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Abstract
The perception of infant emotionality, one aspect of temperament, starts to form in infancy, yet the underlying
mechanisms of how infant emotionality affects adult neural dynamics remain unclear. We used a social reward task with
probabilistic visual and auditory feedback (infant laughter or crying) to train 47 nulliparous women to perceive the
emotional style of six different infants. Using functional neuroimaging, we subsequently measured brain activity while
participants were tested on the learned emotionality of the six infants. We characterized the elicited patterns of dynamic
functional brain connectivity using Leading Eigenvector Dynamics Analysis and found significant activity in a brain
network linking the orbitofrontal cortex with the amygdala and hippocampus, where the probability of occurrence
significantly correlated with the valence of the learned infant emotional disposition. In other words, seeing infants with
neutral face expressions after having interacted and learned their various degrees of positive and negative emotional
dispositions proportionally increased the activity in a brain network previously shown to be involved in pleasure, emotion,
and memory. These findings provide novel neuroimaging insights into how the perception of happy versus sad infant
emotionality shapes adult brain networks.
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Introduction
“The smile is the shortest distance between two
persons”.

-Victor Borge.

An individual’s temperament refers to individual differences in
several biobehavioral domains, spanning activity, emotionality,
attention, and self-regulation (Rothbart and Bates 2006; Shiner
et al. 2012; Nolvi et al. 2016). It is not a trait itself, but rather

a rubric for a group of related traits (Goldsmith et al. 1987).
The characteristics that comprise temperament are thought to
be relatively stable over time and consistent across situations
(Sanson et al. 2004), but they also develop in interactions with
the social environment (Lee and Bates 1985). Emotionality is
one aspect of infant temperament, which is often measured
on a scale ranging from clear fussing and crying, to neutral, to
predominantly smiles and laughter (Pauli-Pott et al. 2004). In
order to have optimal and adaptive social behavior, we utilize
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knowledge from previous experiences of individuals, such as
emotionality, to make predictions about the future and mini-
mize the cost of surprise (Friston et al. 2006; Brown and Brüne
2012). Therefore, learning about an individual’s predominant
emotional dispositions is a key part of human social interaction,
in particular parent–infant interaction (Stark et al. 2019).

Infant emotionality has a measurable effect upon early
mother–infant bonding. While positive infant emotionality
(measured by infant smiling or laughter) relates to better
mother–infant bonding, negative infant emotionality (measured
by infant distress) relates to lower quality of bonding, while
controlling for maternal symptoms of both depression and
anxiety (Nolvi et al. 2016). Infant emotionality may also
influence the way in which parents respond to their infant. For
instance, irritable children who cry frequently may elicit feelings
of irritation in parents and subsequent withdrawal of contact
(Putnam et al. 2002). One study in the Netherlands reported
that 5.6% of parents in their sample recounted smothering,
slapping, or shaking their baby due to crying, particularly
when they judged the crying to be “excessive” (Reijneveld et al.
2004). Positive or ‘cute’ temperamental factors such as smiling
or babbling may conversely elicit interaction and proximity
(Kringelbach et al. 2016).

Infants attract our attention (Kringelbach et al. 2016). The
unique and instantly recognizable facial configuration of infants
is pleasing and rewarding, and an instinctive reaction of adults
upon seeing an infant is to smile (Hildebrandt and Fitzgerald
1978). The infant face has a measurable impact upon our per-
ceptions and behavior. Adults prefer infant faces to adult faces
(Brosch et al. 2007; Parsons, Young, Kumari, et al. 2011) and infant
cues spur us to action—both men and women will expend extra
effort to look at cute infant faces for longer (Parsons, Young,
Kumari, et al. 2011; Hahn et al. 2013). Even seeing an infant
face briefly before a simple motor task promotes faster reaction
times and more sustained engagement with the task (Proverbio
et al. 2011). Infant visual cues therefore seem to be one of the
most basic but powerful forces shaping our perceptions and
behavior (Kringelbach et al. 2016). Importantly, this behavioral
impact of the infant face must be linked to changes in brain
activity and in fact the infant face has been shown to elicit brain
activity on a very fast timescale (<130 ms) in a network including
the orbitofrontal cortex (Kringelbach et al. 2008; Parsons et al.
2013; Young et al. 2016), which may mobilize the perceiver to
ready themselves for providing care.

