redistribution across lymphoid compartments, and infiltration into tumor tissues. This 

transport-based platform comprises a distinctive implementation of a tumor compartment with 

spatial heterogeneity which enables the modeling of tumors of different size, necrotic state, and 

agent infiltration capacity. We provide three validating and three exploratory examples that 

illustrate the capabilities of the proposed approach. The results show that the model can 

recapitulate immune cell balance across different compartments, respond to antigen stimulation, 

simulate immune vaccine effects, and immune cell infiltration to tumors. Based on the results, the 

model can be used to study problems pertinent to current immunotherapies and has the potential to 

assist medical techniques that rely on the transport of biological species.
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1. Introduction

From a birds eye view, the lymphatic system (LS) provides the tracks along which the main 

players of the immune system move and communicate with the rest of the body. 

Unfortunately, these very same tracks are occasionally exploited by pathogens or cancer 

cells to disseminate and further spread the disease (Padera et al., 2016). For instance, 

melanoma, the most severe form of skin cancer (Owens, 2014), and breast cancer, the most 
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common cancer in women affecting roughly 12% of the worldwide population (McGuire et 

al., 2015), predominantly propagate through the LS.

To facilitate the concepts developed in subsequent sections we briefly elaborate on the 

anatomy of the LS (Sherwood, 2015). The LS is composed of primary and secondary 

organs. The sites where the majority of leukocytes originate are in the primary organs, i.e., 

the thymus and the bone marrow. However, most of the action in terms of triggering and 

modulating an immune response takes place in the secondary organs. These comprise the 

tonsils, the spleen, the appendix, Peyer’s patches, and last but not least, the lymph nodes 

(LNs). A LN is essentially a filtration and a storage unit with an average diameter in humans 

of 5 to 10 mm. It houses different kinds of leukocytes that inspect the fluid that enters, called 

lymph, through the afferent lymphatic vessels, and that leaves through the efferent lymphatic 

vessels. Humans have on average 600 LNs distributed along the body. Their large numbers 

and their connectedness illustrate the importance that evolution has placed on being efficient 

at confronting a pathogen. But, as mentioned earlier, this same features are part of the reason 

why cancer is able to propagate to distant organs.

Hence, owing to the strong connection between the LS and cancer (Alitalo and Detmar, 

2012), it is natural to inquire about efforts that have combined these two topics into a 

coherent mathematical framework. Some examples that explore the exchange of material 

between capillaries, lymph nodes (LNs), and lymphatics are (Heppell et al., 2013; Jafarnejad 

et al., 2015; Kojic et al., 2017). A summary of the relevant structures and transport 

mechanisms in the LS accompanied by a short discussion of models that derive from fluid 

flow equations such as the Navier-Stokes equations is given in (Margaris and Black, 2012). 

Nevertheless, even when some of the previously cited models are able to offer high 

resolution in the tissues under consideration, they tend to focus on specific portions of the 

LS and do not treat the body as a whole entity where complex cell interactions take place. In 

theory, one could simply enrich one of those models by adding sufficient structures to 

account for the missing entities. However, in the particular case of a whole-body model, high 

spatial resolution is typically not a critical aspect in answering the research questions of 

interest. Thus, scientists switched to an alternate modeling strategy that is more suitable to 

describe complex networks of organs where the focus is in the transport and interaction of 

biochemical species, rather than on the fine details of the fluid flow patterns. This is the 

physiologically-based pharmacokinetic modeling (PBPK) paradigm. We briefly discuss its 

key properties and review some relevant work done in conjunction with the LS.

Fundamentally, the PBPK approach consists of a network of organs or tissues connected via 

transport mechanisms in an anatomical fashion (Shah and Betts, 2012). The concept of 

PBPKs is not recent and can be traced back to the early 30s (Dominguez and Pomerene, 

1934; Teorell, 1937a; 1937b). Moreover, despite the fact that more than 70 years have 

elapsed since its conception, we remark that PBPKs have remained relatively unchanged, 

consistently preserving the following three characteristics: (i) The conceptualization of 

organs or physiological structures as biochemical reactors where specific reactions take 

place, (ii) the incorporation of pharmacokinetic effects such as absorption, distribution, 

metabolism, and excretion of the drugs or species under consideration, and (iii) the use of 
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mathematical expressions to relate rates of change and concentrations of the involved 

components within and throughout each of these compartments.

Representative PBPK examples related to the LS are given in (Boswell et al., 2011; Kletting 

et al., 2015; Offman et al., 2016; Peng et al., 2016; Tegenge and Mitkus, 2015). However, 

these models have at least one of the following limitations: The lymphatic organs are either 

absent or condensed into one or two compartments, cell-antigen interaction mechanisms are 

missing, or the parameters that drive the reactions are purely phenomenological constants.

This paper aims to resolve the aforementioned issues by proposing a modeling platform that 

incorporates the following elements: (i) A scalable network of LNs that can be adapted to 

different organisms, (ii) the possibility to include different cell populations and antigens that 

can interact, proliferate and perish according to a set of (potentially nonlinear) equations, 

and (iii) mechanisms that govern the exchange of material between compartments based on 

transport properties rather than phenomenological constants. Furthermore, a feature that we 

believe is not common in PBPKs is the addition of a heterogeneity character to a 

compartment. Concretely, the implementation of the tumor compartment offers the 

capability of fragmenting the domain into regions with individual properties such as vascular 

fraction and lymphatic fraction density. This functionality allows for a more realistic 

description of the tumor microenvironment.

In summary, the proposed paradigm, which we henceforth label L-PBPK, intends to 

alleviate the deficiencies of traditional approaches by providing a flexible modeling platform 

applicable but not limited to the LS, whose driving parameters are transport-based.

The remainder of the paper is organized as follows. The next section introduces the model 

and gives an overview of its functionality. Subsequently, we particularize the discussion 

towards the mouse model, illustrate how a network of LNs is created and discuss the 

underlying reaction and transport mechanisms. Then, we focus on a distinctive feature of our 

model, namely the tumor compartment and its connectivity with the rest of the components. 