Still, our perception of cuteness and subsequent behavior is
dynamic and is strongly influenced by context such as previ-
ous interactions mediated by valenced social signals including
smiles, laughter, distress, and crying. In all human relationships,
the bond between caregiver and child is arguably the strongest
of all. For caregivers, learning about their infant’s emotional
state helps them to predict how the infant approaches and
reacts to the world. Some infants may smile, laugh, and babble
contentedly more frequently than others, indicating a positive
disposition. On the other hand, all infants cry to signal need, but
infants differ from each other in how frequently and intensely
they cry. Infants with a temperament characterized by negative
disposition cry more often and tend to react to stressors with a
high degree of emotionality, including anger, irritability, fear, or
sadness (Rothbart et al. 1994).

We were interested in measuring the underlying brain net-
works for learning of infant emotionality and used our proba-
bilistic social reward task, which allows participants to learn that
infants have different emotional dispositions (through varying

levels of probabilistic positive and negative feedback) (Parsons,
Young, Bhandari, et al. 2014; Parsons, Young, Craske, et al. 2014).
In the learning phase, participants learn over time, through trial
and error, that a given infant is more or less likely to smile
and laugh. We have shown that this can significantly shift the
perception of cuteness and motivation to view an infant, so that
those infants with more positive emotionality are perceived as
‘cuter’ than before the task (Parsons et al. 2014). This demon-
strates that the perception of the emotionality dimension of
temperament can be changed through a simple behavioral task
that shifts the intrinsic reward value of infants.

Here, we investigated the brain networks underlying learning
of infant emotional dispositions. In particular, we were inter-
ested in capturing the specific functional network (FN) involved
in the perception of the learned infant emotional disposition
following the successive presentation, inside the MRI scanner, of
pictures of infants with neutral facial expressions, whose emo-
tional disposition was previously learned. In order to achieve
this, we used a recent neuroimaging analysis method, the Lead-
ing Eigenvector Dynamics Analysis (LEiDA; Cabral et al. 2017;
Figueroa et al. 2019; Lord et al. 2019), which allows us to detect,
at a single-TR (repetition time) resolution, the occurrence of
FN from functional MRI (fMRI) data. In this approach, FNs are
defined as recurrent BOLD phase-locking patterns, which can be
captured with low-dimensionality by considering only the rela-
tive phase of BOLD signals (i.e., how all BOLD phases project into
their leading eigenvector at each discrete time point). Previous
implementations of the LEiDA method have revealed that the
probabilities of occurrence of different FN (and their correspond-
ing switching profiles) can show significant differences between
participant groups, but these measures were computed over
entire resting-state fMRI sessions (Cabral et al. 2017; Figueroa
et al. 2019).

Here, for the first time, we make use of the high temporal
resolution of LEiDA and apply it to a task paradigm, in order
to evaluate if the occurrence of specific FN at a precise timing
after the stimulus can relate to the learned infant emotionality.
This advanced method allows for an unbiased way to investigate
learning of infant emotional dispositions and in particular to
identify the brain networks linked to infant emotionality along
a positive–negative happy versus sad gradient.

Materials and Methods
Participants

We analyzed neuroimaging data from 47 female participants
included in our previous study (Riem et al. 2017) (mean
age 19.62 years old, SD = 2.12, all undergraduate students
from the Department of Child and Family Studies, Leiden
University, >95% born in The Netherlands). None of the
participants had children. All participants were screened for
MRI contraindications, childhood experiences, psychiatric, or
neurological disorders, problems with hearing, pregnancy, and
alcohol and drug abuse. The participants gave written informed
consent, and permission for the study was obtained from the
Leiden University Medical Centre Ethics Committee and from
the Leiden Institute for Brain and Cognition Ethics Committee.

Procedure

The elements of the study used in this analysis consisted of the
learning and test phase of a variation of the original probabilistic
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Figure 1. Overview of the social reward task. (A) Participants were trained outside of the scanner to associate six different infant faces with different emotional

dispositions. They were presented with two infant faces and had to choose the top face (pressing “up”) or the bottom face (pressing “down”). They were then exposed
to feedback for the chosen face, either positive (smile and laughter) or negative (sad expression and crying). Bottom panel shows the different contingencies for each of
the six faces: 80% happy, 20% happy (the easy pair), 60% happy, and 40% happy (the hard pair), and two with no feedback. (B) The testing phase was then administered
inside the scanner, where participants stated the predominant emotional disposition of each face—happy or sad (Riem et al. 2017). (C) Illustration of each of the reward

contingences for the six face stimuli. Please note that the faces shown in the figures are not the ones used in the experiment but rather hand drawings of nonexistent
infant faces to depict the learning and test phases of the probabilistic social reward task.

social reward task (Parsons et al. 2014) shown in Figure 1 (Riem
et al. 2017). The 47 participants came to Leiden University Med-
ical Center for the experiment.

Learning Phase

First, participants were trained to learn the emotional dispo-
sitions of the infants in the social reward task (Parsons et al.
2014), which was constructed using previous widely used learn-
ing paradigms (Kringelbach and Rolls 2003; Frank et al. 2004).
There were six different infants that varied in their probabil-
ity of being happy or sad. Faces were presented in pairs. The
easy-to-learn pair consisted of a happy infant, which laughed
in 80% of trials and cried in the remaining 20%, presented
together with a sad infant that laughed in 20% of trials and
cried in the remaining 80%. In the difficult-to-learn pair, the
happy infant laughed 60% of the time while the sad infant
laughed only 40% of the time. There was also a neutral pair
where no feedback was given, which participants were told to
expect.

The learning phase consisted of two blocks of 60 trials per
participant, with each pair of faces being presented 40 times in
total (20 times per block). Trials were randomly ordered in each
session, as was the order of the blocks. The emotional disposi-
tion of the babies (happy, sad, or neutral) was also randomized
between participants.

Participants were presented with one pair of babies at a
time, both showing a neutral emotional expression (see Fig. 1).
They selected the ‘up’ key or the ‘down’ key on a keyboard to
choose one of the two baby faces (the upper neutral face or
the lower neutral face) and this selection prompted feedback on
the selected baby’s emotional disposition. On pressing the key,
visual feedback for the selected face was presented immediately
for 1.5 s accompanied by a 1.5 s vocalization. In the happy
condition, they would see the baby smiling and they would hear
a happy vocalization. In the sad condition, participants would
see a sad facial expression and hear a baby cry. There was a
500 ms gap between the end of the feedback and the next trial
beginning, during which a red fixation cross was presented in
the center of the screen.

Participants were instructed to discover the emotional dispo-
sition of the infant by listening to the vocalizations and viewing
the infant’s facial expressions. By means of repeated trials, they
could infer how often the baby cried or laughed and decide
which one was the happier or the sadder of the two. Participants
were told for one block, “In each pair of faces, there is one happy
and one sad baby. Like in real life, the happy baby will not always
be happy and the sad baby will not always be sad. In each set,
your task is to find the happiest baby, the one who smiles most
often, and continue to always select this baby even if this baby
may sometimes appear sad.” In the other counterbalanced block,
participants were instructed to find the saddest baby.
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Testing Phase

The second stage of the experiment was the fMRI procedure,
where participant learning of the infant emotionality was tested.
Participants were briefed on the fMRI procedure and paradigm.
It has previously been established that the participants can
discriminate between the six infant faces with high accuracy
(Parsons et al. 2014; Riem et al. 2017). While being scanned,
participants were presented with the six infant faces, all of
which had neutral facial expressions. Each neutral infant face
was presented in the center of the screen, accompanied by the
words ‘happy’ and ‘sad.’ Participants were tasked with indicat-
ing whether they believed the baby to be happy or sad, based
upon the previous training phase, using their right hand to
button press. Each face was presented 20 times, for up to 2.6 s, in
random order (120 presentations in total). The button press ter-
minated the trial and continued to the next trial, so the task was
self-paced. Interstimulus intervals were jittered and calculated
using Optseq (https://surfer.nmr.mgh.harvard.edu/optseq/). All
tasks were programmed and performed using E-Prime software.

Stimuli

All infant facial images and vocalizations were the same as
those used in Parsons et al. (2014) and Bhandari et al. (2014).
Each of the six babies was aged 3–12 months old, and had a
corresponding image for smiling, crying, and neutral conditions.
An independent sample of adult females (n = 40) was asked to
rate the faces from a larger set of 13 stimuli (Kringelbach et al.
2008) as “male,” “female,” or “cannot tell.” The results were
then used to select six faces that represented two perceived as
female, two as male, and two with ambiguous ratings (Parsons
et al. 2014). All images were in grayscale, and were equally sized
(300 × 300 pixels), as well as being matched for luminosity.