We close that section stating some mathematical properties of the equations governing the L-

PBPK. We illustrate the utility of the model by providing numerical results in the form of 

two sets of examples. The first one serves the purpose of validating the implementation, 

while the second explores some of its potential applications in transport phenomena. Finally, 

we summarize the results and make some concluding remarks.

2. Materials and methods

As discussed in the previous section, the biological question we intend to answer can be 

framed as a transport problem and amongst the multiple methodologies to describe it, we 

have chosen a PBPK approach. The foremost reason being its ability to simulate in a simple 

and scalable way the transport of materials (cells and antigens) between different organs 

belonging to a network. With the framework in place, what follows is the definition of the 

fundamental components of this model. Namely, what are the compartments and how are 

they connected? What kind of transport takes place between two compartments? What 

reactions occur at their interior? And lastly, how is the tumor compartment implemented? 
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We address each question individually and discuss how each structure relates to the 

physiology.

2.1. Compartments and connectivity

The fundamental players in any PBPK model are the compartments and the cells or 

chemical species that reside within them. A generic compartment is a region in space and 

has properties such as volume (V), position, and vascular volumetric fraction (rV). This last 

property is particularly relevant in transport since it represents the fraction of the volume 

that is occupied by functional (non-necrotic) vasculature. Furthermore, similar to the 

situation where an organ can be composed of several types of tissues, e.g., the layers of the 

stomach: mucosa, submucosa, muscularis and serosa (Wakefield et al., 1991), a 

compartment can be subdivided into different types of tissues, each with specific properties.

In the context of the L-PBPK, the main type of compartment represents an essential element 

of the LS, the LNs. In view that there are hundreds of LNs in organisms like a human, 

instead of attempting to account for the majority, we group them according to their 

anatomical location and call the ensemble a lymphoid compartment. As a concrete example, 

we consider a mouse model where a set of LNs follows the classification given in Shao et al. 

(2013). We cluster the LNs into compartments based on position and function, and generate 

the blocks depicted in Fig. 1. A list showing the LNs that belong to each group is given in 

Table S1.

Once the compartments are defined, the next step is to introduce the connectivity, i.e., 

specify for each compartment its set of neighboring compartments with whom it is allowed 

to interact. This defines a network that can be compactly represented as an array of numbers 

that we call the connectivity matrix. Physiologically, this network indicates which pairs of 

organs can directly exchange cells and antigens by means of blood and lymphatic vessels. In 

the mouse example, the connectivity is depicted in Fig. 1A by the thick green double-headed 

arrows that join two compartments. Lymphatics are not the sole route through which 

material can be transported. A connective tissue of paramount importance that perfuses all 

structures in our network is the blood compartment. Graphically, this type of connection is 

indicated by the double-headed red arrows in Fig. 1A. The connectivity matrix associated to 

Fig. 1A is given in Table S2, and a simplified diagram of the network is shown in Fig. 1B. 

Lastly, with regards to the addition of further lymphoid organs like the spleen or thymus, or 

for that matter any other organ, our implementation can easily handle such addition as long 

as the basic properties of the new organ are defined, and the corresponding connectivity is 

specified. The tumor compartment is treated separately and we defer its discussion to a later 

section. Now we proceed to address the question related to the transport between 

compartments.

2.2. Intercompartment transport

We assume a diffusive character as the fundamental mechanism utilized in the L-PBPK to 

exchange biological species between compartments. We remark that an stochastic approach 

could potentially be necessary in smaller length scales within the cellular and molecular 

level. That would be the case for example when considering local cell-to-cell interactions, or 
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the delivery of nanoparticles to the tumor microenvironment (Dogra et al., 2019). However, 

even for such small dimensions, deterministic mathematical models have been successfully 

applied and verified using clinical data (Goel et al., 2019). Hence, we adopt a deterministic 

diffusion and interaction mechanism for our model. As pointed in (Margaris and Black, 

2012), the assumption of a lymphatic laminar flow might be acceptable for lengthy vessels 

(such is the case we are considering), but breaks down for smaller conduits that also take 

into account the valves. For those instances, inertial effects are known to be significant and 

have to be included (Margaris and Black, 2012).

The model relies on parameters related to transport properties. These parameters are, in 

order of increasing estimation complexity: The partition coefficient (P), the transport length 

(ℓ), the transport coefficient (D), and the contact area between compartments (A).

The partition coefficient represents the affinity of a substance or cells to remain within a 

particular tissue or compartment (Kojic et al., 2015). Specifically, for a given biological 

species, e.g., CD8 cells, and two compartments, e.g., blood and a lymph node, we set the 

partition coefficient between these as the ratio of their corresponding equilibrium 

concentrations. Mathematically,

Pblood,lymph node = Equilibrium concentration in blood
Equilibrium concentration in lymph node . (1)

The transport length encompasses different characteristic distances that a molecule or cell 

has to travel to reach a given tissue (Foster et al., 1991). For example, if a lymphocyte is to 

migrate into a LN through extravasation, the transport length would correspond to the 

thickness of the vessel that it has to cross. The transport coefficient aims to describe several 

interactions, one of them being the tendency of a species to move across a medium due to 

concentration gradients (Kitamura and Kinjo, 2018). Finally, the contact area is the effective 

transport area, i.e., the amount of area between two intersecting surfaces that is available for 

the exchange of material (Tolentino et al., 2008). The derivation of an expression that relates 

the contact area and the vascular fraction (rV) is discussed in Derivation S1. Denoting the 

concentration of a biological species S in the ith compartment by [S]i, and similarly for [S]j, 

the expression that relates the aforementioned parameters is (see Chapter 17 in (Bird et al., 

2002)) :

Transport rate = − D ⋅ A ⋅ [S]j − [S]i ⋅ P
ℓ , (2)

where the transport rate has units of amount of material per unit time. Note that between any 

two connecting compartments (or tissues), and for every biological species, there exists a 

unique set of transport parameters which could, potentially, vary in time. The following 

section discusses the type of reactions that take place within each compartment.

2.3. Compartment reactions

In the context of PBPKs, an accurate physical representation of a compartment is a 

biochemical reactor that exchanges mass with its surroundings. Hence, owing to the fact that 
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one of the objectives of the L-PBPK is to model interactions between cell populations, we 

consider four elementary types of reactions. Proliferation, death, activation/conversion, and 

stimulation/inhibition of cells and antigens. To better understand each type, we provide a 

particular example which we explore in a later section.