There were 12 vocalizations: 6 of crying infants, and 6 of
laughing infants. Adults unambiguously categorized these as
such (Young et al. 2012), and they were taken from a larger
database of sounds, the Oxford Vocal (OxVoc) Sounds Database,
which is a validated set of nonacted affective sounds from
human infants, adults, and domestic animals (Parsons, Young,
Craske, et al. 2014; Young et al. 2017). All vocalizations were
1.5 s long, free from background noise, and matched for the
characteristics of the sounds. Headphones were used to present
the vocalizations to participants during the training phase of the
social reward task.

Data acquisition with fMRI

All scanning was performed with a standard whole-head coil on
a 3-T Philips Achieva TX MRI system (Philips Medical Systems,
Best, The Netherlands) in the Leiden University Medical Center.
During fMRI, there were a total of 298 T2∗-weighted whole-
brain echoplanar images acquired (repetition time = 2.2 s; echo
time = 30 ms, flip angle = 80◦, 38 transverse slices, voxel size
2.75 × 2.75 × 2.75 mm [+10% interslice gap]). Following the fMRI
scan, a T1-weighted anatomic scan was acquired (flip angle = 8◦,
140 slices, voxel size 0.875 × 0.875 × 1.2 mm).

Preprocessing

The preprocessing of the neuroimaging data was carried out
in FSL5.0 (www.fmrib.ox.ac.uk/fsl) using high-pass temporal fil-
tering (100 s high-pass filter), motion correction, brain extrac-
tion, and finding the linear registration from the EPI images to

standard MNI space via the participant’s T1-weighted images.
We used this registration matrix to parcellate according to the
AAL parcellation (Tzourio-Mazoyer et al. 2002) and generated the
average BOLD signal time series for each AAL90 region (cortical
and subcortical but not cerebellum regions) by computing the
mean over all voxel time-series for each region. We also created
participant-specific vectors with the onset of each stimulus
presentation for use in the main data analysis.

Data analysis

Transient Functional Networks
To assess the FN activated at each instance of time, we applied
LEiDA, a data-driven method that focuses on the connectivity
patterns captured by the leading eigenvector of the BOLD phase-
coherence matrices over time (Cabral et al. 2017).

First, we obtained a time-resolved matrix of functional con-
nectivity, dFC, with size NxNxT, where N = 90 is the number of
AAL90 brain areas and T = 280 is the total number of recording
frames in each scan (timeseries), using the following equation:

dFC
(
n, p, t

) = cos
(
θ (n, t) − θ

(
p, t

))

where θ (n,t) is the phase of the BOLD signal in area n at time t
obtained using the Hilbert transform. The first and last epochs of
each scan were removed to account for the boundary distortions
associated to the Hilbert transform. dFC(n,p,t) is positive if two
areas n and p have synchronized BOLD signals at time t (phase
shift <90◦), and dFC(n,p,t) is negative if the BOLD signals of areas
n and p are more than 90◦ out of phase at time t.

To assess instantaneous patterns of functional connectivity,
LEiDA considers only the leading eigenvector V1(t) of each dFC(t).
This simultaneously reduces the dimensionality of the data (one
1 × N vector at a time instead of a N × N matrix at a time)
and acts as a denoising procedure since the leading eigenvector
V1(t) captures only the dominant pattern of connectivity of the
dFC(t) at time t (Cabral et al. 2017). This vector contains N ele-
ments (each representing one brain area) and their sign (positive
or negative) serves to separate brain areas into communities
according to their BOLD-phase relationship. Since V and −V
represent the same state, we use a convention ensuring that
most elements are negative. When all elements of V1(t) have the
same sign, it means all BOLD signals are evolving in the same
direction (within a range of 90◦) and are hence considered to be
following a single global mode (Newman 2006). If instead V1(t)
has elements of different signs (i.e., positive and negative), it
means the BOLD signals can be divided according to their phase
into two modes/communities, where one subset of brain areas
become coherent forming a FN, which is phase shifted by more
than 90◦ with respect to the other brain areas. Conveniently, FNs
can be represented in cortical space, by plotting links between
the smaller subset of areas, whose BOLD signal is coherent and
phase-shifted from the rest of the brain.

To detect a discrete number of recurrent FC states, we applied
a k-means clustering to all leading eigenvectors V1(t) across all
47 participants (47 × 278 = 13 066 leading eigenvectors in total).
The clustering divides the sample into a k number of clusters
(each representing a recurrent FC state), with higher k resulting
in more fine-grained network configurations. Although there is
no consensus regarding the number of FC states revealed by fMRI
(and whether FC states can be discretized in the first place), we
can explore which partition of the sample allows for a better

https://surfer.nmr.mgh.harvard.edu/optseq/
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Figure 2. Schematic illustration of the LEiDA methodology used to analyze the fMRI data. (A) First, we applied LEiDA to the fMRI data and clustered the FC patterns into
a given number, k, of FC states, assigning one of these FC state to each TR (represented by shaded colored bars under the BOLD signals). Then, for each infant face, we
detect the FC state that is active 2TR after stimulus presentation (to account for the hemodynamic response time). (B) For each infant face and for each participant,
we obtain a probability distribution of the FC states, which we subsequently correlate with the happy–sad gradient given by the probability of smiling in the training

phase.

detection of FN associated with learning of infant emotionality.
As such, we varied k (number of clusters) from 2 to 20, and for
each k, obtained a repertoire of k FC states. Subsequently, for
each FC state, we evaluated whether its probability of occurrence
2TR (TR stands for repetition transition) after the neutral face
presentation correlated with the happy–sad gradient of learned
infant emotionality (using Pearson correlation and associated P-
values) (see Fig. 2 for an overview of the whole analysis process).

Results
We used LEiDA methodology to investigate the dynamics of
brain networks involved in learning of infant emotionality aris-
ing from the probabilistic social reward task (for more details on
task, see Fig. 1 and Methods). This allowed us to investigate the
probability of occurrence of each state of functional connectivity
linked to the positive emotionality score of the infant faces, that
is, the probability of smiling and laughter for each of the six
infants in the training phase (80/20, 60/40, and 50/50) (see Fig. 2
and Methods for an overview of the data analysis).

Figure 3 shows the repertoire of FC states (for k = 8) that recur-
rently emerged over time in the group of 47 participants during
the entire fMRI recording sessions, and where the FC states are
sorted according to their overall probability of occurrence. As
can be seen in Figure 3, the most prevalent pattern of functional
connectivity [FN#1] corresponds to periods where all the BOLD
signals are aligned (within a 90◦ angle), representing a slow
global mode of BOLD activity. When this state is dominant, the
associated FC pattern (shown in matrix format in Fig. 3B) shows
only positive values. This global mode of BOLD connectivity is
consistent with previous reports of a global modulation of BOLD

signals in the resting-state. Given its putative neurophysiologi-
cal value, we opted not to regress it out (Murphy and Fox 2017).

In the remaining seven FC states, we find different sub-
sets of brain regions (FN#2–8) that transiently but consistently
desynchronize together from the global mode of BOLD activity.
Figure 3 shows each FN in brain space, by plotting red links
between the areas that shift away from the global mode (with
this convention, the global mode network FN#1 shows no links).
This representation in cortical space reveals that each FN state
involves functionally different sets of brain areas. For each of the
FN, we computed the probability of being active 2 TR after the
presentation of each neutral infant face (allowing for the hemo-
dynamic lag). Since each infant face has an associated emo-
tionality score (80%, 60%, 50%, 40%, 20% probability of smiling
and laughing), we correlate this probability with the correspond-
ing emotionality score and obtain an associated P-value (Fig. 3,
lower row), revealing the significance of each FN in predicting
the emotionality of the infants. As can be seen, most of the FNs
do not encode the emotionality, but FN#2 is clearly significantly
linked to the degree of overall happiness (P < 0.002) and includes
regions of the orbitofrontal cortex, amygdala, parahippocampus,
and hippocampus.

We investigated the robustness of this novel finding by inves-
tigating the results over a wide range of clusters k between 2
and 20, given that the spatial configuration of the FNs depends
on the number of clusters determined in the k-means algo-
rithm, with a higher number of networks generally resulting in
more fine-grained (and often less symmetric) networks. Figure 4
shows for each solution with k FNs, the P-value associated
with the most significant result. Since a higher number of clus-
ters increases the probability of false positives, we correct the
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Figure 3. Repertoire of FN states assessed with LEiDA and association to learned emotionality (for k = 8). The results show that FN#2 is significantly correlated with

positive emotional disposition scores for the six infants (P < 0.002, highlighted in green box, see row of probabilities), suggesting that this network is important for
learning of infant emotionality. The brain network contains regions including the orbitofrontal cortex, amygdala, and hippocampus. The error bars represent the
standard error of the mean across all 47 participants. These results are obtained when the dynamic FC is clustered into 8 FC states.