A population of naive DCs gets exposed to an antigen which causes the cells to mature and 

transition into an activated state DCA. These cells in turn interact with naive CD8s, resulting 

in two outcomes. One is the conversion of CD8s into its activated form CD8A, and the 

second is an increase in the proliferation rate of CD8s by means of stimulation. Finally, the 

antigen population is reduced (due to cytolytic proteins and induced apoptosis) after 

successive encounters with members of the pool of CD8A. The conversion of cells from one 

state to another is regulated by means of transition functions introduced in Definition S5. A 

diagram summarizing the aforementioned interactions is shown in Fig. 2.

The system of equations that describes the reactions illustrated in Fig. 2 is given in 

Definition S1. In general, for a given compartment, and for each biological species S, the 

expression

RS(t) = g(t)
flat generation

− d(t)
death

⋅ S + C(S1, …, Sn, t)
Conversion of species

+ N(S1, …, Sn, t)

Stimulation,
proliferation,
and nonlinear (3)

describes all possible reactions that S can experience. An extended version of Eq. (3) that 

provides further details is given in Eq. (12). Before closing this section we elaborate on a 

particular feature of our model that is approached in a nonstandard manner. Namely, the 

tumor compartment.

2.4. Tumor compartment

The canonical approach in PBPKs to simulate the presence of a tumor in an organism is to 

include a tumor compartment that typically shares the same attributes as the other 

compartments, the only difference being the value of the phenomenological constants that 

dictate the PK. Our approach, however, is different in that it takes into consideration the 

possibility of having tissue heterogeneity (Donahue et al., 2008), i.e., spatial variations in the 

physical and biological properties across a compartment. For instance, we can model 

necrotic regions where the perfusion of blood is heavily compromised (Please et al., 1998). 

This property is relevant in view that it is key in the context of cancer resistance (Dagogo-

Jack and Shaw, 2017; Pascal et al., 2013; Brocato et al., 2014; Wang et al., 2016). A 

discussion of the implementation follows.

2.4.1. Implementation—Assuming a spherical geometry, the tumor compartment is 

implemented as a collection of concentric shells or layers, each being a compartment with its 

independent set of attributes and transport properties. In particular, each layer has a separate 

vascular and lymphatic volume fraction that equates the degree of necrosis to the level of 

impairment of the vascular structures.
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Another important characteristic is that the tumor layers can be connected to a LN which can 

potentially serve as a sentinel LN or a tertiary lymphoid structure(Carlson et al., 2002). The 

exchange of cells by means of lymph from such a LN to a given layer is regulated through a 

parameter which denotes the lymphatic volume fraction of the k-th layer of the tumor 

associated to the sentinel LN. A graphical representation of the defining characteristics of 

the tumor compartment is given in Fig. 3.

In the next section we explain how the degree of vascularization in different tissue layers 

influences the local transport properties, thus conveying the idea of heterogeneity.

2.4.2. Heterogeneity and vascularization—Evidently, the more (functional) vessels 

are available to deliver material to a given tissue, the more efficient the transport should be. 

Hence, in order to modify the transport rate (see Eq. (2)), we need to find a mechanism that 

relates the degree of vascularization to one of the transport parameters introduced in Eq. (2). 

We relate the transport length to the vascular volumetric fraction of a given tumor layer. 

Following the derivation given in Derivation S2, the analysis shows that the transport length 

is inversely proportional to the square root of the vascular fraction. Hence, as the amount of 

available vasculature diminishes, the transport length increases, ultimately reducing the 

transport rate (see Eq. (2)). In a later section we illustrate the impact of different vascular 

fraction values across the layers of the tumor.

Summarizing, the L-PBPK represents a network of lymphoid organs and tumors connected 

through lymphatic and blood vessels that exchange biological species which experience a 

particular set of reactions.

In the next section we investigate some mathematical properties of the system of ordinary 

differential equations (ODEs) related to the L-PBPK model. For the sake of clarity we 

provide a condensed version of the analytical findings and move the discussion of the details 

to the supplemental material section.

2.5. Mathematical properties

In this section we briefly discuss the well-posedness and stability of the ODEs resulting 

from the application of Eqs. (2) and (3) to all compartments and biological species. This is 

relevant in view that an ODE may have a multiplicity of solutions, a unique solution, or no 

solution at all. An ODE exhibiting such behavior is included in Example S1.

In the next two subsections we summarize the analysis that is developed in Derivation S3 

and Derivation S4. These results guarantee that the governing equations of the L-PBPK do 

not present the undesirable properties of Eq. (14) in Example S1.

2.5.1. Existence and uniqueness of a solution—Let x(t) represent the vector of 

populations of the various biological species in all the tissues under consideration. Then, one 

can find a matrix A, a nonlinear vector function H, and vectors g and d, of appropriate 

dimensions, such that the system of ODEs of the L-PBPK can be written as
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x.(t) = A ⋅ x(t)
transport

+ H(x, t)

Stimulation,
proliferation,
and nonlinear

− d(t) ⋅ x(t)
cell death

+ g(t)
cell generation

,
x(0) = x0 .

(4)

The matrix A is related to the transport effects given in Eq. (2). The function H(x, t) 
encapsulates the conversion of cells, additional proliferation and stimulation effects, and 

nonlinear terms as shown in Eq. (3), d(t) represents the death rate, and g(t) the flat 

(independent of the concentration) proliferation rate. Assuming the involved functions do 

not exhibit nonphysical behaviors, e.g., they do not become unbounded, the existence and 

uniqueness of a solution to Eq. (4) follows directly from the Cauchy-Lipschitz result in the 

theory of ODEs (Braun and Golubitsky, 1983). We proceed to discuss the stability of the 

system.

2.5.2. Stability—We investigate the long term behavior of Eq. (4) Concretely, we give 

conditions under which the solution to Eq. (4) attains an equilibrium. The physiological 

relevance of this property is that after a transient perturbation, e.g., an infection that was 

successfully eradicated, the system should be able to regain homeostasis, i.e., the 

concentrations of the cell populations should return to normality.