Figure 4. Significance of correlation between FN and infant emotionality over the range of k-means clustering solutions explored. We verified which partition models
detected FN, whose probability of occurrence 2 TRs after the presentation of an infant neutral face correlated to its learned emotionality. The figure shows the P-values

obtained for all the networks compared. All the P-values represented as dots are above the 0.05 standard threshold (upper dashed line), meaning that no relation
was found between the occurrence of the corresponding networks and the infants’ emotionality. To account for the family-wise error rate when performing multiple
hypotheses tests, we corrected the standard threshold by the number of independent hypothesis tested in each partition model (0.05/K lower dashed line). As can be
seen, for a number of cluster sizes (K = 5, 8, 11), we detect a FN, whose probability of occurrence significantly correlates with the learned infants’ emotionality (P < 0.01),

with statistical significance surviving correction for multiple comparisons.

significance threshold as 0.05/k (green dashed line). We find that
the partitions into 5, 8, and 11 FC states each return a very similar
FN, whose probability of occurrence significantly correlates with
the infant emotionality after correcting by k.

Figure 5 shows the robustness of the emotionality learning
FN for the three different k values (k = 5, 8, 11). As can be seen the
regions involved in this FN are remarkably similar for different
k values (compare the red lines) and significantly correlated
with infant emotionality (P < 0.007 for k = 5; P < 0.002 for k = 8;
and P < 0.003 for k = 11). This confirms the robustness of the

result of finding a brain network encoding learning of infant
emotionality, involving regions such as the orbitofrontal cortex,
parahippocampus, hippocampus, and amygdala.

Discussion
An infant’s temperament is partially comprised of individual dif-
ferences in their emotionality—whether they are predominantly
happy, signaled by smiles and laughter, or sad, signaled by crying
and distress cues. We investigated the functional brain networks
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Figure 5. Functional brain networks associated with emotionality learning. The probability of the networks (red links) being active 2TR after stimulus onset increased
as the learned emotionality of the infant showed a more positive disposition. In more detail, these networks are considered to be active when the BOLD signals of these

areas (red bars) become coherent and phase shifted by more than 90◦ with respect to the BOLD signals in the rest of the brain (gray bars). An emotionality learning
network was found to show significant correlation with learned emotional dispositions over the 47 participants. This solution for k = 8 (middle) returned the most
significant functional network (FN#2) (P = 0.0023, uncorrected, P = 0.0184 after correcting by the number of clusters). This emotionality learning network includes not
only the orbitofrontal cortex (which is known to be involved in pleasure and emotion), but also the amygdala (involved in emotional processing) and the hippocampus

and parahippocampus (involved in memory). Attesting to the robustness of the results, the other two networks found to relate significantly with the infants’ learned
emotionality (for k = 5 and k = 11), also include the orbitofrontal cortex, with differences arising in the number of output states constrained by K.

underlying learning of infant emotionality using neuroimaging
in healthy adult participants. We used a probabilistic social
reward task allowing participants to learn, through trial and
error, the emotional disposition of a group of six infants (Parsons
et al. 2014; Riem et al. 2017). Through this interactive learning
task, the participants learned the probability of each infant
showing a positive disposition by smiling and laughing. We have
previously shown that this probabilistic social reward task can
reliably shift the way infant cuteness is perceived and the moti-
vation to view individual infant faces (Parsons et al. 2014), such
that infants previously judged less cute become significantly
cuter if they display a positive emotional disposition during the
short social reward task. Here, we scanned 47 participants in the
testing phase of the social reward task after they had learned the
experimentally established infant emotionality. This allowed us
to compute the underlying changes in dynamic functional brain
connectivity associated with each infant emotional disposition
using a novel LEiDA methodology (Cabral et al. 2017).

Our results revealed for the first time a significant brain
network exhibiting time-varying activity that significantly cor-
related with the experimentally established infant emotional
disposition, that is, more activity when seeing the infants with
most positive emotionality (80% and 60% probability of smiling
and laughing) and much less activity when seeing the infants
with the most negative emotionality (20% and 40% probabil-
ities of smiling and laughing). Importantly, these experimen-
tally established infant emotionality values were different from
the initial cuteness ratings and desire to view the infant face
(Parsons et al. 2014), suggesting that this brain network is not
encoding simply the cuteness of an infant but this emotional
aspect of the learned infant temperament.