The conditions for stability essentially translate to the following: (i) All compartments are 

connected either directly or indirectly, (ii) the nonlinear effects due to H(x, t) are 

insignificant after a certain period of time, and (iii) the death rate of every biological species 

is nonzero in at least one compartment. The first and third conditions are purely 

physiological. Naturally, under normal conditions, the blood perfuses all organs, hence 

connecting them, and most cell populations (at least the ones under consideration) 

eventually experience death. Nonlinearities, however, are ubiquitous in healthy and 

infectious states, thus making the second assumption harder to sustain. Nonetheless, if for 

instance the nonlinearities under consideration represent the conversion of cells from one 

population to another, then it is reasonable to assume that in the absence of immunological 

challenges, such effects should be nonexistent. With the aforementioned assumptions one 

can positively answer the stability question using the qualitative theory of ODEs (Nemytskii, 

2015). We summarize our findings in the following statement. The L-PBPK system 

possesses a unique solution for a given initial condition. Moreover, regardless of the initial 

state, the lack of nonlinearities drives the system towards equilibrium. A detailed statement 

of this result is given in Theorem 3 in Derivation S4.

The next section validates our model by means of a series of numerical examples and 

provides evidence that supports the mathematical findings.

3. Results

We divide this section into two sets of examples. The first set is used to validate the 

implementation, while the second explores some applications. In the validation set we have 

chosen examples that satisfy two requirements. One is to serve as numerical evidence that 
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corroborates the mathematical properties, and the second is to illustrate the capacity of the 

model to simulate physiological conditions and match experimental data reported in the 

literature. The examples used in the exploratory set, instead of replicating known conditions, 

serve to motivate potential future applications that are relevant to transport processes. For 

ease of reference we list all the biological species under consideration in the subsequent 

examples:

• Immature DCs

• Naive CD8s

• Activated DCs (DCA)

• Activated CD8s (CD8A)

• Antigen (Ag)

3.1. Validating examples

We provide three validating examples related to the mouse model. The reaction terms follow 

the mechanisms described in Fig. 2 and Definition S1. The lists of reaction coefficients and 

transport parameters are located in (Ruiz-Ramírez et al., 2019). A summary of the 

aforementioned parameters is given in Table S5, Table S6, Table S7, Table S8, Table S9, and 

Table S10.

The first example investigates the attainment of background concentrations of naive CD8s in 

different organs following a physiologically reasonable timescale. The second example 

models proliferation, death, and conversion of naive CD8s into its activated form. These 

events are either triggered or regulated by an antigen response. Lastly, the third example is 

concerned with transport kinetics in a tumor and a spleen compartment.

3.1.1. Homeostasis—This example serves the purpose of verifying the capacity of our 

model to attain equilibrium. This property is of paramount importance since it mimics the 

ability of an organism to autoregulate in the face of transient stimuli. Furthermore, it evinces 

the mathematical findings. Namely, that the system should tend towards equilibrium under 

the assumption of decaying or inexistent nonlinearities. To satisfy this requirement, we 

consider a scenario deprived of antigen. The fact that this condition leads to the absence of 

nonlinearities is justified in the next paragraph.

Owing to Fig. 2, the nonlinear terms introduced in Eq. (4) are directly linked to the 

interaction between the antigen and the populations of naive DCs (see also Definition S1). 

Hence, a lack of antigen implies that no such interactions will take place, and consequently 

that the function H(x, t) in Eq. (4) is zero. Thus, by Derivation S4, it follows that the L-

PBPK should attain equilibrium. Since the idea of equilibrium typically involves a process 

occurring at infinity, we introduce the notion of a pseudo-equilibrium time (PET). Basically, 

it is defined as the time taken by a given species S in a given compartment to be within and 

remain at a certain percentage p of its equilibrium concentration. We denote this quantity by 

Tp(S). A formal definition is given in Definition S6.
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To guarantee that the system starts from a nonequilibrium position, initially, all cell 

populations under consideration are depleted, i.e., the initial condition in Eq. (4) is x(0) = 0. 

Note that x = 0 is not an equilibrium solution due to the proliferation rate g(t) in Eq. (4), 

which is independent of the number of biological species. The aforementioned scenario is 

relevant, for instance, in the context of chemotherapy and radiation therapy, where the 

cytotoxic effect of these therapies not only depletes tumor cells but also normal host cells 

(Rebe and Ghiringhelli, 2015). Clinically, it has been observed that even after decimation the 

cell populations evolve towards equilibrium (Cox and Ang, 2009). This is consistent with 

the mathematical findings.

In order to specify the equilibrium concentrations in the model we employ the partition 

coefficient P introduced in Eq. (1). We remark that defining the partition coefficient as in Eq. 

(1) one can readily show (see Eq. (11)) that as the system approaches its limiting behavior, 

the exchange of biological species between compartments tends to zero.

The values for the background (equilibrium) concentrations of naive CD8s are given in 

Table S3 and derive from Druzd et al. (2017). Once the equilibrium concentrations are fixed, 

one still needs to define the rate at which the system progresses towards this state. This 

behavior is determined by the PET T90. We set this quantity to 7 days since it is an average 

period of time for an initial adaptive immune response to become fully active (Janeway, 

2005). The connection between the PET and the model parameters is through the generation 

and death rate of cells in the various compartments. These quantities can be simultaneously 

fitted using a variety of methods such as least squares.

With the given data the temporal evolution of the concentrations can be computed and is 

summarized in Fig. 4. Note that the system approaches the equilibrium values given in Table 

S3. Moreover, at t = 7 days, all the concentrations are within 90% of their corresponding 

equilibrium, as expected. Hence, this example shows that indeed the system moves towards 

equilibrium in consistency with the analysis of Derivation S4, and that it does so in a 

reasonable time frame. In the next section we deliver an example of utmost importance for 

this paper in view that it illustrates an application of the L-PBPK to immunotherapies.

3.2. Antigen driven immune response

In this example we study how the system responds to the presence of an antigen. In 

particular, we are interested in observing how the interaction of the cell populations under 

consideration leads to the mediation and eventual suppression of an infection. The interplay 

between cells is illustrated in Fig. 2.