Revealing the brain networks engaged in learning about
infant emotionality is important given that positive, cute infant
cues such as smiles and laughter promote caregiver proximity
and care vital for the infant’s survival (Kringelbach et al. 2016).
This should be seen in context of the development of three main
“parental capacities,” which apply to all caregivers (Parsons
et al. 2010; Stein et al. 2014). The first parental capacity is
the ability to focus attention on the infant’s emotional cues
and respond contingently and responsively, which predicts
later cognitive development (Murray et al. 1996). The second
key parental capacity is emotional scaffolding, which is the
ability to perceive changes in emotion and stress in the infant
and support them to regulate their emotions, especially when
the infant is distressed. The third key parental capacity is
sensitivity to an infant’s attachment behaviors, such as eye
contact, and to respond appropriately. Previous research has
shown that the antecedents to these capacities, particularly
attentional focus, are found even in the brain processing of
nonparents (Kringelbach et al. 2008; Young et al. 2016). Here
we demonstrate for the first time the brain networks involved
for nonparents in learning about infant emotional dispositions,
which are essential for the ability to perceive emotional state,
provide emotional scaffolding in instances such as crying,
and to hone sensitivity to an infant’s attachment behaviors
(Bornstein 2014). A future endeavor for this work is to explore
how learning of infant emotional dispositions affects the brain
of new parents, perhaps also exploring own-infant versus other-
infant processing.

We have identified the brain network encoding learning
of infant emotionality consisting of the orbitofrontal cortex,
hippocampus, parahippocampus, and amygdala (see Figs. 3
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and 5). These regions are known to be structurally connected,
for example, via the uncinate fasciculus (Von Der Heide et al.
2013). Perhaps the most important region in this emotionality-
encoding network is the orbitofrontal cortex: a large het-
erogeneous brain region with many functions, which has
primarily been implicated in emotion and hedonic processing
(Kringelbach and Rolls 2004; Kringelbach 2005; Kringelbach
and Berridge 2009). It has a specific role in processing the
valence of primary reinforcers including face perception, as
patients with lesions to the orbitofrontal cortex struggle to
identify emotional facial expressions (Hornak et al. 1996), and
similarly face-selective patches have been found in orbitofrontal
cortex, primarily in electrophysiology studies using primates
(O’Scalaidhe et al. 1997). Previous work has associated infant
faces with fast activity in the OFC at around 130 ms (Kringelbach
et al. 2008; Parsons et al. 2013). Similarly, the orbitofrontal
cortex has been involved in the fast processing (<130 ms) of
infant auditory stimuli (Young et al. 2016). This processing is
present in men and women, parents, and nonparents, and has
been theorized to comprise a universal “caregiving instinct”
(Lorenz 1943) that may prepare the individual to provide care
to the infant by coordinating responsiveness and readiness for
sociality (Kringelbach et al. 2016). Importantly, when an infant
face is altered, as in the case of cleft lip, which is rated as
much less cute than healthy infants (Parsons, Young, Parsons,
et al. 2011b), the rapid activity in the orbitofrontal cortex is
significantly diminished, suggesting that the configuration
of the infant face is vital for the perception of a biologically
significant infant (Parsons et al. 2013). Perhaps, as our current
study demonstrates, positive emotional cues such as laughter
and smiles could help to shift individuals’ perception of these
infants to perceive them as cuter and facilitate subsequent
caregiving.

The amygdala has been shown to be involved in the process-
ing of emotional stimuli (LeDoux and Phelps 2000) and partic-
ularly in the recognition of facial emotions (Adolphs 2002). For
many years the literature seemed to suggest that the amygdala
was mainly involved in processing negative emotions including
facial expressions denoting threat (fear or anger), mainly driven
by findings in rodents (LeDoux and Phelps 2000). Yet, amygdala
activity has also been found for positive stimuli including faces
(Yang et al. 2002; Fitzgerald et al. 2006). As a result, Pessoa
and Adolphs (2010) proposed that the role of the amygdala in
visual processing is to coordinate cortical networks during the
evaluation of the biological significance of visual stimuli with an
affective dimension, like a conductor with an orchestra. Interest-
ingly, it has been proposed that some of the role of the amygdala
seen in rodents have been taken over by the orbitofrontal cortex
over the course of evolution (Rolls 1999).