The data we use to validate the model originates from two sources, (Lau et al., 1994) and 

Murali-Krishna et al. (1998). In Lau et al. (1994) an experimental murine model is 

considered. Therein, the authors inject intraperitoneally a strain of the lymphocytic 

choriomeningitis virus (LCMV) and study the evolution of its concentration in the spleen. 

Moreover, subsequent to the infection, they transfer LCMV-specific CD8A to healthy mice 

and determine if those cells retain their memory phenotype and its protective qualities 

against LCMV. In Murali-Krishna et al. (1998) a similar model is considered but in contrast 

to Lau et al. (1994), total CD8s in spleen are quantified based on different viral epitopes. 
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Hence, the LCMV model is relevant to the L-PBPK since it serves a testing platform for 

cell-antigen reactions.

As depicted in Fig. 2, we consider the conversion of immature DCs to mature DCs after 

being exposed to the antigen (LCMV). These cells in turn stimulate the proliferation of naive 

CD8s (Pozzi et al., 2005) and their conversion into CD8A, whose task is to eliminate 

infected cells (antigen). Obviously, the mounting of an immune response is a gradual 

process which adapts to the presence of pathogens. Thus, in order to model the smooth 

evolution from a relaxed immune state to one active and vice versa, we use transition 

functions that trigger once a threshold concentration of antigen is attained. A precise 

definition of these functions is given in Definition S5.

An additional effect that is included in this example is the possibility to modulate the death 

rate of CD8A. Two instances where such event is reported are Grayson et al. (2002) and Luu 

et al. (2006). In Grayson et al. (2002) it is shown that memory CD8s exhibit a more 

pronounced resilience to apoptosis in comparison to its naive counterparts, while in Luu et 

al. (2006) the authors develop an experimental model where CD8A cells exhibit a delayed 

contraction in their population under a virulent infection. To model this effect we define a 

function that has a diminished death rate during infection, which smoothly transitions to its 

usual post-infection value. Such function is given in Eq. (5) and governs the behavior of the 

death rate of CD8A (dCD8
A ).

dCD8
A (t) = dinfection + (dnormal − dinfection) ⋅ Switch(t)

1 + e−k ⋅ (t − t0) , (5)

Switch(t) = 0, Duringinfection,
1, Post−infection . (6)

The parameter dinfection indicates the death rate under an infectious state, while dnormal 

represents the death rate under healthy conditions. The function Switch(t) becomes active 

once the infection has been suppressed. Note that after an infection, dCD8
A (t) tends to dnormal 

as time progresses. The steepness of the transition from dinfection to dnormal is controlled by 

k. Lastly, t0 denotes the time at which the death rate is the average between dinfection and 
d

normal.

Note from Eq. 5 that the death rate of CD8A for a time when there is an ongoing infection, 

the function Switch(t) is off (equal to zero since t < tpost-infection) and hence the death rate is 

constant and equal to dinfection. However, after the infection has been suppressed, Switch(t) 
becomes active (equal to one) and gradually the death rate returns to its normal value 

dnormal, which is chosen to be larger than dinfection. The post-infection time tpost-infection can 

be determined dynamically based on a threshold concentration of antigen.

We use the equilibrium concentrations given in Table S3 and set an initial concentration of 

5.4 antigen particles per microliter in the spleen. The results of the simulation after the 
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fitting process is shown in Fig. 5. The tables of the parameters used in the simulation can be 

found in Ruiz-Ramírez et al. (2019).

We observe that the numerical results are in agreement with the reported experimental 

values. A summary of the events that take place in Fig. 5 follows. During the first day post-

injection of the pathogen, the concentration of antigen exceeds the fixed threshold of 16 

antigen particles per microliter and the transition function T1 is activated (see Eq. (27)). This 

triggers an immune response. The population of CD8s starts to proliferate rapidly but their 

numbers remain fairly constant since most of the newly generated cells is being activated by 

antigen-presenting cells (APCs). Soon afterwards, the freshly generated CD8A begin 

interacting with the pathogen until they drive the infection into eradication. However, even 

after the infection is under control, CD8s continue to proliferate until the immune response 

reaches its peak, roughly one week post-injection. Around this same time, the function 

Switch(t) in Eq. (5) becomes active, causing the death rate of CD8A to gradually return to 

normality. Finally, once the transition functions revert to their original state, the system 

returns to homeostasis. The fact that CD8s continue to proliferate post-infection is by no 

means unexpected and has been documented. For instance, in van Stipdonk et al. (2001) it is 

shown that CD8s with short time exposures (t ≈ 2 h) to APCs exhibit a prolonged and steady 

proliferation even in the absence of further activation.

Before concluding this section we remark that other mathematical models have been used to 

describe the evolution of different subpopulations of CD8s facing an infection triggered by 

the LCMV. One such example that also uses the data given in Grayson et al. (2002) and Luu 

et al. (2006) is De Boer et al. (2001). Therein, the authors consider naive, activated, and 

memory cells interacting with the antigen. Though their model manages to mimic the 

changes in the experimental concentration of CD8s in the spleen, it has the limitation that 

the concentration of antigen through time is a predefined function rather than a variable. 

Moreover, it only considers one compartment. In summary, this example demonstrates the 

capacity of the L-PBPK to simulate an immune response and take into account modulating 

effects that influence the proliferation and death of cell populations as a function of external 

stimuli. In the next example we test one of the distinguishing features of the implementation. 

Namely, the tumor compartment.

3.2.1. Transport kinetics in tumor—The previous two examples showed that the L-

PBPK is able to simulate conditions requiring the reequilibration of cell species and the 

mediation of an immune response triggered by an antigen. What yet remains to be verified is 

how a tumor model can be handled by our implementation. For that purpose we consider the 

setting described in Gattinoni et al. (2005), where B16 cells, a common mouse model for 

human melanoma (Overwijk and Restifo, 2000) and metastasis (Giavazzi and Decio, 2014), 

is the tumorigenic agent. A brief description of the experimental conditions follows. Mice 

bearing 10-day-old B16 tumors are exposed to CD8s at different differentiation stages 

ranging from naive to fully effector. The evolution of the tumors is then observed and 

changes in the population of CD8s in the spleen and tumor are quantified.