Previous research has also shown the detection of biological
significance is linked to emotional memory networks, which
include the orbitofrontal cortex, amygdala, parahippocampus,
and hippocampus (Berridge and Kringelbach 2015; Kringelbach
and Berridge 2017). Both human and animal research has shown
how the amygdala often works in concert with hippocampal
regions to lay down emotionally valenced episodic memories
(Phelps 2004) (Stark et al. 2015). There is some evidence to
suggest that emotional cues are more easily memorized and
recalled (Kensinger 2009), which would suggest that imbuing an
infant face with an emotional disposition might strengthen the
memory and aid recall. An interesting follow up would be to
explore valence in greater detail, specifically whether happy or
sad emotionality leads to better recall.

Thus, given their roles in processing emotional behaviors,
the interaction between the orbitofrontal cortex and the
amygdala with memory systems mediated by the hippocampal
regions could signal to the attentional systems to dynamically
update the reward value of infants and help guide subsequent
caregiving. Here, it is important to stress the role of the
network rather than the role of individual brain regions. Due the
instantaneous nature of the patterns detected with LEiDA, we
were able to detect a specific set of regions whose probability to
synchronize their BOLD signal phases relates with the learned
emotional dispositions associated to the neutral infant faces.
Importantly, since successive stimuli were presented <10 s
apart, conventional sliding-window analysis used for the
evaluation of dynamic functional connectivity would have failed
to capture the emotional specificity associated to each face (Preti
et al. 2017). Recently, other methodological approaches focusing
on BOLD coactivation patterns have been proposed to analyze
BOLD connectivity dynamics at high temporal resolution
(Tagliazucchi et al. 2012; Liu and Duyn 2013; Karahanoglu
and Van De Ville 2015). However, coactivation approaches
(in their variant forms) are only sensitive to simultaneity
in the data, whereas phase-coherence techniques can, by
definition, capture temporally delayed relationships, which
may explain why the LEiDA method appears more sensitive
to detect meaningful functional subsystems. We are thus able
to expand our previous categorical neuroimaging analysis,
which suggested increased amygdala connectivity with frontal
regions and the visual cortex during the perception of infants
with a happy disposition (Riem et al. 2017). Crucially, however,
such categorical analyses rarely provide insights into the
spatiotemporal dynamics of network activity. Longer-term,
combining these sophisticated unsupervised data analysis
methods with whole-brain computational modeling has the
potential to show the causal influence of each of the regions
in the emotionality-learning network identified here (Deco and
Kringelbach 2014; Deco et al. 2018).

Another proposed role of the orbitofrontal–amygdala–
hippocampus network would be to provide top–down predic-
tions to sensory regions when processing the neutral infant
faces. Previous work has shown that one proposed function of
the OFC in visual processing is to integrate perceptual repre-
sentations with top–down expectations activated by contextual
or associative detail (Bar et al. 2006). This view corroborates
with the concept that the brain is not a passive organ, but is
constantly predicting incoming proximate sensory information
based upon memories of past experiences (Vuust et al. 2018).
In addition to this, a recent study found the hippocampus to
encode the identity of a visual stimulus based upon associative
predictions from auditory cues (Kok and Turk-Browne 2018). If
this network is providing a prediction of the infant’s emotional
disposition despite the neutral face presented during scanning,
this could provide evidence demonstrating how contextual
and trait-related social information is integrated into visual
perception.

Finally, it is interesting to consider how the present
research may be adapted to explore further the processing
of infant emotionality in psychiatric disorders. Research in
depressed patients have shown that they are less accurate
at discriminating happy facial expressions (Gur et al. 1992;
Surguladze et al. 2004; Dai et al. 2016), which is thought to
underlie some of the impaired interpersonal functioning in
depression. This interpersonal functioning is vital to the parent–
infant relationship, as is sensitivity to infant cues that signal
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their affective state and also their needs. Research has found
impairments in precise, controlled psychomotor performance
in adults with depression (Young et al. 2015) and mothers with
postnatal depression also show reduced affective touching
than healthy mothers (Young et al. 2015). Given that the brain
networks in response to infant cues are crucial in triggering
behavioral responsivity, it would be of considerable interest
to test whether caregivers with depression may show altered
brain networks for learning of infant emotionality from facial
and vocal cues. Our learning paradigm may also be usefully
incorporated in broader interventions, such as the “Video-
feedback Intervention to promote Positive Parenting” video
feedback approach (Juffer et al. 2017), emphasizing attention to
positive emotional signals of the infant in order to more system-
atically change parental perceptions of their infants’ negative
emotionality and trigger less harsh and more sensitive parental
interactions.
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