The data we use to inform our model is the fractional population of CD8A in tumor and the 

concentration of CD8A in the spleen reported in Overwijk and Restifo (20 00). We first 
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discuss some properties pertaining the tumor compartment. The tumor compartment is 

connected to the rest of the PBPK as shown in Fig. 1 and is divided into 10 layers of tissue 

(see Fig. 3), each with a thickness of 0.26 mm. Two transport mechanisms are considered. 

One is the blood connectivity and the other is the material exchange between its internal 

layers. To test the effects of necrotic (dysfunctional) vasculature, we consider two scenarios. 

One where the interlayer diffusion is constant, and another where the intratumoral vascular 

fraction decreases towards the center. This last case is consistent with the physiology of 

solid tumors that grow above a certain critical radius (Soltani and Chen, 2011). The profile 

for the tumor vasculature fraction as a function of the radius is given in Figure S3. An 

important consequence of this variation is that, in view of the inverse relationship between 

the transport length and the vascular fraction (see Derivation S2)), the transport length 

changes across the different layers (see Figure S3). This in turn results in fluctuations of the 

transport rate (see Eq. (2)).

Combining the model parameters given in the previous example with the experimental data, 

we obtain the results illustrated in Fig. 6. We observe that the numerical simulations can 

reasonably approximate the cell kinetics in the spleen and the tumor. Furthermore, we note 

that our model is able to quantify a time difference of approximately 12 h between the peaks 

of CD8A in the spleen and the tumor. This delay is due to the anatomical differences 

between compartments and the associated transport mechanisms.

Note that in order to compute the total concentration of CD8A inside the tumor one has to 

consider the variation of properties in each layer. A precise definition of this computation is 

given in Definition S7.

Finally, we observe that when the vasculature fraction in the tumor follows a necrotic profile 

(see panel A in Figure S3), the peak of CD8A in Fig. 6A differs by 27% with respect to the 

uniform vasculature fraction case. Clearly, this is due to the impaired transport in the 

necrotic regions of the tumor. This closes the set of validating examples and marks the 

transition to the set of examples that further substantiate the claim that the L-PBPK can be 

used to inform transport questions.

3.3. Exploratory examples

The remaining of this section is dedicated to the exploration of transport scenarios that 

further illustrate the potential applications of the L-PBPK. The first example considers two 

independent variables, the tumor size and the transport coefficient, and compares properties 

such as peak concentrations and rates of change of cells and antigen. The second example 

investigates the attachment of a sentinel LN to the tumor compartment and the resulting 

differences in transport. Lastly, in the third example, the hypothetical experiment of 

expanding the size an organism uniformly across all dimensions is probed. For the 

remainder of this section, unless otherwise stated, all CD8s are in its activated form.

3.3.1. Variations in tumor size and transport coefficients—For our first 

experiment we show how different transport properties and dimensions in a tumor can lead 

to immunological responses of various degrees of intensity. The setting is as follows. Under 

the conditions described in the last validating example (assuming a non-necrotic vasculature 
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profile), we consider two tumor sizes. One with a radius R1 = 0.25 mm, and the second 20 

times larger with a radius R2 = 5 mm. Additionally, we explore two transport coefficients D1 

and D2 for the exchange of cells and antigen throughout the tumor tissue. The ratio r = D2/

D1 is set to approximately 103. The previous parameters generate four combinations: E1 = 

(R1, D1), E2 = (R1, D2), E3 = (R2, D1). and E4 = (R2, D2). To compare and contrast the 

various combinations we measure the parameters shown in Table 1.

The results corresponding to the numerical simulations for a time horizon of j6 days are 

shown in Table 2.

First, note that there is a decreasing trend in the Cmax
Blood(CD8). This can be explained based 

on the fact that as the radius and the transport coefficient grow, transport tends to be faster 

due to a larger contact area and a proportional increase in the transport rate. Hence, it is 

reasonable to assume that the CD8s spend less time in the blood and instead migrate to other 

tissues. In order to evaluate the intensity of the immune response, the peak concentration of 

antigen in the tumor Cmax
Tumor(CD8) is measured. We observe that this parameter also exhibits 

a decreasing trend, suggesting that the increased transport allowed for a rapid mediation of 

the infection. Though the peak concentration of antigen was the smallest in E4, one cannot 

decisively conclude that overall E4 exhibited the least amount of total antigen throughout the 

simulation. This question is readily answered by quantifying the area under the curve of the 

concentration of antigen in the tumor AUCTumor (Ag). The data confirm that indeed the 

scenario with the least amount of antigen is E4. To further contrast the variations amongst 

the immune responses we use as a measure of effectiveness to control an infection the 

maximum slope (rate of change) in the concentration function of antigen in the tumor. This 

quantity is denoted by C
.
max
Tumor(Ag). The rationale is that an abrupt positive change during a 

period of time in the concentration of antigen strongly suggests that the infection was 

proliferating in an uncontrolled manner. As expected, the C
.
max
Tumor(Ag) in E4 is the smallest. 

Hence, we conclude that the immune response is least effective in E1 and most effective in 

E4.

Finally, we note that the peak concentration of CD8s in tumor Cmax
Tumor(CD8) increases from 

E1 to E2, but the opposite trend is observed from E3 to E4. The first effect is a direct 

consequence of the larger transport coefficient in E2, which allows more CD8s to reach the 

tumor. However, the data suggests that there is a point where the transport becomes 

sufficiently efficient that the CD8s are able to neutralize the infection in the blood 

compartment at a high enough rate that the amount of CD8s reaching the tumor 

compartment in E4 is noticeably smaller than in E3. The idea of an efficient transport is 

partially supported by the slight decrease of tmaxTumor(CD8) in E4 with respect to E3. In 

conclusion, this examples illustrates two points. One is how variations in tumor size and 

transport coefficients can noticeably influence the course of an immune response. And 

second, how metrics dependent upon the concentration of cell species can facilitate the 

comparison of different immune scenarios. In the next example we continue exploring 

applications of the tumor compartment by analyzing the potential change in transport 

kinetics after attaching an adjacent LN to the tumor vasculature.
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3.3.2. Sentinel lymph node—The second example in this section explores the question 

of how the transport of cells across a tumor is modified when assisted by a draining LN. 

This is the context of a sentinel LN. The motivation for this example stems from Baba et al. 

(2000), where a female patient exhibits inguinal LN metastasis from breast cancer. Though 

this type of dissemination is rare, it illustrates how a LN network can enable the delivery of 

antigen to distant sites.

The setting of this experiment is as follows. We assume that a tumor is located close to the 

left mammary gland and is connected to the blood compartment by means of severely 

impaired vessels (this is modeled by reducing the vasculature fraction). The tumor produces 

antigen which travels through all compartments and the organism reacts to it by generating 

CD8A that mediate the infection. We consider four experiments divided into two sets. The 

first set consists of a tumor in the form of a cluster of cells (antigen) which proliferate at a 

given rate, whereas the second explores a tumor that exhibits twice the previous rate. Each 

set is composed of two experiments. The first experiment is used as a control. In this 

scenario the system evolves with the conditions derived from the last validating example. 

The second is analogous to the first except that the tumor compartment is also connected to 

the left axillary compartment (refer to Fig. 1 as a visualization aid). In each experiment we 

measure the time required for the antigen to exceed the threshold concentration of 103 cells 

per microliter in the inguinal LN. If the threshold is not attained during the simulation, the 

reported time is infinity (∞).

We now address an aspect relevant to the experimental conditions. As exhibited in Figure 

S3, the vasculature fraction (VF) can influence the tumor transport kinetics by modifying the 

transport length between tissues. Hence, in an attempt to isolate the outcome of the 

additional connectivity from these effects, we choose the VF so that it minimizes its impact 

in the current example. Specifically, we find a critical value for the VF for which the antigen 

concentration levels do not manage to elicit an immune response (at least in the given time 

frame) due to the reduced speed at which the antigen can leave the tumor. We find that such 

value for the VF is 7.00 × 10−3. The precision of this bound can be determined by noting 

that when the VF is set to 7.11 × 10−3 a normal immune response is generated. Thus, we set 

the VF to the later value. A summary of the results is given in Table 3.

Interestingly, under the slow proliferation case (R), the additional connectivity conferred to 

the tumor by the sentinel LN actually negatively impacts the dissemination, i.e., the antigen 

concentration in the inguinal LN never exceeded the threshold concentration. This can be 

explained simply in terms of the additional number of CD8s that have access to the tumor, 

limiting its progression. This suggests that the CD8s were faster in mediating the infection 

than the antigen in reaching distant LNs.

In the setting of a tumor with a fast proliferation rate (2R) we note that there is not a 

significant difference between the control and the sentinel LN case. In this case we 

hypothesize that though there is an increase in transport of CD8s due to the addition of the 

sentinel LN, by doubling the proliferation rate, the immune response is not sufficiently 

strong to cope with the increased number of antigen, resulting in seemingly equal times. 

Ruiz-Ramírez et al. Page 15

J Theor Biol. Author manuscript; available in PMC 2021 May 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Moreover, with twice the proliferation rate, CD8s might spend more time in other 

compartments, delaying their arrival to the inguinal LN.

We remark that these results derive from very specific conditions and only serve as a means 

to explore a potential application. Redefining the whole family of immune parameters would 

certainly generate entirely different results. We close this section with one last example that 

investigates the hypothetical situation of comparing the changes in transport kinetics when 

increasing the dimensions of an organism in a uniform manner.

3.3.3. Effects of scaling in transport—For our final example we explore the effects 

of scaling the size of the compartments in the transport of cells. This experiment extends the 

validation example related to homeostasis by uniformly expanding all physical dimensions 

of the compartments by a constant multiplier M. The variable that we use to quantify the 

differences in transport is the PET (see Definition S6) of CD8s in the spleen. The action of 

amplifying the dimensions of a compartment results in two major changes. It extends the 

transport length ℓ between the lymphoid compartments (simply because they become more 

distant) by a factor of M, and expands the volume of each compartment by a factor of M3. 

Moreover, by modifying the dimensions of an organism one has to take into account the 

potential differences in the proliferation of cells within each compartment. In view of Eq. 

(4), we note that the flat generation rate g(t) is not multiplied by the concentration and 

therefore we also adjust this coefficient by a factor of M3.

An important observation is that, owing to Eq. (20), a modification of the proliferation rate 

g(t) redefines the equilibrium concentration (EC). Hence, when computing the PET it is 

always with respect to the EC determined by the given proliferation rate.

In order to test the effects of the expansion factor M. we consider the following experimental 

conditions. The system starts from an immunodepleted state (zero initial concentration) and 

is left to evolve towards equilibrium. Subsequently, the system is perturbed by delivering a 

certain amount of cells into one compartment (inguinal) and we measure the time elapsed 

between the peak concentration reached due to the perturbation and the attainment of 95% 

the EC in the spleen. We denote this quantity by T95(CD8)Spleen. Details on how the EC and 

the number of injected cells is computed as a function of M is given in Derivation S5. An 

example of the concentration profiles after perturbing the system is shown in Figure S4.

The results corresponding to various values of M are summarized in Fig. 7. We note that an 

exponential fit of the form T95(M) = a · eb·M with estimates a = 4.21 and b  = 1.37 gives an 

accurate description of the model resulting in a determination coefficient R2 ≈ 0.997. The 

exponential behavior of T95(M) can be partially justified observing that the solution to a 

simplified version of the L-PBPK containing only a proliferation constant g and a death rate 

d in one compartment of volume V has a solution whose kinetics are governed by an 

equation of the form 1 − e−d·t/V, where k is a constant. This equation readily shows that an 

increment in the volume slows the kinetics in an exponential fashion. Further details are 

given in Derivation S6.
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In summary, though a uniform scaling of a small animal like a mouse cannot yield an 

anatomically consistent model of a larger animal like a human, one can draw the conclusion 

that size differences can in fact significantly impact the transport kinetics. This effect is 

observed in therapies that have specific effects in mouse models, but generate completely 

unexpected (and often undesirable) outcomes in other larger models. Hence, though size is 

not the only factor at play driving these differences, it does have a contribution. We close 

this manuscript by stating some concluding remarks.

4. Conclusion

In this work we have introduced a transport-based PBPK of relevance to the LS and in 

particular to cell immunotherapies, capable of simulating the transport of therapeutic agents 

across different compartments and tumors. The implementation incorporates different 

reaction mechanisms, some of them requiring the usage of nonlinear dynamical behaviors to 

describe cell intrinsic effects such as proliferation, death, and activation. These effects 

enabled the L-PBPK to simulate aspects inherent to pathogenic processes such as the delay 

in the triggering of an immune response and the reattainment of equilibrium. In addition, 

analytical properties of the model such as existence of a unique solution and stability were 

discussed and established.

Furthermore, six numerical examples were provided. The first three served two purposes. 

They produced computational evidence for the mathematical properties and demonstrated 

the ability of the L-PBPK to simulate experimental conditions of physiological significance. 

For instance, we showed that the system can recapitulate background concentrations and 

reach homeostasis in the face of perturbations. Additionally, we were able to successfully 

model complex interactions between diverse immunological agents in lymphoid and tumor 

compartments which appropriately described the onset, mediation, and eventual eradication 

of an infection. Lastly, owing to the distinctive implementation of the tumor compartment, 

the model proved to be applicable to investigate infiltration kinetics and cell exchange within 

a tumor. The subsequent three exploratory examples further evinced the potential usage of 

the L-PBPK to address transport research questions. This was done by probing the influence 

of tumor size, transport coefficients, and compartment dimensions in cell kinetics, and 

considering the effects of connecting a sentinel LN to a network composed of LNs and a 

tumor.

Finally, we remark that though the focus of the present paper was aimed towards cell 

immunotherapy, the current implementation is sufficiently flexible to allow the modeling of 

problems of an entirely different context but maintaining a transport character. For instance, 

modeling nanodelivery efficiency of pharmaceuticals as a function of material properties in 

the context of biological barriers, and the identification and subsequent mapping of transport 

routes of immunological character in different organisms. Evidently, both of these 

applications would contribute to the better understanding and design of cancer therapies and 

drug delivery strategies.
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Fig. 1. 
Depiction of the fundamental structures of the L-PBPK. A: Graphical depiction of the 

grouping of LNs in the mouse model and the corresponding connectivity. An injection site 

located at the left hind footpad has been included to indicate the possibility of modeling the 

delivery of a biological agent at a specific location. B: Simplified diagram of the network of 

compartments in the mouse model.
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Fig. 2. 
Interactions between cell populations and antigen. Depiction of an immunological response 

between an antigen, DCs and CD8s. The notation (N) indicates a naive population, whereas 

(A) represents an activated state. Whenever two arrows meet at a node marked with a ( × ), 

the product of the populations of the involved species is to be interpreted. The blue arrows 

(⊕) denote a positive impact (increase) in the cell population to which they point. Red 

arrows (⊖) indicate the opposite effect. Note that the system is closed and hence all cell 

populations and antigen affect each other.
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Fig. 3. 
Internal structure of the tumor compartment. The tumor compartment is divided into layers, 

each of thickness dx which is itself a compartment with individual reaction and transport 

properties. To simulate tissue heterogeneity, parameters such as the vascular and lymphatic 

volumetric fraction, rV and rL, respectively, can be chosen in each layer. Moreover, the 

tumor object also allows the possibility of being connected to adjacent LNs to simulate the 

presence of sentinel LNs. The last layer designated as the boundary can also be separately 

manipulated to account for transport differences at the (well-perfused) tumor tissue 

interface.
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Fig. 4. 
L-PBPK evolves towards equilibrium. The system starts from a fully depleted state (zero 

cells) and progressively approaches equilibrium. The equilibrium states in different 

compartments are represented by the black dotted lines.
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Fig. 5. 
Simulation of a CD8-meditated immune response. Plot of the concentration of different 

biological species in the spleen. The black dotted line denotes the total population of CD8s. 

The naive population of CD8s is depicted in orange, while the activated is shown in blue. 

The red dotted line indicates the concentration of antigen. The solid dots represent the 

experimental values.
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Fig. 6. 
Temporal evolution of the concentration of CD8A in the spleen and the tumor. The black 

dashed curve corresponds to the case where the vasculature fraction is constant. The purple 

dashed curve also indicates the concentration of CD8A in tumor, but employing the 

sigmoidal profile given in panel A of Figure S3 for the vascular fraction. The modifier ( × 

30) is used to denote an amplification factor of 30, i.e., the concentration data was multiplied 

by 30. This is done to facilitate the comparison using similar scales. B: Concentration of 

CD8A inside each layer of the tumor compartment for the case of a heterogeneous vascular 

fraction profile (see panel B of Figure S3).
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Fig. 7. 
PET of CD8s in the spleen as a function of the expansion factor. Plot of the PET T95 

(CD8)Spleen as a function of the expansion factor M. The model is of the form T95(M) = a · 

eb·M with a coefficient of determination R2 ≈ 0.997, a = 4.2, b  = 1.37, and standard errors 

s(a) = 0.41, s(b) = 0.04.
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Table 2

Numerical results for the measured immunological parameters. The definition of the parameters is given in 

Table 1. The units for concentration are 103 cells per μL and the time units are in days.

Property/ scenario E1 E2 E3 E4

Radius (R) 0.25 0.25 5 5

Diffusion ratio (r) 1.00 103 1.00 103

Cmax
Tumor(Ag) 30.0 28.0 25.8 25.2

Cmax
Blood(CD8) 250.0 160.0 100.0 80.0

Cmax
Tumor(CD8) 26.7 156.7 105.5 86.2

tmaxTumor(CD8) 4.5 4.5 4.5 4.4

AUCTumor(Ag) 9.5 9.2 8.4 8.3

C
.
maxTumor(Ag) 109.3 104.0 93.5 90.8
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Table 3

Antigen concentration in the inguinal LN. Elapsed time in days for the antigen concentration to reach the 

threshold value of 103 cells per microliter in the inguinal LN compartment. The symbol ∞ indicates that the 

antigen concentration never exceeded the threshold value.

Proliferation rate (R) Proliferation rate (2R)

Control 3.17 1.6

Sentinel LN ∞ 1.6
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